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Abstract

Applications of three-dimensional Galerkin boundary element methods require the
numerical evaluation of many four-dimensional integrals. In this paper we explore the
possibility of using extrapolation quadrature. To do so, one needs appropriate error
functional expansions. The treatment here is limited to integration over a region T1×T2,
where T1 and T2 are planar triangular elements in a hanging-chad configuration; that is,
they have one vertex in common but are otherwise disjoint. We derive error expansions
for product trapezoidal rules valid for integrands having an |r12|−1 factor. This factor
gives rise to a weak singularity at the common vertex.

1 Introduction

Two-dimensional boundary value problems are set in IR3. In a conventional application
of the Galerkin method, a (two-dimensional) surface is discretized into a set of (two-
dimensional) plane triangular elements Ti, with 1 ≤ i ≤ n. For each pair, say T1 and
T2, one must evaluate a four-dimensional integral of the form

I(T1 × T2)F =
∫∫

T1

∫∫
T2

F (t1, t2)dt1dt2, (1.1)

where the integrand function is of the form

F (t1, t2) = |t2 − t1|γ H(t1, t2). (1.2)

Here, H(t1, t2) is a regular function of its arguments, and, in the cases of interest, γ is a
small negative integer.

∗This work was supported in part by the Mathematical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department
of Energy, under Contract W-31-109-Eng-38. This is 20 May 2005 version.
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This integral is evaluated for all pairs Ti × Tj, with 1 ≤ i ≤ j ≤ n. Many standard
methods exist for cases in which Ti and Tj are disjoint. For a significant number of pairs
however, the closures of these regions have a single vertex in common, or one edge in
common, or (when i = j) they actually coincide. In this paper, we treat the hanging-chad
configuration; that is, T1 and T2 have one vertex in common but are otherwise disjoint.

We employ the following notation. T (d;a,b) stands for a triangle having vertices
d,d+a,d+b; and R(d;a,b) stands for a parallelogram having vertices d,d+a,d+b,d+
a + b. This is composed of two triangles, namely, T (d;a,b) and a complementary triangle
T (d;a,b) having vertices d + a,d + b,d + a + b. We abbreviate T (di;ai,bi) by Ti.

We denote the standard unit triangle and its complement with respect to the unit
square by

� = T ((0, 0); (1, 0), (0, 1)), � = T ((0, 0); (1, 0), (0, 1)), (1.3)

respectively.

To effect extrapolation, one needs to define an m-copy version of a quadrature rule for
this product triangular domain T1×T2. In later sections we do so in some generality. In this
section, we treat a familiar special case, based on the one-dimensional midpoint trapezoidal
rule. For the parallelogram R(d;a,b), we introduce the product midpoint trapezoidal rule
or the cell-center rule,

Q[m;0,0](R)F = |a × b| 1
m2

m∑
j1=1

m∑
j2=1

F

(
d +

(2j1 − 1)a + (2j2 − 1)b
2m

)
. (1.4)

The corresponding rule for the triangle T (a,b) may be obtained from this by omitting
function values outside the triangle and applying a factor 1/2 to those on its boundary. We
get

Q[m;0,0](T )F = |a × b| 1
m2

m∑
j1=1

m−j1+1∑
j2=1

′F
(
d +

(2j1 − 1)a + (2j2 − 1)b
2m

)
. (1.5)

A single prime on a summation symbol indicates that the final term is assigned a factor
1/2. (A double prime indicates that both the first term and the last term are assigned a
factor 1/2.)

For the four-dimensional region T1×T2 we take the straightforward product rule based
on double application of (1.5). Thus

Q[m;0,0,0,0](T1 × T2)F = |a1 × b1||a2 × b2|
1

m4

m∑
j1=1

m−j1+1∑
j2=1

′
m∑

j3=1

m−j3+1∑
j4=1

′F
(
d1 +

(2j1 − 1)a1 + (2j2 − 1)b1

2m
,d2 +

(2j3 − 1)a2 + (2j4 − 1)b2

2m

)
.(1.6)

To fix ideas, we remark that, when the integrand function is regular and the domain
is R1 ×R2 the error expansion is the four-dimensional product of a simple modification of
the classical Euler Maclaurin summation formula. This is:
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Theorem 1.1 When Φ, together with all partial derivatives of order p − 1 or less are
integrable and those of order p are absolutely integrable over R1 ×R2, then

Q[m;0,0,0,0](R1 ×R2)Φ − I(R1 ×R2)Φ =
p∑

s=1
s even

Bs

ms
+ Rp(m), (1.7)

where Bs is independent of m and Rp(m) = o(m−p) as m becomes infinite.

