
Collective Error Detection for MPI Collective
Operations?

Chris Falzone
University of Pennsylvania at Edinboro

Edinboro, Pennsylvania 16444

Anthony Chan
University of Chicago

Chicago, IL 60615

Ewing Lusk and William Gropp
Mathematics and Computer Science Division

Argonne National Laboratory, Argonne, Illinois 60439

Abstract. An MPI profiling library is a standard mechanism for in-
tercepting MPI calls by applications. Profiling libraries are so named
because they are commonly used to gather performance data on MPI
programs. Here we present a profiling library whose purpose is to detect
user errors in the use of MPI’s collective operations. While some errors
can be detected locally (by a single process), other errors involving the
consistency of arguments passed to MPI collective functions must be
tested for in a collective fashion. While the idea of using such a profiling
library does not originate here, we take the idea further than it has been
taken before (we detect more errors) and offer an open-source library
that can be used with any MPI implementation. We describe the tests
carried out, provide some details of the implementation, illustrate the
usage of the library, and present performance tests.

Keywords: MPI, collective, errors, datatype, hashing

1 Introduction

Detection and reporting of user errors are important components of any soft-
ware system. All high-quality implementations of the Message Passing Interface
(MPI) Standard [6, 2] provide for runtime checking of arguments passed to MPI
functions to ensure that they are appropriate and will not cause the function to
behave unexpectedly or even cause the application to crash. The MPI collective
operations, however, present a special problem: they are called in a coordinated

? This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, SciDAC Program, under Contract W-
31-109-ENG-38.



way by multiple processes, and the Standard mandates (and common sense re-
quires) that the arguments passed on each process be consistent with the argu-
ments passed on the other processes. Perhaps the simplest example is the case
of MPI Bcast:

MPI_Bcast(buff, count, datatype, root, communicator)

in which each process must pass the same value for root. In this case, “con-
sistent” means “identical,” but more complex types of consistency exist. No
single process by itself can detect inconsistency; the error check itself must be a
collective operation.

Fortunately, the MPI profiling interface allows one to intercept MPI calls
and carry out such a collective check before carrying out the “real” collective
operation specified by the application. In the case of an error, the error can be
reported in the way specified by the MPI Standard, still independently of the
underlying MPI implementation, and without access to its source code.

The profiling library we describe here is freely available as part of the MPICH2
MPI-2 implementation [4]. Since the library is implemented entirely as an MPI
profiling library, however, it can be used with any MPI implementation. For ex-
ample, we have tested it with the IBM MPI implementation for Blue Gene/L [1].

The idea of using the MPI profiling library for this purpose was first pre-
sented by Jesper Träff and Joachim Worringen in [7], where they describe the
error-checking approach taken in the NEC MPI implementation, in which even
local checks are done in the profiling library, some collective checks are done
portably in a profiling library as we describe here, and some are done by making
NEC-specific calls into the proprietary MPI implementation layer. The datatype
consistency check in [7] is only partial, however; the sizes of communication
buffers are checked, but not the details of the datatype arguments, where there
is considerable room for user error. Moreover, the consistency requirements are
not on the datatypes themselves, but on the datatype signatures; we say more
about this in Section 3.1.

To address this area, we use a “datatype signature hashing” mechanism, de-
vised by William Gropp in [3]. He describes there a family of algorithms that
can be used to assign a small amount of data to an MPI datatype signature in
such a way that only small messages need to be sent in order to catch most user
errors involving datatype arguments to MPI collective functions. In this paper
we describe a specific implementation of datatype signature hashing and present
an MPI profiling library that uses datatype signature hashing to carry out more
thorough error checking than is done in [7]. Since extra work (to calculate the
hash) is involved, we also present some simple performance measurements, al-
though one can of course use this profiling library just during application devel-
opment and remove it for production use.

In Section 2 we describe the nature and scope of the error checks we carry
out and compare our approach with that in [7]. Section 3 lays out details of our
implementation, including our implementation of the hashing algorithm given
in [3]; we also present example output. In Section 4 we present some performance
measurements. Section 5 summarizes the work and describes future directions.



2 Scope of Checks

In this section we describe the error checking carried out by our profiling library.
We give definitions of each check and provide a table associating the checks made
on the arguments of each collective MPI function with that function. We also
compare our collective error checking with that described in [7].

