
DISSCO: A Unified Approach to Sound Synthesis and Composition

Hans G. Kaper
Mathematics and Computer

Science Division
Argonne Nat’l Laboratory

e-mail: kaper@mcs.anl.gov

Sever Tipei
Computer Music Project

School of Music
University of Illinois

e-mail: s-tipei@uiuc.edu

ABSTRACT

DISSCO (Digital Instrument for Sound Synthesis and Com-
position) represents a unified and comprehensive approach
to sound synthesis and composition—unified in the sense
that its components share a common formal approach and
use similar tools, comprehensive in the sense that they de-
liver a final product (a musical “event”) that does not re-
quire further processing.

DISSCO consists of two parts: LASS, a C++ Library
for Additive Sound Synthesis, and CMOD, a C++ Com-
position Module. Release 1.0 of DISSCO is available as
open-source software. This article discusses some under-
lying ideas of music composition and sound synthesis and
describes implementation details in the context of LASS
and CMOD.

1. INTRODUCTION

DISSCO (Digital Instrument for Sound Synthesis and Com-
position) represents a unified and comprehensive approach
to sound synthesis and composition—unified in the sense
that its components share a common formal approach and
use similar tools, comprehensive in the sense that they de-
liver a final product (a musical “event”) that does not re-
quire further processing. DISSCO is a black box that takes
data provided by the user and produces a finished object.

DISSCO consists of two parts: LASS, a C++ Library
for Additive Sound Synthesis, and CMOD, a C++ Com-
position Module. Release 1.0 of DISSCO is available as
open-source software [8]. Details of LASS and CMOD
are discussed in Sections 2 and 3, respectively; some re-
cent results obtained with DISSCO are described in Sec-
tion 4; aesthetic considerations are given in Section 5; and
future work is described in Section 6.

2. LASS

LASS is a C++ Library for Additive Sound Synthesis.
Built around the idea that a score is a collection of sounds
and a sound a collection of partials [1], LASS takes ad-
vantage of the Standard Template Library (STL) Contain-
ers and Iterators. A good number of its features and most
of its functionality reflect previous work done with DI-
ASS [4] and DISCO [3]. However, LASS is no longer

a MusicN-type program; oscillators and wavetables have
been replaced by function evaluations, sounds are no longer
produced by “instruments,” and there is no score. LASS
can generate an XML file as a record of the score, but this
file is not needed as input.

The paradigm underlying LASS can be summarized as
follows [1]. A piece is a complex wave, the result of su-
perimposing a collection of sounds. Each sound in turn is
a superposition of its constituent partials. Partials are the
elementary building blocks of a piece; they can be sim-
ple sine waves, other wave types, or even white noise. In
the case of sine waves, the contribution of an individual
partial to the sound is given by an expression of the form

p(t) = a(t) sin(2πf(t)t + φ(t)),

wherea is the amplitude,f the frequency, andφ the phase
of the partial. Each of these three parameters can vary
with time. LASS computes the samples that describe the
resulting complex wave by adding the contributions from
all the partials active at the particular instant of time.

2.1. Features and Functionality

From the user’s point of view, the central elements of
LASS are sounds and partials. Both have static and dy-
namic attributes (parameters) that are associated with enums.
Static parameters are the start time, duration, wave type,
and relative (maximum) amplitude of each partial; ex-
amples of dynamic parameters are the frequency, phase,
amplitude envelope, and amplitudes and rates of vibrato
(FM), tremolo (AM), amplitude transients, and frequency
transients.

2.1.1. Frequency

Parameter values assigned to a sound, such as start time
and duration, are shared automatically by all the sound’s
partials. In addition, the user has the option of speci-
fying individual values for each partial. For instance, a
frequency value (440 Hz) can be specified for the entire
sound s,

s.setParam(FREQUENCY, 440);

and all its partials will acquire integer multiples of the
440 Hz frequency; or an individual partial (for example,



the third) can be assigned a specific frequency (1,234 Hz
say, instead of 1,320 Hz),

s.get(2).setPartialParam(FREQUENCY, 1234);

The tuning of partials can be distorted through the FRE-
QUENCY DEVIATION feature, which modifies each par-
tial’s frequency by one-half the distance between itself
and that of its nearest neighbor. The result is a nonhar-
monic tuning of the sound’s components through a some-
what random process.

