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Abstract: We discuss recent advances in mathematical programs with equilibrium 
constraints (MPECs). We describe the challenges posed by these problems and the 
current algorithmic solutions. We emphasize in particular the use of the elastic mode 
approach. We also present initial investigations in applications of MPECs to control 
problems.  
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1. MPEC: APPLICATIONS AND CURRENT 
APPROACHES 

 
The paper presents a summarizes of recent work on  
mathematical programs with equilibrium constraints 
(MPECs).   When the equilibrium constraints occur 
from optimality conditions over polyhedral cones, 
the problem becomes a mathematical program with 
complementarity constraints (MPCC). In this work 
we will use the term MPEC to describe MPCC as 
well, since this term is far more popular in the 
current complementarity literature. 
 

 
1.1 Formulation and difficulty 
 
At the core of MPECs is the complementarity 
constraint. We say that variables  are 
complementary, or that they satisfy a 
complementarity constraint, if they satisfy the 
relationship  We denote this 
relationship between the variables by . Note 
that we can write the same relationship between 
vector components, provided that we use the scalar 
product to define the relevant product, that is, 

. 

,a b

0, 0, 0.a b ab≥ ≥ =
a b⊥

0Tab a b= =

An MPEC is a nonlinear program that  contains 
complementarity constraints between suitable 
variables, in addition to other type of constraints: 

 
Here , , and 

 are all twice continuously 
differentiable functions (at least in a neighborhood of 
all points generated by our methods), and  and 
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are n m×  column submatrices of the  identity 
matrix (with no columns in common). Hence, the 
constraints  and  represent 
nonnegativity bound constraints on certain 
components of 
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The difficulty of the problem is immediately 
apparent once we inquire whether the problem 
(MPEC) satisfies a constraint qualification, which is 
the key ingredient for obtaining the existence of 

     



Lagrange multipliers in the classical nonlinear 
programming theory. 
 
It turns out that the problem does not satisfy the 
Mangasarian Fromovitz constraint qualification 
(MFCQ), one of the most general constraint 
qualifications for nonlinear nonconvex programming 
(Scheel and Sholtes, 2001; Luo et al., 1996).  That 
constraint qualification has the geometrical meaning 
that the linearization of the feasible set has an 
interior. For example, if 1, 0a b= =  for the case in 
which we have only one complementarity constraint, 
the linearization of the feasible set consists of all 
vectors  that satisfy   ,a bΔ Δ

In turn, this condition results in the fact no feasible 
 satisfies ,  ,a bΔ Δ 0, 0a bΔ > Δ >

and thus the linearization of the feasible set has no 
interior. Therefore, much of the theory of nonlinear 
programming does not apply for this class of 
problems, a situation that explains the keen current 
interest in MPECs. 
 
In addition, connected to this problem is the 
difficulty that the linearization of the feasible set may 
not be feasible arbitrarily close to a solution of 
(MPEC) (Fletcher and Leyffer, 2002). This is an 
issue for most of the modern nonlinear programming 
solvers. 
 
1.2 Origin of complementarity constraints in 

applications  
 
Most applications of MPECs arise from situations in 
which one needs to formulate bilevel optimization 
problems, where an upper-level optimization 
problem includes as variables the primal and dual 
variables of a lower-level optimization problem with 
inequality constraints.  
 
While the field is continuously evolving, there are 
currently three major sources of applications for 
MPECs: economics, transportation engineering, and 
mechanical and structural engineering. 
 
In economics, such problems appear through various 
extensions of Stackelberg, or leader-follower, games 
(Lu et al., 1996; Outrata et al., 1998).  In these 
games, the leader maximizes its utility function 
subject to resource constraints and subject to the 
constraint that each follower also chooses an optimal 
policy subject to its resource constraints. The 
follower problem is the lower-level optimization 
problem, whereas the leader problem is the upper-
level optimization problem. Specific applications of 
this type, in addition to proper leader-follower 
games, are the determination of generalized Nash 
equilibrium points. 
 

In transportation engineering, the lower level-
problems are optimization formulations of the traffic 
assignment problem, whereas the upper-level 
problem is a design or optimal control problem. 
Specific instances of such MPECs are the continuous 
network design problem (Marcotte, 1986) and the toll 
optimization on a multicommodity network flow 
problem (Marcotte, 1986).   
 