Integral representations for Bs and for Rp(m) are available.

As part of the development, in Section 4 we shall establish a result corresponding to
this for the domain T1 × T2. However, expansion (1.7) is valid only for integrand functions
that are regular over R1 × R2. When T1 and T2 are in the hanging-chad configuration,
the integrand function has a singularity, and a different expansion is required. We shall
establish the theory using the following definition.

Definition 1.2 T1 and T2 are in hanging-chad configuration when d1 = d2 = 0 and T1 is
otherwise disjoint from T2

It will appear that no loss in generality is incurred. Other hanging-chad configurations can
be transformed to this one without compromising the expansion. (This is discussed in the
final paragraph of Section 4.)

The purpose of this paper is to determine expansions for integrands (1.2) when the
elements are in the hanging-chad configuration. A special case of our principal result,
derived in Section 5, is the following.

Theorem 1.3 Let T1 and T2 be in the hanging-chad configuration; let F be of form (1.2)
with γ = −1 and with H regular in T1 × T2. Then

Q[m;0,0,0,0](T1 × T2)F − I(T1 × T2)F ∼
∑
s=2

As

ms
+
∑
t=4

Ct log m

mt
, (1.8)

where As and Ct are independent of m and Ct = 0 for all odd t.

Other variant results are also derived. These include the corresponding result for
more general rules, such as (3.3) below and for values of γ other than -1.

In Section 2 we scale each problem to that of integrating a linearly transformed
function over the unit hypercube [0, 1]4, or over �×�. In Section 3 we list several already
available error expansions for homogeneous and pseudohomogeneous integrand function
and exploit these to establish the variant of Theorem 1.3 for (R1 ×R2). In Section 4, the
corresponding theory for triangles is presented. In Section 5 we establish Theorem 5.2 of
which Theorem 1.3 is a special case; and we draw attention to some more general results.

2 Scaling to Unit Hypercube

It is convenient to scale these problems from R1 × R2 to the unit hypercube [0, 1]4. In
the new system, the integrand function appears to be more complicated. But the change
facilitates the exploitation of already known expansions collected together in Section 3.
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In this paper, when the integration domain is the unit hypercube, the specification
([0, 1]N ) is suppressed.

The transformation

(t1, t2) = (d1 + x1a1 + y1b1; d2 + x2a2 + y2b2) (2.1)

applied to (1.1) gives

I(R1 ×R2)F =
∫∫

R1

∫ ∫
R2

F (t1; t2)dt1, dt2

= |a1 × b1||a2 × b2|
∫∫∫∫

[0,1]4
f(x1, y1; x1, y2)dx1dy1dx2dy2, (2.2)

where f is simply

f(x1, y1;x2, y2) = F (d1 + x1a1 + y1b1; d2 + x2a2 + y2b2). (2.3)

The same change of variables, applied to the quadrature rule in (1.6), gives immedi-
ately

Q[m;0,0,0,0](R1 ×R2)F = |a1 × b1||a2 × b2|
1

m4

m∑
j1=1

m∑
j2=1

m∑
j3=1

m∑
j4=1

f

(
2j1 − 1

2m
,
2j2 − 1

2m
,
2j3 − 1

2m
,
2j4 − 1

2m

)

= |a1 × b1||a2 × b2|Q[m;0,0,0,0]f. (2.4)

It follows from (2.2) and (2.4) that

Q[m;0,0,0,0](R1 ×R2)F − I(R1 ×R2)F = |a1 × b1||a2 × b2|(Q[m;0,0,0,0]f − If). (2.5)

Precisely the same transformation applied to an integral over T1×T2 scales the problem
in an analogous way to one over � × �, where � = T ((1, 0), (0, 1)) is the conventional
standard triangle. Corresponding to (2.5) we have

Q[m;0,0,0,0](T1 × T2)F − I(T1 × T2)F = |a1 × b1||a2 × b2|
(Q[m;0,0,0,0](�×�)f − I(�×�)f). (2.6)

It follows that we may limit our detailed investigation to the unit hypercube [0, 1]4 or to
� × � and the modified integrand function f . Once an expansion for the final factor in
(2.5) and (2.6). is available, one of precisely the same form applies to the left hand side of
these equations.