Like many other parameters, frequency is a dynamic
variable (a function of time, which can have a constant
value). For glissandi or sound bends, the frequencies of
all partials in a sound will vary in the same way. On the
other hand, one can “detune” a sound whose partials are in
a harmonic relationship by applying a different function to
each of the constituent partials, thus distorting the ratios of
their frequencies. Multiplication by a factor of 1 will leave
a frequency unchanged, a factor of 2 will produce a pitch
one octave higher, and a factor of 0.5 will lower the pitch
by one octave.

2.1.2. Envelopes

Dynamic variables, which are specified by functions of
time, are better known to musicians as envelopes. LASS
has an Envelope class that handles basic operations such
as getting the value of an envelope at a specified time
or multiplying two envelopes. An envelope can consist
of any number of segments. Theith segment is defined
by the coordinates(xi, yi) of its starting point in a time-
amplitude plane, its type (LINEAR or EXPONENTIAL),
and an attribute (FIXED or FLEXIBLE) indicating whether
its length is fixed or can be stretched or compressed—a
useful attribute, for instance, if a sound is repeated with
the same attack and decay but different durations. Here is
the specification of the ADSR envelope shown in Fig. 1.

ADSR Envelope
5
0.00 0.00 EXPONENTIAL FIXED
0.10 1.00 LINEAR FLEXIBLE
0.20 0.80 LINEAR FLEXIBLE
0.70 0.80 EXPONENTIAL FIXED
1.00 0.00

Envelopes are stored with an identifier (id number) in
an EnvelopeLibrary. They are usually (but not necessar-
ily) normalized, so scaling may be needed. Envelopes can
be created on the fly and, as shown below, applied to any
dynamic variable at various time levels (see Section 2.2).

2.1.3. Loudness

LASS pays special attention to the perceived loudness of
a sound. The perceived loudness depends on the com-
position of the sound and is a nonlinear function of the
amplitudes of the constituent partials [2]. LASS uses the
ISO equal-loudness level contours and a partition of the

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time, x

A
m

pl
itu

de
, y

Figure 1. Typical ADSR envelope.

frequency range into critical bands to adjust the amplitude
of each partial so as to correctly contribute to the target
loudness of the composite sound.

The evolution of a partial’s amplitude is controlled by
means of an envelope whose peak is scaled according to
its relative strength in the spectrum. Since LASS allows
for detailed control of each partial through envelopes as
complex as needed and for any number of partials, a prac-
tically infinite variety of spectra can be created. The user
can also obtain crescendo or diminuendo effects over the
duration of a sound by taking advantage of the envelope
multiplication feature and combining the envelope of each
partial with other envelopes that incorporate the desired
effect.

2.2. Modifiers

Frequency modulation (vibrato) and amplitude modula-
tion (tremolo) change the main ingredients of the wave
at subaudio rates. In LASS, envelopes control evolution
of the frequency and amplitude. The user can specify the
magnitude (amplitude) of the modulation as a fraction of
the basic frequency or amplitude and its rate in hertz. To
obtain a constant effect, one uses a one-segment linear en-
velope withy values 1 at both endpoints.

A similar treatment is given to transients, narrow spikes
in the frequency and/or amplitude. In sounds produced by
acoustic instruments, transients typically occur at the on-
set of the vibration, in a fraction of the first second. LASS
enables the user to apply frequency and/or amplitude tran-
sients over any portion of the sound or over its entire du-
ration, depending on the shape of the envelope used. As
in the case of FM and AM, the magnitude of the spike
and its rate of occurrence can be specified; in addition, the
width of the spike can be controlled, the default value be-
ing 1,103 samples at a 44.1 kHz sampling rate, or about
0.025 seconds.

Two more features deal with modification of the sound
in an acoustic environment, namely, reverberation and spa-
tialization.

Reverberator is an implementation of the reverberator
described in Moore’s text [5, Section 4.4]. A simple way
to use this feature is to specify only the size of the room by
a number between 0 (no reverb) and 1 (max reverb). For



more detailed control, one can invoke a second constructor
and specify the percentage of reverberated vs. direct sound
(a dynamic variable), the ratio between the response of
high and low frequencies, the gain of the all-pass filter,
and the delay (in seconds) of the first echo response. A
third constructor replaces the high/low ratio with low-pass
gains and the gains of the comb filter. Reverberator can be
applied to the entire score, to selected sounds, or even to
individual partials within a sound.

