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Abstract 

There is a growing need for systems that can 
monitor and analyze application performance data 
automatically in order to deliver reliable and sustained 
performance to applications. However, the 
continuously growing complexity of high performance 
computer systems and applications makes this process 
difficult. We introduce a statistical data reduction 
method that can be used to guide the selection of 
system metrics that are both necessary and sufficient to 
describe observed application behavior, thus reducing 
the instrumentation perturbation and data volume to be 
managed. To evaluate our strategy, we applied it to 
one CPU-bound Grid application using cluster 
machines and GridFTP data transfer in a wide area 
testbed. A comparative study shows that our strategy 
produces better results than other techniques. It can 
reduce the number of system metrics to be managed by 
about 80%, while still capturing enough information 
for performance predictions.  

1. Introduction 
Recent experience in deploying Grid middleware 

demonstrates the challenges one faces in delivering 
robust services in distributed and shared environments 
[12]. Applications often must deliver reliable 
performance despite the use of distributed and shared 
resources. The first step toward this kind of fault 
tolerant and adaptive computing is to monitor the 
performance of system components such that we can 
diagnose the reason an anomaly happens. As high- 
performance computer systems and applications 
continue to increase in complexity, performance 
monitoring and analysis grows more difficult.  

There are two approaches to understand 
relationships among performance components and to 
address application performance problems. The most 
common one is to build a performance model of the 
application [15] . However, such models are usually 

application specific and are themselves difficult and 
costly to build especially in the distributed and 
heterogeneous environments.   

The second approach is to use instrumentation 
systems that capture information on a large number of 
these time-varying system metrics and then analyze the 
relationship among system components and 
applications [7]. However, direct instrumentation can 
influence the performance of target systems and 
produce tremendous volumes of data [10]. To combat 
such performance instrumentation consequences and 
simplify data analysis, we need mechanisms to select 
only necessary metrics and measurement points.  

We focus here on how to use a two-step statistical 
data reduction strategy that selects only the monitoring 
metrics that are necessary and sufficient for capturing 
relevant application behaviors. Our goal is to reduce 
perturbations and data volume while retaining 
meaningful event characteristics. We evaluate the 
effectiveness of our data reduction strategy in two 
different contexts, namely a CPU-bound astrophysics 
application and GridFTP data transfer. The rest of this 
paper is organized as follows. Section 2 describes the 
problem. Section 3 introduces our data reduction 
strategy. Section 4 presents our experimental results. 
Section 5 introduces related work. In Section 6, we 
briefly summarize our effort. 

2. Problem and Approach 
Previous studies [9] show that variability in 

resource characteristics can have a major influence on 
application performance. To formalize this notion, we 
consider a distributed system with p resources, each 
characterized by a set of system metrics. For example, 
a resource CPU might have three system metrics: 
percentage of CPU utilization at the user level, 
percentage of CPU utilization at the system level, and 
percentage of time that the CPU was idle. The 
characteristics of the system including p resources can 
be described by the set of all system metrics: 
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where ni is the number of metrics for the ith resource; 
and mi

j is the jth metric for the ith resource. 
We also introduce the notion of a performance 

metric, a quantitative description of some aspect of 
application performance. For example, one useful 
metric for an application that calculates the product of 
two matrices might be the number of multiplications 
finished during a time unit. Depending on the system 
metrics available on a particular system and the 
performance metrics of interest to the user, we may 
find that there is a correlation between some function 
of some subset of the system metrics and a particular 
performance metric. If such a function and subset exist 
and can be identified, then we can use this system 
metric set as predictors for the performance metric.  

We now state our problem as follows: Given a 
system, a set of system metrics, and an application 
described by a performance metric, identify a minimal 
set of system metrics that can be used to predict the 
performance metric with a desirable level of accuracy. 

For solving this problem, we exploit the fact that 
some metrics are redundant. For example, the value of 
the metric used memory is equal to the total memory 
size minus the value of the metric unused memory, and 
vice versa. 