In mechanical and structural engineering, the lower-
level problem may be a variational inequality that 
describes the physics of contact and friction, whereas 
the upper-level problem is again a design or optimal 
control problem (Outrata et al., 1998). In this 
category we have the packaging problems of 
membranes with rigid and flexible obstacles,   the 
design of masonry structures, the design of elastic 
perfectly plastic structures, and the optimal control of 
robotic agents on a factory floor.  

1 0, 0,a b b+ Δ ≥ Δ ≥ Δ = 0.

 
1.3 Previous methodology 
 
The importance of the problem has led to two major 
approaches tuned to MPECs.  
 
The bundle trust-region method approach (Outrata et 
al., 1998) applies for problems that originate in 
implicit MPECs, that is, problems in which the 
variables of the lower-level problem can be explicitly 
solved for and replaced in the upper-level problem, 
which now has a nonsmooth objective function 
owing to the change in the active constraints set as 
the parameters of the upper-level optimization 
problem change. 
 
In that case the problem is approached as a 
nonsmooth optimization problem, and one computes 
a bundle of generalized gradients that are used to 
guide the optimization process. The key step is to 
compute an element of the generalized gradient, 
which results in an effort that increases exponentially 
with the number of the degenerate pairs. We say that 
a pair of complementary variables  is 
degenerate, or that the respective variables are 
degenerate, if they are both equal to zero. 

( , )a b

 
In the disjunctive programming approach (Luo et al. 
1996), (MPEC) is replaced by a subset of the set of 

nonlinear programs obtained by setting either  

or  to 0. If we solve all these nonlinear 
programs, we are guaranteed to have found the 
solution of (MPEC). Since there are  such  
nonlinear programs, one must choose the subset of 
such nonlinear programs wisely, much like in any 
branch-and-bound algorithm. Again, the challenge is 
the possible exponential explosion of the complexity 
of the computation.  In addition, if the resulting 
nonlinear programs are not convex, then this 
explosion in complexity will not necessarily result in 
finding the global solution. Hence, in some sense, we 

T
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T
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have to manage an exponential explosion just to deal 
with a local difficulty.    
 

 
2. NONLINEAR PROGRAMMING 

APPROACHES TO MPEC 
 
Recently researchers have shown that nonlinear 
programming approaches with special safeguards 
avoid the difficulties of MPECs outlined above 
(Fletcher and Leyffer, 2002; Anitescu 2005a). Here 
we concentrate on the elastic mode safeguard 
(Anitescu 2005a; Anitescu2005b; Anitescu et al,. 
2005). 

 
2.1 Constraint qualifications 
 
We start by defining the following active sets at a 
feasible point x∗  of MPEC (1):    

def

{ {1 2 } ( ) 0}g iI i … p g x∗∈ , , , | = ,=   (3) 
def

{ {1 2 } 0}T
GI i … m G x∗∈ , , , | = ,= i

i

  (4) 
def

{ {1 2 } 0}T
HI i … m H x∗∈ , , , | = ,=   (5) 

where  and  denote the th column of  and iG iH i G
H , respectively (in each case, a column from the 
identity matrix). Because x∗  is feasible for (1), we 
have {1 2 }G HI I …∪ = , , ,m .  
    Using the active sets, we define our first notion of 
first-order stationarity for (1) as follows.   A feasible 
point x∗  of (MPEC) is strongly stationary if 0d =  
solves the following linear program  
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  (6) 

Let us introduce Lagrange multipliers and define the 
MPEC Lagrangian as in (Scheel and Sholtes, 2000):  

( ) ( ) ( ) ( )T T

T T T T

L x f x g x h x
G x H x

λ μ τ ν λ μ
τ ν

, , , , = − −
− − .

  (7) 

By combining the (necessary and sufficient) 
conditions for  to solve the program with the 
feasibility conditions for 

0d =
x∗ , we see that x∗  is 

strongly stationary if and only if x∗  satisfies, 
together with some multipliers ( )λ μ τ ν∗ ∗ ∗ ∗, , , , the 
following conditions:    

(x L x λ μ τ ν∗ ∗ ∗ ∗ ∗∇ , , , , =) 0,
0, (9

  (8) 

0 ( )g xλ∗ ∗≤ ⊥ ≥   ) 

( ) 0h x∗ = ,   (10) 

0TG xτ ∗ ∗⊥ ≥ ,  
0TH xν ∗ ∗⊥ ≥ ,  

0i Gi I Iτ ∗ ≥ , ∈ ∩ ,H

H

 

0i Gi I Iν ∗ ≥ , ∈ ∩ .  