In LASS, sound waves are distributed by Spatializer
over a number of tracks, where each track corresponds to
a particular output channel. Pan, a simple spatializer, dis-
tributes the sound across two channels in a ratio specified
by the user. MultiPan implements precisely controlled
spatialization over an arbitrary number of speakers in ei-
ther of two ways. In the first method, one specifies the
fraction of the total amplitude that is assigned to each indi-
vidual speaker and the precise moment of the assignment
during its duration. Thus, the user can create “unrealistic”
effects such as having all speakers at maximum strength
at the same time. The second method assumes that the
speakers are arranged in a circular pattern around the lis-
tener, and one maps the sound to speakers using polar co-
ordinates.

2.3. Rendering

Once the samples have been computed, the score is ren-
dered in the .au format with Score::render. Before writing
the score to a file with AuWriter::write, the user has the
option of applying one of several clipping management
techniques:

• NONE: no clipping management is used (default);

• CLIP: any sample value outside a specified interval
is clipped to the threshold value;

• SCALE: a maximum amplitudeam is computed for
the entire score, and all sample values in the score
are scaled by a factor1/am;

• CHANNEL SCALE: amplitude scaling is done as
in SCALE, but for each channel instead of for the
entire score;

• ANTICLIP: a maximum amplitudeam is computed
for the entire score, and all sample values that ex-
ceed a specified threshold valueat are scaled by a
factorat/am;

• CHANNEL ANTICLIP: amplitude scaling is done
as in ANTICLIP, but for each channel instead of for
the entire score.

An XML file can be created as a record of the score.
This file contains all the sounds and all the partials with
their attributes, as well as all the envelopes employed. Un-
like the score of MusicN programs, the XML file is not
needed to generate the sounds.

2.4. User Access

LASS has a graphic user interface (GUI), written in Java,
which generates C++ code. It is intended for use in intro-
ductory computer music courses to enable the students to
experiment with various changes in the data and experi-
ence their effects on the aural qualities of a sound.

The use of a GUI is not recommended for composers,
who are generally interested in producing a piece with
hundreds or thousands of sounds. (It would also contra-
dict the idea of a comprehensive system!) The sample
programs offer a better option to learn the capabilities of
LASS. They are short programs that concentrate on gen-
erating one or two sounds to which a particular feature
can be applied. One can hear their impact on the sound
and, at the same time, see clearly which lines of code
were involved. A few of the more than 25 sample pro-
grams are sample0.cpp, for creating a basic sound; sam-
ple pan1.cpp, for panning; samplegliss1.cpp, for creating
a glissando; samplereverb3.cpp, for reverberation; sam-
ple transient1.cpp, for transients; and samplecresc.cpp,
for obtaining a crescendo.

Release 1.0 of LASS is available as open source soft-
ware on the Web [8], along with documentation produced
with Doxygen and a tutorial.

3. CMOD

LASS is a library and does not include a “main” program.
To take full advantage of it as a compositional tool, one
needs another piece of software to drive it. The informed
user can either write the code that best suits a specific goal
or use CMOD, the module that accompanies LASS.

CMOD, the Composition MODule, also written in C++,
represents a “floating hierarchy” that creates certain ob-
jects. The objects are not necessarily produced in sequen-
tial temporal order. Similar to LASS, it involves collec-
tions whose members are, in turn, themselves collections
of objects. CMOD consists of classes dealing with vari-
ous aspects of a composition and a number of utilities. It
has inherited its basic structure from DISCO [3] and takes
advantage of LASS features such as the Envelope class.

3.1. The Event Class

The central element of CMOD is the abstract Event class
from which other classes are derived. Each event contains
an arbitrary number of layers, and each layer contains an
arbitrary number of objects of various types. An object
could itself be an event containing other objects; an entire
piece is viewed as an event, as are each of its sections and
collections of simultaneous or sequential sounds (chords
or melodies). In addition, one can imagine other events
representing various traditional or not-so-traditional ele-
ments of form. New objects may be added to the list, and
not all events need to be active at all times. Since the
number of events and their relationships may differ from
one project to another, they are simply called Top, High,
Medium, Low, and Bottom. At the end of this chain is the



sound, which is no longer an event: beyond the Bottom
object, LASS takes over.