In our problem, applying transformation (2.1) to F in (1.1), we find

f(x1, y1;x2, y2) = |r12|γh(x1, y1;x2, y2). (2.7)

with
|r12(x1, y1;x2, y2)| = |d1 + x1a1 + y1b1 − d2 − x2a2 − y2b2| (2.8)

and
h(x1, y1;x2, y2) = H(d1 + x1a1 + y1b1; d2 + x2a2 + y2b2). (2.9)
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3 Error Expansions for the Region R1 ×R2.

In this section we treat completely a simpler hanging-chad problem. This is the variant
of problem (1.1) obtained when triangular elements are replaced by parallelograms. The
error expansion is in fact an immediate application of Theorem 3.5, which was established
in Lyness [Ly76]. This result is of moderate interest in its own right, but it is exploited
later to obtain the corresponding result for triangular elements. This section is concerned
mainly with establishing the notation needed to express the result.

Let QN be any N -dimensional quadrature rule operator for [0, 1]N of the form

QNψ =
ν∑

i=1

wiψ(ti), (3.1)

that integrates the unit function ψ(x) = 1 correctly to 1. Let Q
[m]
N stand for the m-copy

version. This is constructed by partitioning [0, 1]N into mN equal hypercubes and applying
the same appropriately scaled version of Q to each. Thus

Q
[m]
N ψ =

1
mN

ν∑
i=1

wi

m−1∑
j1=0

m−1∑
j2=0

....
m−1∑
jN=0

ψ

(
ti + j

m

)
. (3.2)

As is conventional, we express this as a weighted sum of the m-copy versions of offset
trapezoidal rules defined as follows.

Definition 3.1 Let σi ∈ [−1, 1] and τi = (σi + 1)/2. Then

Q
[m;σ1,σ2...σN ]
N ψ =

1
mN

m−1∑
j1=0

m−1∑
j2=0

. . .
m−1∑
jN=0

ψ

(
j1 + τ1

m
,
j2 + τ2

m
, . . . ,

jN + τN

m

)
. (3.3)

It is conventional to determine error functional expansions for this offset trapezoidal rule.
The corresponding expansion for the general rule (3.2) is simply a weighted sum of individual
expansions for offset trapezoidal rules. The cell-center rule, (2.4), is a special case of (3.3)
with N = 4, σi = 0, and τi = 1/2.

Another standard rule is a symmetrical endpoint rule, that is the N -product of a
trapezoidal rule

Q[m;±1]ψ =
1
m

⎛
⎝1

2
ψ(0) +

m−1∑
j=1

ψ(j/m) +
1
2
ψ(0)

⎞
⎠ :=

1
m

⎛
⎝m−1∑

j=1

′′ψ(j/m)ψ(0)

⎞
⎠ . (3.4)

The somewhat unusual superscript ±1 indicates that this is an average of rules, namely,

Q[m;±1]ψ =
1
2

(
Q[m;−1]ψ + Q[m;1]ψ

)
. (3.5)

We denote the N -dimensional version of this rule by

Q
[m;±1,±1,...,±1]
N ψ =

1
mN

m∑
j1=0

′′
m∑

j2=0

′′ . . .
m∑

jN=0

′′ψ
(

j1

m
,
j2

m
, . . . ,

jN

m

)
. (3.6)
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This is akso known as the cell-vertex rule. Here, as is conventional, a double prime attached
to a summation symbol indicates that the first and the last terms are to halved. A symbol
±1 occuring in the superscript indicates that one is to take the average of two expressions,
one having +1 and the other having −1 in the same position. This rule is then the average
of 2N different offset rules.

A standard classical result that may be applied to all rules mentioned above is the
following theorem.

Theorem 3.2 When ψ(x) and its derivatives of order p − 1 and less are integrable and
those of order p are absolutely integrable in [0, 1]N ,

Q
[m]
N ψ = Iψ +

p∑
s=1

Bs

ms
+ o(m−p), (3.7)

where Bs is independent of m.

This is an N -dimensional version of the standard Euler Maclaurin expansion. When Q
[m]
N

is symmetric, Bs = 0 for all odd s. Simple integral representations are known for Bs. For
example, for the two-dimensional offset trapezoidal rule (3.3) above, we have,

Bs =
s∑

q=0

Bq(τ1)
q!