2.1 Definitions of Checks

The error checks for each MPI(-2) collective function are shown in Table 1. The
following checks are made:

call checks that all processes in the communicator have called the same col-
lective function in a given event, thus guarding against the error of calling
MPI Reduce on some processes, for example, and MPI Allreduce on others.

root means that the same argument was passed for the root argument on all
processes.

datatype refers to datatype signature consistency. This is explained further in
Section 3.1.

MPI IN PLACE means that every processes either did or did not provide
MPI IN PLACE instead of a buffer.

op checks operation consistency, for collective operations that include compu-
tations. For example, each process in a call to MPI Reduce must provide the
same operation.

local leader and tag test consistency of the local leader and tag arguments.
They are used only for MPI Intercomm create.

high/low tests consistency of the high argument. It is used only for
MPI Intercomm merge.

dims checks for dims consistency across the communicator.
graph tests the consistency of the graph supplied by the arguments to

MPI Graph create and MPI Graph map.
amode tests for amode consistency across the communicator for the function

MPI File open.
size, datarep, and flag verify consistency on these arguments, respectively.
etype is an additional datatype signature check for MPI file operations.
order checks for the collective file read and write functions, therefore ensuring

the proper order of the operations. According to the MPI Standard [2], a
begin operation must follow an end operation, with no other collective file
functions in between.

2.2 Comparison with Previous Work

This work can be viewed as an extension of the NEC implementation of collective
error checking via a profiling library presented in [7]. The largest difference
between that work and this is that we incorporate the datatype signature hashing



Table 1. Checks performed on MPI functions

MPI Barrier call
MPI Bcast call, root, datatype
MPI Gather call, root, datatype
MPI Gatherv call, root, datatype
MPI Scatter call, root, datatype
MPI Scatterv call, root, datatype
MPI Allgather call, datatype, MPI IN PLACE

MPI Allgatherv call, datatype, MPI IN PLACE

MPI Alltoall call, datatype
MPI Alltoallw call, datatype
MPI Alltoallv call, datatype
MPI Reduce call, datatype, op
MPI AllReduce call, datatype, op, MPI IN PLACE

MPI Reduce scatter call, datatype, op, MPI IN PLACE

MPI Scan call, datatype, op
MPI Exscan call, datatype, op

MPI Comm dup call
MPI Comm create call
MPI Comm split call
MPI Intercomm create call, local leader, tag
MPI Intercomm merge call, high/low

MPI Carte create call, dims
MPI Carte map call, dims
MPI Graph create call, graph
MPI Graph map call, graph

MPI Comm spawn call, root
MPI Comm spawn multiple call, root
MPI Comm connect call, root
MPI Comm disconnect call

MPI Win create call
MPI Win fence call

MPI File open call, amode
MPI File set size call, size
MPI File set view call, datarep, etype
MPI File set automicity call, flag
MPI File preallocate call, size
MPI File seek shared call, order

MPI File read all begin call, order
MPI File read all call, order
MPI File read all end call, order
MPI File read at all begin call, order
MPI File read at all call, order
MPI File read at all end call, order
MPI File read ordered begin call, order
MPI File read ordered call, order
MPI File read ordered end call, order

MPI File write all begin call, order
MPI File write all call, order
MPI File write all end call, order
MPI File write at all begin call, order
MPI File write at all call, order
MPI File write at all end call, order
MPI File write ordered begin call, order
MPI File write ordered call, order
MPI File write ordered end call, order



mechanism described in Section 3, which makes this paper also an extension
of [3], where the hashing mechanism is described but not implemented. In the
NEC implementation, only message lengths, rather than datatype signatures,
are checked. We do not check length consistency since it would be incorrect
to do so in a heterogeneous environment. We also implement our library as a
pure profiling library. This precludes us from doing some MPI-implementation-
dependent checks that are provided in the NEC implementation, but allows our
library to be used with any MPI implementation. In this paper we also present
some performance tests, showing that the overhead, even of our unoptimized
version, is acceptable. Finally, the library described here is freely available.

3 Implementation

In this section we describe our implementation of the datatype signature match-
ing presented in [3]. We also show how we use datatype signatures in coordination
with other checks on collective operation arguments.