The multipliers ( )λ μ τ ν∗ ∗ ∗ ∗, , ,  at a feasible 

point x∗  are unique if MPEC-linear independence 
constraint qualification (MPEC-LICQ) holds, that is, 
if the following set of vectors is linearly independent:  

def

1 2{ ( )} { ( )} { } { }
g G Hi i I i i … q i i I i i IK g x h x G H∗ ∗

∈ = , , , ∈ ∈ .  ∇ ∪ ∇ ∪ ∪=
The following result, dating back to (Luo et al., 
1996) but stated here in the form of (Scheel and 
Scholtes, 2000), shows that, under MPEC-LICQ, 
strong stationarity is a set of (first-order) necessary 
optimality conditions for the MPEC.   Suppose that 
x∗  is a local minimizer of (MPEC). If the MPEC-
LICQ holds at x∗ , then x∗  is strongly stationary, 
and the multiplier vector ( )λ μ τ ν∗ ∗ ∗ ∗, , ,  that 
satisfies the stationarity conditions is unique.   
Our analysis also uses two weaker notions of first-
order stationarity for (1) that have been studied in 
previous works; see, for example, (Outrata et al., 
1998;   Scheel and Scholtes, 2000).    

• A point x∗  is C-stationary if there 
exist multipliers ( )λ μ τ ν∗ ∗ ∗ ∗, , ,  satisfying 
the stationarity conditions except that the 
multiplier sign conditions are replaced by 

, for each .  0i iτ ν∗ ∗ ≥ G Hi I I∈ ∩

• A point x∗  is M-stationary if it is 
C-stationary and if either  or 0iτ

∗ ≥

0iν
∗ ≥  for each G Hi I I∈ ∩ .  

Notice that M-stationarity allows such situations as 
0iτ

∗ <  and 0iμ
∗ =  for some  but 

does not allow the situation  and 
Gi I I∈ ∩ H

0iτ
∗ < 0iμ

∗ < , 
which is allowed by C-stationarity. In particular, 
strongly stationary  M-stationary  C-
stationary.  

⇒ ⇒

 
 
2.2 The elastic mode 
 
In this paper, we study a nonlinear programming 
formulation of (MPEC) that uses an explicit 
penalization of the complementarity constraint, also 
known as the “elastic mode.” For a given penalty 
parameter , that formulation can be written as 
follows (Anitescu et al., 2005): 

0c ≥

PF( ) min ( ) ( ) ( )
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0 0 0 .

T T T
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We say that ( )x ζ,  is an ε -first-order point of 
PF( ) (c 0ε ≥ ) if there exist multipliers 
( )λ μ μ τ ν π π− + − +, , , , , ,  satisfying   
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We say that (x ζ,  is an ( )ε δ, -second-order point 
of PF( ) (c 0ε δ, ≥ ) if there exist multipliers 

( )λ μ μ τ ν π π− + − +, , , , , ,  that satisfy the above 
first-order conditions (so ( )x ζ,  is an ε -first-order 
point of PF( c )) and  

( )( )

22 ( )
x x

T
cL x uu ζ ζ

ζ λ μ μ τ ν
, ,

− +∇ , , , , , , ≥ −% %% C u ,

≥

  

for all  that are simultaneously in the null 
space of the gradients of all active bound constraints 
( G x , , 

1IR nu +∈%

0T 0TH x ≥ 0 ζ ζ≤ ≤ ) at ( )x ζ,  and 
in the null space of the gradients of δ -active 
nonbound constraints ( ( ) pg x eζ≥ − , 

( )q qe h x eζ ζ≥ ≥ − )) at (x ζ, . Here  is an 

arbitrary constant independent of 

0C ≥
( )x ζ, . 

 
2.3 The elastic mode: Local convergence and rate of 

convergence 
 
It is not surprising that the solution of  PF( c ) 
approaches the solution of MPEC as c . But in 
a recent paper, we proved that, under very lax 
assumptions, the problem PF( ) has the same 

→∞

c x  
solution as (MPEC) for sufficiently large .  We 
formally state this result under weaker assumptions 
for simplicity. 

c

 
Theorem  (Anitescu 2005a). Assume that at a 
solution *x of (MPEC) we have that  
• the Lagrange multiplier set of (MPEC) is not empty 
( this condition is implied by MPEC-LICQ). 