Bs−q(τ2)
(s − q)!

∫ 1

0

∫ 1

0
ψ(q,s−q)(t1, t2)dt1dt2 (3.8)

where Bq(x) is the Bernoulli polynomial of degree q.

When the integrand function has a singularity in [0, 1]N , (3.7) is generally not valid.
However, an expansion is known for integrand functions that are homogeneous of specified
degree about the origin and are C∞[0, 1]N \ (0).

Definition 3.3 f(x) is homogeneous about the origin of degree λ if f(λx) = λf(x) for all
λ > 0 and |x| > 0.

For example, in two dimensions, let A �= 0 and B be constants. Then functions such as

(Ax2 + By2)λ/2, (Ax + By)λ, (xy2)λ/3 (3.9)

are homogeneous of degree λ about the origin.

Definition 3.4 f(x) is termed pseudohomogeneous of degree λ about the origin if it may
be expressed in the form f(x) = fλ(x)h(x), where fλ(x) is homogeneous of degree λ about
the origin and h(x) is analytic in a neighborhood of the origin.

A regular function h is pseudohomogeneous of integer degree 0 or higher. In two dimensions
the function (using conventional notation with g and h regular)

rαg(r)h(x, y)Θ(θ)

6



is pseudohomogeneous of degree α. In the sequel, we shall omit the phrase “about the
origin” and require that H(t1, t2) be regular in R1 × R2, that is, that h(x1, y1, x2, y2) be
regular in [0, 1]4.

The definitions and results given above were mainly introduced and expanded in
[Ly76], where the following theorem is established.

Theorem 3.5 Let γ > −N ; let f(x) be pseudohomogeneous of degree γ and be regular in
([0, 1]N )/ 0. Then, so long as Q

[m]
N does not involve an indeterminate function value at the

origin,

Q
[m]
N f ∼ If +

∑
t=0

Aγ+N+t + Cγ+N+t log m

mγ+N+t
+
∑
s=1

Bs

ms
, (3.10)

where the coefficients are independent of m and Cγ+N+t = 0, unless γ + N is an integer.

When Q
[m]
N is a symmetric rule, as is (1.4) above, we have

Bs = Cs = 0 for all odd s. (3.11)

Note that (3.11) does not apply to the coefficients As. When f(x) is homogeneous, rather
than pseudohomogeneous, expansion (3.10) retains only the first term in the t summa-
tion. The generalization to pseudohomogeneous functions then follows using a Maclaurin
expansion of h(x).

In cases where f(x) is indeterminate at the origin, the offending function value at
the origin may be ignored (i.e., set to zero) so long as a term AN/mN is included in the
expansion.

We now apply this theorem to f in (2.7) in the case that R1 and R2 are in hanging-
chad configuration. When we set d1 = d1 = 0, the four-dimensional function |r12|γ in (2.8)
becomes homogeneous of degree γ. Since R1 and R2 have no common point other than
the origin, it follows that f has no singularity other than at the origin. Thus f satisfies
the hypotheses of Theorem 3.5 with N=4. Carrying out the scaling in (2.6), we find the
following theorem.

Theorem 3.6 Let R1 and R2 be in hanging-chad configuration; let F be of form (1.2) with
γ > −4 and with H regular in R1 ×R2. Then

Q[m](R1 ×R2)F − I(R1 ×R2)F ∼
∑
s=1

Bs

ms
+
∑
t=4

Aγ+t + Cγ+t log m

mγ+t
, (3.12)

where At, Bs, and Ct are independent of m and Ct = 0 unless t is an integer.

It is instructive to compare this result with (1.8) above. This result is much simpler
to prove because the region is R1 × R2. However, the expansion is of precisely the same
form. In (1.8), γ = −1; and the rule Q is symmetric, giving Bs = Cs = 0 for odd s.
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4 Error Expansions for Triangular Regions

The rest of this paper is devoted to extending this result to the case where the elements
are triangles. Many of the results have a similar form but are significantly more difficult to
establish.

In this section, we define trapezoidal type rules for the triangle. Then, in Theorem
4.1, we remind the reader of the form of the Euler Maclaurin expansion for the standard
unit triangle � (see (1.3)). This is used in Section 5 to obtain the corresponding expansion
for the four-dimensional region �×�.

