
Sensitivity Analysis and Design Optimization

through Automatic Differentiation

Sanjukta Bhowmick, Paul D. Hovland, Boyana Norris, Michelle Mills
Strout, and Jean Utke
Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S Cass Ave,
Argonne IL 60439, USA

E-mail: hovland@mcs.anl.gov

Abstract.
Automatic, or algorithmic, differentiation (AD) is a technique for transforming a program or

subprogram that can be interpreted as computing a mathematical function, including arbitrarily
complex simulation codes, into one that computes the derivatives of that function. We describe
the implementation and application of automatic differentiation tools. We highlight recent
advances in the combinatorial algorithms and compiler technology that underlie successful
implementation of automatic differentiation tools. We discuss applications of automatic
differentiation in design optimization and sensitivity analysis. We also describe ongoing research
in the design of language-independent source transformation infrastructures and memory
management for automatic differentiation algorithms.

1. Introduction
Automatic differentiation (AD) is a family of techniques for computing the derivatives of
a function defined by a computer program. The basis for AD is the assumption that the
computation of a vector function y = f(x) : IRn �→ IRm is accomplished by a sequence
of p elemental operations vi = φi(. . . , vj , . . .), i = 1, . . . , p as found in a computer program
implementing an evaluation procedure for f. Each of the φ is differentiable at least in open
subdomains. The derivatives of these elemental operations are combined according to the chain
rule of differential calculus. The associativity of the chain rule leads to the two major modes
of computing derivatives with AD, the so-called forward (tangent-linear) mode and reverse
(cotangent-linear or adjoint) mode.

The forward mode multiplies derivatives starting with the independent variables and
proceeding toward the dependent variables. Because the order of the derivative computation
parallels that of the function computation, intermediate function values can be used as they
are computed, and the control flow of the derivative computation follows that of the original
program. The reverse mode multiplies derivatives starting with the dependent variables and
proceeding toward the independent variables. In this case, the control flow reverses that of the
original program, and therefore intermediate function values and control flow decisions may need
to be recorded. This increases the storage requirements of the reverse mode.

Viewed another way, the forward mode is the application of the chain rule to compute



directional derivatives at the level of elemental operations

v̇i =
∑

j

∂φi

∂vj
· v̇j (1)

for each elemental operation φi in the sequence. With the Jacobian J of f, this yields ẏ = Jẋ.
The reverse mode is the application of the chain rule to compute adjoints

vj =
∑

i

∂φi

∂vj
· vi (2)

for each argument vj. Since the vj depend on the vi, the operations in the sequence have to be
considered in reverse order. Executed for all φ, this yields x = JTy.

In purely mathematical terms the number of operations (temporal complexity) required for
computing the Jacobian of f : IRn �→ IRm in forward mode is O(n), while the computation with
reverse mode is O(m). Thus, the forward mode is appropriate for functions with small numbers
of independent variables (or, via a simple transformation, Jacobian-vector products), while the
reverse mode is appropriate for functions with small numbers of dependent variables (or, via a
simple transformation, transposed-Jacobian-vector products). The target application evaluates
a scalar objective (m = 1) for the purpose of data assimilation. Consequently, the gradient ∇f
has a computational cost proportional to the cost of evaluating f. We can consider the evaluation
of a Hessian ∇2f as the computation of the Jacobian of ∇f : IRn �→ IRn.

The first obstacle one faces when transitioning from a purely theoretical formulation of
complexities to a practical algorithm is the spatial complexity of the reverse mode (←). The
forward mode (→) can evaluate the ∂φi

∂vj
along with the computation of f itself. Because of the

reversed dependencies in (2), the reverse mode requires storage space for each value vj from the
time it is defined during the computation of f until it is needed to compute ∂φi

∂vj
. This implies a

spatial complexity of O(p). For large-scale applications, this spatial complexity is overwhelming
and is typically tackled via hierarchical checkpointing strategies [?].

The implementation of robust and effective automatic differentiation tools requires advances
in compiler technology, graph algorithms, and automatic differentiation theory. A robust
compiler infrastructure is required to support the source-to-source transformation process.

Compared with other methods, automatic differentiation offers a number of advantages:

Performance. The performance of automatic differentiation-generated code usually exceeds
that of finite differences and often rivals that of code developed by hand.

Accuracy. Unlike finite difference approximations, derivatives computed via automatic
differentiation exhibit no truncation error.

Reduced software costs. automatic differentiation eliminates the time spent developing and
debugging derivative code by hand, or experimenting with step sizes for finite difference
approximations. Consistency between a model and its derivatives is easily preserved,
reducing software maintenance costs.

2. Foundations
Compiler infrastructure: OpenAD and OpenAnalysis

Automatic differentiation tools rely on compiler analyses, including traditional analyses such
as alias analysis and side effect analysis, as well as domain-specific analyses such as activity
analysis and linearity analysis, to improve the efficiency of the generated derivative code.
Accurate analysis can improve performance by a factor of 2 or more.

Graph algorithms: graph coloring and flattening



Graph coloring is used to reduce the cost of computing sparse Jacobians and Hessians. We
have developed a new backtracking heuristic for graph coloring. The new heuristic is superior
to both the standard greedy algorithm and Culberson iteration. The figure shows the number
of colors required for several graphs ranging in size from fifteen thousand to 2.6 million vertices,
using the greedy, backtracking (B), or Culberson iterative (I) algorithm with one of several
orderings: natural (NT), largest first (LF), smallest last (SL), saturation degree (SD), incidence
degree (ID), and depth first (DF).

3. Applications
Design Optimization

Automatic differentiation is used to compute gradients and Hessians for the parallel solution of
optimization problems in TAO [?]. FIXME: Steal some text from TAO paper... Figure ?? shows
a sequence of solutions and their deviation from the optimal solution for a bound constrained
minimization problem. The objective is the surface with minimal area that satisfies Dirichlet
boundary conditions and is constrained to lie above a solid plate.

Ocean Modeling
As part of an NSF-sponsored collaboration with MIT and Rice, we are developing an

automatic differentiation tool for Fortran 90 that is being applied to the MIT General Circulation
Model. The figure displays a map of sensitivities of zonal volume transport through the Drake
Passage to changes in bottom topography everywhere in a barotropic ocean model. The model
is based on a shallow water model, extended to a global configuration at 2x2 degree horizontal
resolution with realistic topography.

4. Conclusions and Future Work
Conclusions

Future work
First, we will investigate whether the symmetric construction can produce a theoretically

optimal way to compute the Hessian and will explore how to integrate a scarcity and symmetry-
preserving preaccumulation for efficient Hessian-vector products. Second, we will explore ways of
extending the symmetry-preserving computation to gradient computations with checkpointing.
We will develop an algorithm that allows efficient, symmetry-preserving computation of local
Hessians and an implementation that extends the savings to the large-scale target application.
The efficient computation of Hessians is of interest not only for the geophysical application
considered here, but also for optimization, chemical and other engineering disciplines.