3.1 Datatype Signature Matching

An MPI datatype signature for n different datatypes typei is defined to ignore
the relative displacement among the datatypes as follows [6]:

Typesig = {type1, type2, . . . , typen}. (1)

A datatype hashing mechanism was proposed in [3] to allow efficient compar-
ison of datatype signature over any MPI collective call. Essentially, it involves
comparison of a tuple (α, n), where α is the hash value and n is the total number
of basic predefined datatypes contained in it. A tuple of form (α, 1) is assigned
for each basic MPI predefined datatype (e.g. MPI INT), where α is some cho-
sen hash value. The tuple for an MPI derived datatype consisting of n basic
predefined datatypes (α, 1) becomes (α, n). The combined tuple of any two MPI
derived datatypes, (α, n) and (β, m), is computed based on the hashing function:

(α, n)⊕ (β,m) ≡ (α ∧ (β / n), n + m), (2)

where ∧ is the bitwise exclusive or (xor) operator, / is the circular left shift
operator, and + is the integer addition operator. The noncommutative nature of
the operator ⊕ in equation (2) guarantees the ordered requirement in datatype
signature definition [1].

One of the obvious potential hash collisions is caused by the / operator’s
circular shift by 1 bit. Let us say there are four basic predefined datatypes
identified by tuples (α, 1), (β, 1), (γ, 1), and (λ, 1) and that α = λ / 1 and
γ = β / 1. For n = m = 1 in equation (2), we have

(α, 1)⊕ (β, 1) ≡ (α ∧ (β / 1), 2)
≡ ((β / 1) ∧ α, 2)
≡ (γ ∧ (λ / 1), 2)
≡ (γ, 1)⊕ (λ, 1),

(3)



If the hash values for all basic predefined datatypes are assigned consecutive
integers, there will be roughly a 25 percent collision rate as indicated by equation
(3). The simplest solution for avoiding this problem is to choose consecutive
odd integers for all the basic predefined datatypes. Also, there are composite
predefined datatypes in the MPI standard (e.g., MPI FLOAT INT), whose hash
values are chosen according to equation (2) such that

MPI FLOAT INT = MPI FLOAT ⊕MPI INT

.
The tuples for MPI UB and MPI LB are assigned (0, 0), so they are essentially

ignored. MPI PACKED is a special case, as described in [3].
More complicated derived datatypes are decoded by using MPI Type get envelope()

and MPI Type get content() and their hashed tuple computed during the pro-
cess.

3.2 Collective Datatype Checking

Because of the different comunication patterns and the different specifications of
the send and receive datatypes in various MPI collective calls, a uniform method
of collective datatype checking is not attainable. Hence five different procedures
are used to validate the datatype consistency of the collectives. The goal here is
to provide error messages at the process where the erroneous argument has been
passed. To achieve that goal, we tailor each procedure to match the communi-
cation pattern of the profiled collective call. For convenience, each procedure is
named by one of the MPI collective routines being profiled.

Collective Scatter Check

1. At the root, compute the sender’s datatype hash tuple.
2. Use PMPI Bcast() to broadcast the hash tuple from the root to other pro-

cesses.
3. At each process, compute the receiver’s datatype hash tuple locally and

compare it to the hash tuple received from the root.

A special case of the collective scatter check is when the sender’s datatype signa-
ture is the same as the receiver’s. This special case can be refered to as a collec-
tive bcast check. It is used in the profiled version of MPI Bcast(), MPI Reduce(),
MPI Allreduce(), MPI Reduce scatter(), MPI Scan(), and MPI Exscan().

The general collective scatter check is used in the profiled version of MPI Gather()
and MPI Scatter().

Collective Scatterv Check

1. At the root, compute the vector of the sender’s datatype hash tuples.
2. Use PMPI Scatter() to broadcast the vector of hash tuples from the root to

the corresponding process in the communicator.



3. At each process, compute the receiver’s datatype hash tuple locally and
compare it to the hash tuple received from the root.

The collective scatterv check is used in the profiled version of MPI Gatherv()
and MPI Scatterv().

Collective Allgather Check

1. At each process, compute the sender’s datatype hash tuple.
2. Use PMPI Allgather() to gather other senders’ datatype hash tuples as a

local hash tuple vector.
3. At each process, compute the receiver’s datatype hash tuple locally, and

compare it to each element of the hash tuple vector received.

The collective allgather check is used in the profiled version of MPI Allgather()
and MPI Alltoall().