In general, the offset trapezoidal rule for the triangle � coincides with the correspond-
ing offset trapezoidal rule for [0, 1]2, except that function values outside � are replaced by
zero. When the rule requires no abscissas on the boundary x + y = 1, this is unambiguous.
When there are abscissas on a boundary, a definition of the form (4.3) to be given below
becomes necessary.

In simple cases, an appropriate definition is intuitive. For example, we have already
defined a rule operator (1.5) above for a cell-center rule applied to a triangle. A correspond-
ing modification of the cell-vertex rule to the triangle � might well take the form

Q[m;±1,±1](�)ψ =
1

m2

m∑
j1=0

′′
m−j1∑
j2=0

′′ψ
(

j1

m
,
j2

m

)
. (4.1)

This assigns weight 1/m2 to all interior abscissas and weight 1/2m2 to all abscissas on an
edge but not at a vertex. It somewhat arbitrarily assigns weights 1/4m2, 0, 1/4m2 to the
vertices (0,0), (1,0), and (0,1), respectively. The corresponding rule for the complementary
triangle is

Q[m;±1,±1](�)ψ =
1

m2

m∑
j1=0

′′
m∑

j2=m−j1

′′ψ
(

j1

m
,
j2

m

)
. (4.2)

We shall see below that it is quite permissible to use several other modifications of the
product trapezoidal rule for the square.

In most applications we know of, either the cell-center rule (1.5) or the rule (4.1) is
employed, and the definitions above suffice. The reader may, if he wishes, advance directly
to Theorem 4.1 below. In the interests of completeness, however, we present the full theory,
as it applies to the triangle; for the modification of the general offset rule (3.3) for a simplex,
a less casual definition is required.

The reader will have noticed that a measure of arbitrariness is introduced when one
comes to assign the weight to be applied at abscissas on the common boundary of � and
�. To deal with this, we introduce weight factors θ(t).

The offset trapezoidal rule for � (corresponding to (3.3) for [0, 1]2) is of the form

Q
[m;σ1,σ2]
2 (�)ψ =

1
m2

m−1∑
j1=0

m−1∑
j2=0

θ

(
j1 + τ1

m
,
j2 + τ2

m

)
ψ

(
j1 + τ1

m
,
j2 + τ2

m

)
. (4.3)

Naturally, when inventing a rule, one may assign weights as one pleases. But in order to
retain the error expansion in a form suitable for extrapolation, the function θ(t) has to be
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assigned in accordance with the following guidelines. We denote the vertices (0,0), (1,0),
and (0,1) by V0, V1, and V2, respectively. We denote by Vi,j the edge between Vi and Vj

but not including Vi and Vj and by V123 the interior of �. We assign six parameters θi,j

and θi, and set:

(i) θ(t) = θI = θ1,2,3 = 1 t ∈ V123

(ii) θ(t) = θi,j t ∈ Vi,j

(iii) θ(t) = θi t = Vi

(iv) θ(t) = 0 otherwise.

The convergence of Q[m](�)ψ to I(�)ψ is guaranteed by assignments (i) and (iv). The
choice of the remaining six parameters is arbitrary. However, to retain an even expansion,
one must set θi,j = 1/2, as is done in both examples (1.5) and (4.1). The assignment of
θi affects only the coefficient B2 in the error expansion; if extrapolation is used, it has no
effect on the final result because the term B2/m

2 is eliminated.

We note that an offset trapezoidal rule for the complementary triangle � may be
defined by

Q
[m;σ1,σ2]
2 (�)ψ =

1
m2

m−1∑
j1=0

m−1∑
j2=0

θ

(
j1 + τ1

m
,
j2 + τ2

m

)
ψ

(
j1 + τ1

m
,
j2 + τ2

m

)
. (4.4)

with θ(t) = 1 − θ(t). This ensures that

Q
[m;σ1,σ2]
2 ([0, 1]2)ψ = Q

[m;σ1,σ2]
2 (�)ψ + Q

[m;σ1,σ2]
2 (�)ψ. (4.5)

The situation with regard to higher-dimensional simplices SN can become quite com-
plicated. The full theory for SN but restricted to product end point trapezoidal rules
(σj = ±1) is presented in [LyGe80]. The coefficients Bs in the Euler Maclaurin expan-
sion (4.6) depend on the values assigned to θ(k). These may be chosen to ensure that this
expansion is even in character and to improve the polynomial degree of precision of the
extrapolate. Some of these questions are taken up in [LyPu73] and [Ly78].