• the second-order condition is satisfied at  
for 

*( ,0)x
0ε δ= = ; and 

• the data of (MPEC) are twice continuously 
differentiable. 
Then, for sufficiently large but finite value of the 
penalty parameter , we have that c
1. ( ,  is a local minimum of   PF( c ) at which 
both MFCQ and the corresponding second-order 
conditions hold. 

* 0)x

0)x

0)x

2. ( ,  is an isolated stationary point of  PF( c ). 
3. The extension of the steepest descent to 
constrained optimization, if initialized sufficiently 
close to ( , , converges R-linearly to it. 

*

*

 
The importance of this results resides in the fact that 
PF( ) satisfies MFCQ and can thus be solved with 
classical nonlinear programming algorithms.  In 
addition, a superlinear convergence result can also be 
stated under some additional weak assumptions about 
the multipliers of (MPEC) – partial lower-level strict 
complementarity.  
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( ( ) )
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But this result does not address three important 
issues. First, the penalty parameter must be 
adjusted, because its “sufficiently large” value is not 
a priori known.   

c

Second, when the penalty parameter needs to be 
adjusted, we cannot afford to solve the problem 
PF( ) to optimality, because for any c , we need an 
infinite number of iterations, which is not practical.      
Third, our approach does not address the issue of 
global convergence, that is, whether the limit point of 
the iterative sequence  is a solution or at least a 
stationary point of the problem. We address these 
issues in the following sections.   

c

 
2.4 An implementable adaptive elastic-mode 

algorithm:  Global convergence results 
 
We consider the following algorithm. 
Algorithm Choose c , 0 0> 0 0ε > , 

, and positive sequences { }1cM Mε > > 0kδ → , 

{ } 0kω → ;   

for k=0,1,2,…find an ( )k kε δ, -second-order point 

( k
kx )ζ,  of PF( c ) with Lagrange multipliers. 

( ;   
k

)k k k k k k kλ μ μ τ ν π π− + − +, , , , , ,
if ( ) ( )T k T T k

k kG x H xζ ω+ ≥ ,   

set c 1k c kM c+ = ;   

set
else

c 1k kc+ = ;   

( )
choose
end if

1 (0 ]k k M εε ε+ ∈ , / .   

     



( )end for  
 
Since the algorithm does not solve the subproblems 
exactly, it will spend only a finite number of steps 
for a given penalty parameter and is therefore 
implementable.  

kc

 
When stating our results we will use the following 
assumption.  
 
Assumption   

(a) { ( )}kf x  is bounded from below.  
(b
{ ( ) ( ) ( )}k T k T

k k k
T kf x c c G x H xζ+ +  

is bounded from above.  
Note that the second assumption is satisfied between 
updates of the penalty parameter.  
 
We then have the following result.  
 
Theorem (Anitescu et al., 2005). Consider the 
sequences generated by our Algorithm. Suppose that 
they satisfy Assumption 1(a),(b). Then every 
accumulation point x∗  of { }kx  is feasible for (1). If 

x∗  satisfies MPEC-LICQ, then the following results 
hold.  

• x∗  is M-stationary for (1).  
• Suppose that {  is bounded. 

Then 

}kc
x∗  is strongly stationary for (1).  

Suppose that x∗  satisfies  and k TG xτ ⊥ k

kk TH xν ⊥  for all . Let  be such 

that 

k {0 1 }S ⊂ , ,…
{ }k

k Sx x∗
∈ → . Then, there is a threshold c∗  

such that, for all  sufficiently large with 
, we have ( ) . 

k S∈

kc c∗≥ ( )T k T T kG x H x = 0

0

 
Therefore, under the conditions outlined above, not 
only are we guaranteed to get to a strongly stationary 
point, but we also are guaranteed that the 
complementarity constraint will be satisfied early, 
even if the subproblems are solved only inexactly. 
This fact has been amply documented by our 
simulations, where we have used FilterSQP (Fletcher 
and Leyffer, 2002) to solve the  relaxed subproblems. 
FilterSQP is designed to compute the approximate 
second-order stationary points needed in the 
definition of the algorithm.  In addition, if the 
constraints  are enforced as 
bound constraints, then it is reasonable to assume 
that the complementarity condition involving the 
Lagrange multipliers will in effect hold at the 
iterates.  