Collective Allgatherv Check

1. At each process, compute the sender’s datatype hash tuple.
2. Use PMPI Allgather() to gather other senders’ datatype hash tuples as a

local hash tuple vector.
3. At each process, compute the vector of the receiver’s datatype hash tuples

locally, and compare this local hash tuple vector to the hash tuple vector
received element by element.

The collective allgatherv check is used in the profiled version of MPI Allgatherv().

Collective Alltoallv/Alltoallw Check

1. At each process, compute the vector of the sender’s datatype hash tuples.
2. Use PMPI Alltoall() to gather other senders’ datatype hash tuples as a

local hash tuple vector.
3. At each process, compute the vector of the receiver’s datatype hash tuples

locally, and compare this local hash tuple vector to the hash tuple vector
received element by element.

The difference between collective alltoallv and collective alltoallw checks is that
alltoallw is more general than alltoallv; in other words, alltoallw accepts a vector
of MPI Datatype in both the sender and receiver.

The collective alltoallv check is used in the profiled version of MPI Alltoallv(),
and the collective alltoallw check is used in the profiled version of MPI Alltoallw().

3.3 Example Output

In this section we illustrate what the user sees (on stderr) when a collective
call is invoked incorrectly.



Example 1. In this example, run with five processes, all but the last process call
MPI Bcast; the last process calls MPI Barrier.

aborting job:
Fatal error in MPI_Comm_call_errhandler:

VALIDATE BARRIER (Rank 4) --> Collective call (BARRIER) is Inconsistent with Rank 0’s (BCAST).

rank 4 in job 204 ilsig.mcs.anl.gov_32779 caused collective abort of all ranks
exit status of rank 4: return code 13

Example 2. In this example, run with five processes, all but the last process give
MPI CHAR; but the last process gives MPI INT.
aborting job:
Fatal error in MPI_Comm_call_errhandler:

VALIDATE BCAST (Rank 4) --> Datatype Signature used is Inconsistent with Rank 0s.

rank 4 in job 205 ilsig.mcs.anl.gov_32779 caused collective abort of all ranks
exit status of rank 4: return code 13

Example 3. In this example, run with five processes, all but the last process use
0 as the root parameter; the last process uses its rank.
aborting job:
Fatal error in MPI_Comm_call_errhandler:

VALIDATE BCAST (Rank 4) --> Root Parameter (4) is inconsistent with rank 0 (0)

rank 4 in job 207 ilsig.mcs.anl.gov_32779 caused collective abort of all ranks
exit status of rank 4: return code 13

4 Experiences

Here we describe our experiences with the collective error checking profiling
library in the areas of usage, porting, and performance.

After preliminary debugging tests gave us some confidence that the library
was functioning correctly, we applied it to the collective part of the MPICH2 test
suite. This set of tests consists of approximately 70 programs, many of which
carry out multiple tests, that test the MPI-1 and MPI-2 Standard compliance for
MPICH2. We were surprised (and strangely satisfied, although simultaneously
embarrassed) to find an error in one of our test programs. One case in one
test expected a datatype of one MPI INT to match a vector of sizeof(int)
MPI BYTEs. This is incorrect, although MPICH2 allowed the program to execute.

To test a real application, we linked FLASH [5], a large astrophysics applica-
tion utilizing many collective operations, with the profiling library and ran one
of its model problems. In this case no errors were found.

A profiling library should be automatically portable among MPI implemen-
tations. The library we describe here was developed under MPICH2. To check
for portability and to obtain separate performance measurements, we also used
it in conjunction with IBM’s MPI for BlueGene/L [1], without encountering any
problems.

We carried out performance tests on two platforms. On BlueGene/L, the col-
lective and datatype checking library and the test codes were compiled with xlc



with -O3 and linked with IBM’s MPI implementation available on BlueGene/L.
The performance of the collective and datatype checking library of a 32-process

Table 2. The maximum time taken (in seconds) among all the processes in a 32-
process job on BlueGene/L. Count is the number of MPI Doubles in the datatype, and
Nitr refers to the number of times the MPI collective routine was called in the test.
The underlined digits indicates that the corresponding digit could be less in one of the
processes involved.

Test Name count×Nitr No CollChk With CollChk

MPI Bcast 1×10 0.000269 0.002880

MPI Bcast 1K×10 0.000505 0.003861

MPI Bcast 128K×10 0.031426 0.135138

MPI Allreduce 1×1 0.000039 0.000318

MPI Allreduce 1K×1 0.000233 0.000586

MPI Allreduce 128K×1 0.022263 0.032420

MPI Alltoallv 1×1 0.000043 0.000252

MPI Alltoallv 1K×1 0.000168 0.000540

MPI Alltoallv 128K×1 0.015357 0.035828

job is listed in Table 2, where each test case is linked with and without the
collective and datatype checking library.