All events have at least four attributes: name, start time,
duration, and type; all except Bottom also have a density
attribute. The name of an event is that of a text file con-
taining the information needed for the realization of the
event.

Two methods of the abstract Event class are shared by
all derived classes: Build and CreateNewObjects. Build
establishes the main characteristics of the object: the num-
ber of layers and the number of types in each layer. Since
each object (except the ones created by Bottom) is itself
a collection, the number of objects contained in this new
collection is also determined here. CreateNewObjects is
a loop whose upper limit is the number of objects con-
tained in the event. A pass through the loop corresponds
to the creation of a new object, whose start time, dura-
tion, and type are selected according to a continuous or
discrete probability distribution or from a file of admis-
sible values. The discrete values method involves a ma-
trix whose columns are associated with time instants when
events may take place (x values) and whose rows are as-
sociated with types of events (y values). Row and col-
umn entries are further enhanced by envelopes showing
instants of time when each type is more likely to occur
and by a probability vector reflecting the relative impor-
tance of each type. The envelopes and the vector are ad-
justed after each selection in a feedback mechanism. The
matrix, a procedure borrowed from DISCO, is described
in some detail in [3]; the other two methods will be dis-
cussed below. At the bottom of the loop, SelectNextEvent
checks the name and type of the new object and calls its
constructor.

3.2. Floating Hierarchies

The way CMOD is set up—classes derived from a template-
like Event, objects that are in fact collections of lower
level events—suggests a hierarchical order. This sugges-
tion is reinforced by the fact that, unlike LASS, CMOD
does have a “main” program that triggers the top event,
the piece. This hierarchical structure in CMOD is not sta-
tionary. Levels can be skipped, a top event might be a
collection of bottom objects, or the highest level of the
structure might be only a low-level event; in fact, these ar-
rangements may coexist in the same piece. Moreover, the
objects of a collection do not have to be ordered in time.
In this way, similar or related objects can be placed at dif-
ferent instances, and connections can be made between
events belonging to different hierarchical levels. We be-
lieve that this model is a more realistic representation of
the way a composer works. The alternative of sweeping
the piece from beginning to end may be easier to imple-
ment but is certainly less common.

The “main” program acts more like a benign adminis-
trator, a facilitator who presides over an orderly process
without imposing its own will. Indeed, the “main” pro-
gram provides only the means (input and output files, en-
velope library, score, reverberator objects, etc.), starts the

process and makes sure that it ends with a product (the
sound file).

3.3. Implementation

The Bottom object provides instructions for LASS. It calls
Implement, instead of SelectNextEvent, which creates a
sound in LASS and sets parameters such as start time and
duration,

Sound s; //create sound
s.setParam(START_TIME, stimeSec);
s.setParam(DURATION, durSec);

followed by frequency, number of partials, and loudness.
The user has a number of options in selecting each of these
parameters. For example, the frequency could be selected
randomly from a continuum, it could be part of a well
tempered scale or an overtone of a low fundamental, it
could be part of a sequence (for example, a tone row), or
it could be filtered in by a sieve [7, Chapter 9]. Similarly,
deciding the number of partials is part of a more involved
process, where a spectrum is also created by choosing an
envelope for each partial and scaling it according to some
preexisting rule (exponential or Fibonacci decay, random,
constant, etc.) or according to a rule defined by the user.

The modifiers described for LASS are present in CMOD
as well. They are identified by enums, each has an associ-
ated probability of occurrence and, depending on whether
they are static or dynamic, a value or a scaled envelope.
A simple mechanism ensures that related features such as
vibrato magnitude and rate are treated as a group. For ex-
ample, one cannot specify a nonzero rate when the mag-
nitude is zero.

Reverberation and spatialization are treated separately
but similarly to the way the modifiers are handled.

3.4. Utilities

In the process of writing CMOD it became clear that, in
many instances, the same or similar selection procedures
apply at all levels. Such procedures were then imple-
mented as “utilities” (not a class); they can also be found
in the classes DataIn and Matrix (discussed above).