0T TG x H x≥ , ≥

 
While the Assumption (a) is acceptable for almost all 
nonlinear programming algorithms, however, 

Assumption (b) is far more problematic because it is 
an assumption about an outcome, as opposed to a 
class of problems. We next present a broad class of 
problems for which this assumption is not needed 
from the outset and for which a global convergence 
result can still be proved.   

 
Fig. 1. Optimization of membrane with 
equilibrium (obstacle) constraints. 

 
2.5 Optimization of parameterized variational 

inequalities 
 
A large number of MPECs originate in the 
optimization of mixed P parameterized variational 
inequalities. Such problems include packaging 
problems that use membranes with obstacles as well 
as the Stackelberg games presented in (Outrata and 
al. 1998). We describe the problems as follows.   

The structural function satisfies the mixed P 
partition property at any point 

F
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For such problems we have the following result.  
Theorem 4 (Anitescu 2005b).  Assume that 

1 2( , , , , , )n n n n n n nx x y z w ζ ζ=%  is an ,n nε δ  

second-order stationary point of (PF ), for all ( )nc
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Let ( , * ** * * *
1 2, , , , )ζ ζx y z w

*
2

 be an accumulation 
point of this sequence that, with our main theorem, 
must satisfy *

10 ζ ζ= = . Its first component  
* * * *( , , , )x y z w  must be a C-stationary point of 

(MPCC).  If ( ,* * * *, , )x y z w  satisfies (MPCC-

LICQ), then * * * *( , , , )x y z w  must be an M-

stationary point of (MPCC).  If, in addition, is 
bounded, then the solution point is also strongly 
stationary.  

kc

 
The solution of the membrane problem with 
parabolic rigid obstacle is presented in Figure 1. The 
problem is to minimize the area of the membrane 
while keeping it in contact with a prescribed region. 
In the first subfigure we plot both the membrane and 
the obstacle; in the second subfigure we plot the 
membrane and the finite element mesh. The problem 
is detailed in (Outrata et al., 1998). Our algorithm 
has successfully solved the 18 instances of the 
problem (Anitescu et al., 2005; Anitescu, 2005b).  
 

3. INITIAL INVESTIGATIONS IN CONTROL 
PROBLEMS  

 
Inspired by an application of coordinated robotic 
control, we investigate the minimum time placement 
of a system of bodies that can experience contact and 
friction with the floor (Peng et al., 2004). The contact 
and friction are described by variational inequalities 
with a discretization of the friction cone, which make 
the optimization problem an MPEC. We use 
cylindrical bodies that we call “robots”. The problem 
was solved with SNOPT (Gill et al., 1997), which 
uses a variant of our elastic-inexact algorithm.  
 
Each pair of robots must have a minimal 
safe distance ds > 0. In our experiments, ds = 0.01. 
See Table 1 for the problems in Set A and Table 2 
for computational results for Set A. The snapshots of 
the coordination of six robots with collision 
avoidance are shown in Figure 2. We include two 
examples, A1 and A2, of the system with only one 
robot to show that the computational results are very 
close to the theoretical results; indeed the 
computational results are bang-bang solutions  (A1 
and A2 are the only two examples that have 
theoretical solutions in our test examples). 
Convergence was obtained in all cases for the 
method.  
 

The notation is as follows: Nr is the number of 
robots, Def the dimension of the external force(s), Nt 
the number of time steps, K the K-polygon 
approximation for circle, Nv the number of variables, 
Ntc the number of total constraints, Gs the global 
search solution, LB the analytical Lower bound of the 
optimal solution, Gt the global search time (seconds). 
The results are presented in Tables 1 and 2.  
 

Table 1  Test Examples Parameters 
 
 
PrP oblem       Nr      Def        Nt      K          Nv     Ntc 
A1                 1         2        100     16       4385    2693 
A2                 1         1        100     16        4385   2693 
A3                 4         2          50       8      11248   8877 
A4                 6         2          50       4      20177 17220 
 
 

Table  2  Computational Results 
Problem   Gs          G t(sec)     LB 
A1           9.03            5.8        8.94 
A2           9.85          98.4        9.75 
A3           9.60    20749.2        8.94 
A4           9.71    12605.1        8.94 
 
We note that despite the problems being large and 
nonconvex, the solutions are very close to the lower 
bound, which indicate a high-quality solution.  
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