Similarly on a IA32 Linux cluster, the collective and datatype checking library
and the test codes were compiled with gcc with -O3 and linked with MPICH2-
1.0.1. The performance results of the library are tabulated in Table 3.

Table 3. The maximum time taken (in seconds) on a 8-process job on Jazz, an IA32
Linux cluster. Count is the number of MPI Double in the datatype, and Nitr refers to
the number of times the MPI collective routine has been called in the test.

Test Name count×Nitr No CollChk With CollChk

MPI Bcast 1×10 0.034332 0.093795

MPI Bcast 1K×10 0.022218 0.069825

MPI Bcast 128K×10 1.704995 1.730708

MPI Allreduce 1×1 0.000423 0.006863

MPI Allreduce 1K×1 0.003896 0.005795

MPI Allreduce 128K×1 0.233541 0.236214

MPI Alltoallv 1×1 0.000320 0.009682

MPI Alltoallv 1K×1 0.002415 0.003593

MPI Alltoallv 128K×1 0.271676 0.355068



Both Tables 2 and 3 indicate that the cost of the collective and datatype
checking library diminishes as the size of the datatype increases. The cost of
collective checking can be significant when the datatype size is small. One would
like the performance of such a library to be good enough that it is convenient
to use and does not affect the general behavior of the application it is being
applied to. On the other hand, performance is not absolutely critical, since it is
basically a debug-time tool and is likely not to be used when the application is
in production. Our implementation at this stage does still present a number of
opportunities for optimization, but we have found it highly usable.

5 Summary

We have presented an effective technique to safeguard users from making easy-
to-make but hard-to-find mistakes that often lead to deadlock, incorrect results,
or worse. The technique is portable and available for all MPI implementations.
We have also presented a method for checking datatype signatures in collective
operations. We intend to extend the datatype hashing mechanism to point-to-
point operations as well.

This profiling library is freely available as part of MPICH2 [4] in the MPE
subdirectory, along with other profiling libraries.

References

1. G. Almási, C. Archer, J. G. Casta nos, M. Gupta, X. Martorell, J. E. Moreira,
W. D. Gropp, S. Rus, and B. Toonen. MPI on BlueGene/L: Designing an efficient
general purpose messaging solution for a large cellular system. In Jack Dongarra,
Domenico Laforenza, and Salvatore Orlando, editors, Recent Advances in Paral-
lel Virtual Machine and Message Passing Interface, number LNCS2840 in Lecture
Notes in Computer Science, pages 352–361. Springer Verlag, 2003.

2. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill
Nitzberg, William Saphir, and Marc Snir. MPI—The Complete Reference: Volume
2, The MPI-2 Extensions. MIT Press, Cambridge, MA, 1998.

3. William D. Gropp. Runtime checking of datatype signatures in MPI. In Jack Don-
garra, Peter Kacsuk, and Norbert Podhorszki, editors, Recent Advances in Parallel
Virutal Machine and Message Passing Interface, number 1908 in Springer Lecture
Notes in Computer Science, pages 160–167, September 2000.

4. MPICH2 Web page. http://www.mcs.anl.gov/mpi/mpich2.
5. R. Rosner, A. Calder, J. Dursi, B. Fryxell, D. Q. Lamb, J. C. Niemeyer, K. Olson,

P. Ricker, F. X. Timmes, J. W. Truran, H. Tufo, Y. Young, M. Zingale, E. Lusk, and
R. Stevens. Flash code: Studying astrophysical thermonuclear flashes. Computing
in Science and Engineering, 2(2):33, 2000.

6. Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack
Dongarra. MPI—The Complete Reference: Volume 1, The MPI Core, 2nd edition.
MIT Press, Cambridge, MA, 1998.

7. Jesper Larsson Träff and Joachim Worringen. Verifying collective MPI calls. In
Dieter Kranslmüller, Peter Kacsuk, and Jack Dongarra, editors, Recent Advances in
Parallel Virutal Machine and Message Passing Interface, number 3241 in Springer
Lecture Notes in Computer Science, pages 18–27, 2004.