Utilities deal with three main areas: random choices
and/or choices operated on a continuum, choices involv-
ing discrete elements, and envelope making. The first cat-
egory includes trivial routines that produce random floats
and integers within a given range, add small random quan-
tities to a given value, and choose an element from a list
by matching a random number with its probability. It
also includes Stochos, where two envelopes define a range
whose minimum and maximum values vary in time and a
third envelope controls the distribution of values within
the range. A second Stochos option stacks up a number
of probabilities (also varying in time) and selects an item
corresponding to one of the areas thus defined.

ValuePick, in the second category, also starts with three
functions of time that define a dynamic range and a distri-
bution over that range, but continues by creating a list of



discrete values produced by a sieve or some other ratio-
nale. The sieve may be weighted so that not all members
of the list have the same chance to be selected.

While envelopes can be easily retrieved from a library
and scaled, the third category of utilities provides the user
with the capability to create new envelopes on the fly and
multiply them if needed (see Section 2.1). SegmentBuilder
lets the user specify points(x, y) and segment types or se-
lect them through one of the methods described above.

Other specialized routines in the utility file are dedi-
cated to various tasks, from partitioning a segment into
golden mean ratios to translating density percentages into
numbers of sounds per second or traditional note values.
A separate class, DataIn, concentrates all read and write
operations and the handling of files. This last capability is
essential and necessary because each group of objects has
a text file attached to its type that contains the data neces-
sary for its realization and these files need to be opened,
closed and rewound frequently to various locations.

3.5. Input/Output

The input files are set up in a user-friendly way; almost
every line starts with a tag that identifies the operation
and an abundant use of enums. They have to follow a
general format, but the user has to create files appropri-
ate to the project at hand. Selections can be made in a
number of ways: READ, read the information as it is
printed; RANGEDISTRIB, one of the Stochos options;
SEQUENCE, take an element of an ordered list. In the last
option, the order (marked “offset” in the files) depends on
the type of object (TYPE) and its number (OBJNUM, or
ZERO in the case of a one-element list). The records are
interspersed with lines that are ignored by the computer,
which mark the functions that need the subsequent data.
Following are two short examples illustrating the assign-
ment of frequency and loudness and of reverberation,

Bottom:AssignFreq
method1 WELL TEMPERED
method2 SEQUENCE
offset OBJNUM
step 4 58 64 68 32

loud-ReadComputeFloat
method SEQUENCE
sones 4 120.0 160.0 100.0 110.5

Bottom::Reverberation
method ROOM SIZE
offset ZERO

reverb ReadComputeFloat
method COMPUTE

stochos reverb
method RANGE DISTRIB
numEnv 3
panEnvs 29 29 30
panScale 0.00 0.146 1.0

The output of CMOD is the input needed by LASS to ren-
der a score. For the user’s benefit, a text file, particel,

is created. It contains information that enables the user to
follow the progress. Here is an example of such a progress
report:

TOP LEVEL: daria.dat
======================================
:HIGH 1: H/C5
: StartTime: 241 units 241 sec
: Duration: 19 units 19 sec
--------------------------------------
|BOTTOM 1: B/sChord05
| StartTime: 0 units 0 sec
| Duration: 17 units 17 sec
--------------------------------------
Sound 1:
start time 6 duration 7.4 type 10
13 partials frequency=55 sones=207

--------------------------------------

4. RESULTS

LASS has proved to be remarkably resilient and free of
problems. A fair amount of work was put in during the
past two years, all of it directed toward adding new fea-
tures or modifying the original ones. It has been used
for four semesters in the teaching of Computer Music and
Computer-assisted Composition courses at UIUC. It has
also been used hands-on by students enrolled in courses
dealing with late 20th century music and by nonmusic
freshmen attending modules on music and technology in
Discovery courses.

A tape piece dARIA was realized with LASS in 2004
and performed at UIUC and at the University of Wisconsin–
Milwaukee. Because that version was produced not with
CMOD (unavailable at the time) but with a less sophisti-
cated composition system, a new version is being realized
with DISSCO.