Theorem 4.1 When ψ(x) and its derivatives of order p − 1 and less are integrable and
those of order p are absolutely integrable in [0, 1]2,

Q
[m;σ1,σ2]
2 (�)ψ = I(�)ψ +

p∑
s=1

Bs

ms
+ o(m−p). (4.6)

Expressions for the coefficients Bs are available. These include

Bs =
s∑

q=0

B̄q(τ1)
q!

B̄s−q(τ2 + τ1)
(s − q)!

∫ 1

0
ψ(q,s−q−1)(t, 1 − t)dt

−B̄q(τ1)
q!

B̄s−q(τ2)
(s − q)!

∫ 1

0
ψ(q,s−q−1)(t, 0)dt,
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valid when θ12 = θ20 = θ01 = 1/2 and θ0, θ1, θ2 = 1/4, 0, 1/4. Here, Bq(x) is the Bernouli
polynomial of degree q, and B̄q(x) is the corresponding Bernoulli function, which coincides
with Bq(x) for x ∈ (0, 1) and is periodic with period 1. Note that B̄q(0) = B̄q(1) = Bq(0) =
Bq(1) for all q except q = 1. For this special case we have B̄1(0) = B̄1(1) = 0 while
B1(0) = −B1(1) = −1/2.

We conclude this section by noting that the effect of carrying out an affine transfor-
mation which takes � into itself, but changes the rule can be duplicated by simply altering
parameters σi appropriately. For example the rules Q[m;0,0](�) and Q[m;±1,0](�) are related
to each other by an affine transformation. Any result obtained for general σi applies to both.
Because of this, the restriction in definition 1.2 to d1 = d2 has no overall effect. When the
contact point is different, for example d2 = d1 + a1, we may reexpress one of the rules
so that these contact points coincide simply by altering the parameters σi. This is worth
noting because, in the absence of singularities, many properties of a rule are unaltered by
an affine transformation. When there is a singularity, the affine transformation relocates
any singularity, in many cases voiding the required result.

5 Error Expansions for the Region T1 × T2.

The original problem involves integrations over a product region T1 × T2; after scaling this
becomes a product region � × �. We shall require the Euler Maclaurin expansion for a
region �×�. Note that, in the literature, this and other expansions are available for the
N -dimensional simplex SN , namely, xi > 0 for i = 1, 2, . . . , N ;

∑N
i=1 xi < 1. We have stated

above the result for the triangle, namely SN with N = 2. We are seeking the corresponding
result for the region �×�, namely, xi > 0 i = 1, 2, 3, 4; x1+x2 < 0; x3+x4 < 0. Exploiting
the fact that this is a product region we write

Q[m;σ1,σ2,σ3,σ4]
x1,x2,x3,x4

(�×�)f(x1, x2, x3, x4) = Q[m;σ1,σ2]
x1,x2

(�)ψ(x1, x2), (5.1)

where
ψ(x1, x2) = Q[m;σ3,σ4]

x3,x4
(�)f(x1, x2, x3, x4). (5.2)

In the inner quadrature rule sum, x1 and x2 are simply incidental parameters.

We may apply expansion (4.6) to the right-hand side of (5.2) to obtain an expression
for ψ involving coefficients Bs′ as defined in (4.7) but having x1, x2 as an incidental param-
eter. The derivation of Theorem 5.1 is straightforward. It rests on the facts that Q involves
only a finite number of terms; the sum of a finite number of terms, each of order m−p, is
also of order m−p; and in (4.7) the dependence on ψ(t1, t2) is linear.

Theorem 5.1 When ψ(x) and its derivatives of order p − 1 and less are integrable and
those of order p are absolutely integrable in [0, 1]4,

Q[m;σ1,σ2,σ3,σ4](�×�)ψ = I(�×�)ψ +
p∑

s=1

Bs

ms
+ o(m−p). (5.3)

where Bs is independent of m.
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This result is technically new. It is important not to confuse it with the corresponding
result for the four-dimensional simplex. Theorem 5.1 refers to the product of two indepen-
dent triangular elements; and it plays a key role in establishing the corresponding result,
Theorem 5.2, for two triangular elements having one vertex in common.

We are now in a position to establish the error expansion for the hanging-chad con-
figuration when both elements are triangles. This is the generalization of Theorem 3.6 to
T1 × T2. We note the following geometric identity.

Q[m](R1×R2)ψ = Q[m](T1×T2)ψ+Q[m](T̄1×T2)ψ+Q[m](T1×T̄2)ψ+Q[m](T̄1×T̄1)ψ. (5.4)

We consider the case in which R1 and R2 are in the hanging-chad configuration. It follows
immediately that T1 and T2 are also in the hanging-chad configuration. However, the final
three terms on the right refer to pairs of triangles that are disjoint. Thus, the standard
Euler Maclaurin expansion (5.3) may be applied to each. These three expansions involve
only terms Iψ and Bs/m

s s = 1, 2, . . .. They may be combined. An expansion for the
term on the left is simply (3.12) mentioned above. Thus (5.4) may be used to obtain an
expansion for the first term on the right. We find the following.

Theorem 5.2 Let T1 and T2 be in the hanging-chad configuration; let F be of form (1.2)
with γ > −4 and with H regular in T1 × T2. Then

Q[m;σ1,σ2,σ3,σ4](T1 × T2)F − I(T1 × T2)F ∼
∑
s=1

Bs

ms
+
∑
t=4

Aγ+t + Cγ+t log m

mγ+t
, (5.5)

where At, Bs, and Ct are independent of m and Ct = 0 unless t is an integer.

A restriction that H be regular in (R1×R2) comes in because Theorem 3.6 is used in
the proof. In fact, using an elementary continuation process, this restriction can be replaced
by the one stated in the theorem.

As in the constituent results on which (5.5) is based, we have the condition that
Bs = Cs = 0 for odd s when the rule is symmetric.

6 Concluding Remarks

The results in this paper represent a contribution in the area of extrapolation quadrature. In
one dimension the extrapolation approach (e.g., Romberg integration) is rarely competitive
with Gaussian quadrature. However, there are applications in multidimensional quadrature
where it is without question more efficient. These are generally categorized by a finite
linearly bounded region of integration, with an integrand having an algebraic or logarithmic
singularity of known character along a boundary.

Earlier results in this area include the Euler Maclaurin asymptotic expansion for
the simplex (with regular integrand) [LyPu73],[Ly78] and the corresponding expansions
for the hypercube and for the Simplex when the integrand has algebraic radial singularity
[Ly76], [Ly76a]. More recent contributions involve Hadamard Finite Part integrals, [Mo94],
[MoLy98] Sidi transformations [Si93], and Jacobian-free integration over curved surfaces.
For the hypercube [0, 1]N , Verlinden has developed an umbrella approach based on Mellin
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Transforms for constructing error functional expansions [Ve93],[VeHa93]. And this has been
extended to the calculation of two-dimensional Hadamard finite part integrals [LyMo05].

The present paper is the second in a sequence devoted to applying extrapolation to the
four-dimensional integrals occurring in the Galerkin method for two-dimensional boundary
value problems. In the first, [Ly05], a prototype integral is treated. This is I(R1 × R2)F
with F = |r12|−1, and with both R1 and R2 being the same unit square. A somewhat
special proof was constructed to establish an error expansion of the same nature as, but
different from (5.5) and limited to the midpoint rule Q[m;0,0,0,0] . Numerical results obtained
using the extrapolation were presented. For example a standard extrapolation procedure
obtained four-figure accuracy using 1,000 function values and eight-figure accuracy using
25,000 function values. (Indeterminate function values were ignored, i.e., replaced by zero.)
The reader should bear in mind that this prototype example is a very special case indeed.
It is one for which the result is known in analytic form. And our relatively simple proof
cannot readily be extended to offset trapezoidal rules or even to the case in which R is
replaced by a rectangle.

On the other hand, the present paper is thorough. It treats all hanging-chad con-
figurations involving triangular or rectangular elements. It allows a complete choice of
trapezoidal-type product rules, including offset rules and, by extension, even copy-versions
of Gaussian rules. And it allows the |r12|γ singularity for all γ > −4. (For lower values of
γ the integral does not exist in the conventional sense.)

Preliminary results indicate that that expansions of this general type apply also to
the (open book) configuration in which the elements have an edge in common.
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