5. AESTHETIC CONSIDERATIONS

In music composition, tools are often chosen for practical
reasons. At a deeper level, however, the choice reflects
farther-reaching ideas akin to a worldview. DISSCO sug-
gests the point of view that physical realities could be a
model for artistic endeavors, collections of objects reoc-
curring at different time scales. While trying to be neutral
in order to be useful in a variety of contexts and styles,
CMOD embraces the concept of floating hierarchies—dear
to Herbert Br̈un: a judicious rejection of systems based on
unyielding power but equally distant from anarchy, a de-
sirable social organization.

Scattering events in time in a nonlinear manner might
reflect a type of relativism but might also correspond to
the workings of memory and free association. It might
also resonate with the “Momente” form of Stockhausen
and Debussy or with Proust.

Indeterminacy exists in nature at various scales. DISSCO
can be used to create fully deterministic works. But it



also allows for the introduction of randomness in the com-
position at many levels and in varying degrees. If one
tries to pursue John Cage’s objective “to imitate Nature
in its mode of operation,” chance needs to be part of that
project. By the same token, a comprehensive system, as
defined at the beginning of this paper, casts the composer
in the role of a Demiourgos, giving life to creations that
exhibit closure and not to disjunct limbs. When com-
bined with randomness, such a comprehensive approach
becomes capable of generating distinct variants of an ab-
stract idea like trees in a forest or people in a crowd—an
experiment that leads to similar results under similar con-
ditions, in other words: a manifold composition [6].

6. FUTURE WORK

Both CMOD and LASS are works in progress. They are
being used while new developments take place—a situa-
tion that we expect will continue for the foreseeable fu-
ture. The following additions are currently under consid-
eration and may be added to future releases.

For LASS: the capability to use other wave types be-
sides sine waves, the capability to import existing sam-
ples as a collage, and the capability to spatialize the sound
when the speakers are not arranged in a circular pattern.

For CMOD: an expanded matrix to include more than
two dimensions, intervallic relationships when choosing a
new element, and functions appropriate for the notation of
acoustic instruments.

DISSCO is part of a larger project that includes auto-
matic printing, generating visual objects, and sonification
of complex scientific data. The first two have already been
included in the Bottom object of CMOD as possible paths
(not realized at this time). Sonification requires either a
counterpart for CMOD or software to create a substitute
for the files described in Section 3.5.

7. REFERENCES

[1] Hans G. Kaper and Sever Tipei. Formalizing the con-
cept of sound. InProc. 1999 Int’l Computer Music
Conference, Beijing, China, pages 387–390, 1999.

[2] Hans G. Kaper and Sever Tipei. Loudness scaling in a
digital synthesis library. InProc. 2004 Int’l Computer
Music Conference, Miami, Florida, pages 398–401,
2004.

[3] Hans G. Kaper, Sever Tipei, and Jeff M. Wright.
Disco: An object-oriented system for music composi-
tion and sound design. InProc. 2000 Int’l Computer
Music Conference, Berlin, Germany, pages 340–343,
2000.

[4] Kristopher Kriese and Sever Tipei. A compositional
approach to additive synthesis on supercomputers. In
Proc. 1992 Int’l Computer Music Conference, San
Jose, California, pages 394–395, 1992.

[5] F. Richard Moore. Computer Music. Prentice Hall,
Englewood Cliffs, New Jersey, 1990.

[6] Sever Tipei. Manifold compositions a (super)-
computer-assisted composition experiment in
progress. InProc. 1989 Int’l Computer Music
Conference, Columbus, Ohio, pages 324–327, 1989.

[7] Iannis Xenakis.Formalized Music. Pendragon Press,
Stuyvesant, New York, 1992.

[8] http://dissco.sourceforge.net.

Acknowledgments

The authors acknowledge the contributions from Braden
Kowitz, who designed and implemented the basic features
of LASS, and the students in the “Advanced Computer
Music” seminar taught at the University of Illinois be-
tween 2002 and the present, who contributed to the fur-
ther development of LASS. The work of H.K. was sup-
ported by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Ad-
vanced Scientific Computing Research, Office of Science,
U.S. Department of Energy, under Contract W-31-109-
Eng-38.

The submitted manuscript has been created by the University
of Chicago as Operator of Argonne National Laboratory (“Ar-
gonne”) under Contract No. W-31-109-ENG-38 with the U.S.
Department of Energy. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up, nonexclusive, irre-
vocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Govern-
ment.