Definition 1: Two system metrics m1, m2 are 
dependent on each other if and only if the values of the 
two system metrics are correlated with each other at a 
level greater than a specified threshold. Otherwise, m1 
and m2 are independent.  � 

For example, the value of used memory and the 
value of unused memory of the same machine are 
dependent on each other. Only one is necessary; the 
other is redundant and can be eliminated from the set 
of potential predictors without losing useful 
information.. 

We also take into account the fact that not all 
system metrics are related to the performance metric. 
For example, in the case of a program that calculates 
the sum of several integers, CPU utilization is likely to 
be strongly related with execution speed, while the 
number of opened files is not. To describe the 
relationship between system metrics and performance 
metric, we introduce the following definition: 

Definition 2: A performance metric y is 
predictable by system metrics m1,m2,…mn if and only 
if the value of y can be predicted by a function of 
variables m1,m2…mn, expressed by y=F(m1,m2,…, mn). 
We then call y the response variable and each system 
metric mi (i=1..n) a predictor of y.   � 

With the above definitions, our problem can be 
formalized as follow: Given an application 
characterized by a performance metric y and a system 
characterized by a set of metrics M, our goal is to find 
a subset of system metrics S= (x1,x2,…, xn), S⊆M such 
that (a) every pair of system metrics in S, xi and xj, 
i=1..n, j=1..n , i≠j, are independent and (b) every 
system metric xi, i=1..n, is a predictor of the 
performance metric y of the application running on this 
system, using a given model. The goal of criterion (a) 
is to remove redundant system metrics. The goal of 
criterion (b) is to find all metrics that predict 
application behavior and remove those that do not.  

3. Statistical Data Reduction 
From the above considerations, we know that  two 

kinds of unnecessary system metrics can be reduced 
without losing any useful information when predicting 
a specified performance metric with a desired level of 
accuracy. We proceed in two steps: (1) eliminate 
dependent system metrics (Section 3.1) and (2) identify 
and further eliminate irrelevant system metrics (Section 
3.2) with each step reducing one kind of unnecessary 
system metrics. The result of our strategy is a subset of 
system metrics that are necessary for predicting the 
performance metric and are independent of each other. 
In Section 3.3 we discuss the criteria used to evaluate 
the data reduction strategy. 

3.1. Redundant System Metrics Reduction 
Dependent system metrics (Definition 1) are 

metrics that are strongly correlated with each other. 
Since a pair of dependent metrics conveys essentially 
the same information, only one is necessary; the other 
is redundant and can be eliminated. 

We use the Pearson Product-Moment Correlation 
Coefficient (r), or correlation coefficient for short, to 
obtain a quantitative estimation of the degree of 
correlation between two system metrics. The 
correlation coefficient provides a measure of the degree 
of linear relationship between two variables [16]. A 
high correlation coefficient value indicates that the two 
variables can be calculated from each other by some 
linear model.  

To identify system metrics that are dependent on 
each other, we first construct a correlation matrix by 
computing the correlation coefficient between every 
pair of system metrics. Then, we apply a clustering 
algorithm to this matrix to identify clusters of system 
metrics such that every metric in a cluster has a 
correlation coefficient with absolute value above a 
threshold value to at least one other metric in the 
cluster. We conclude that the system metrics in one 
cluster capture essentially the same information and 
eliminate all but one of those metrics. 
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The research question we consider is: “How much 
data do we need to determine whether an observed 
correlation is significant?” To show why this is 
important, Figure 1 shows 20 sample correlation 
coefficients between the number of transfers issued per 
second and the number of memory pages cached per 
second for data collected during the execution of one of 
our test applications, Cactus [3] (Section 4). Because 
these two system metrics describe the performance of 
two independent components in the system, we would 
not expect them to be strongly correlated. As shown in 
Figure 1, however, while in most cases (16 cases or 
80% of the time) the absolute value of the sample 
correlation coefficients between these two metrics is 
small (< 0.2), in a few cases (4 cases or 20% of the 
time) the absolute value is high (as high as 0.98 in our 
example). Thus, a correlation coefficient obtained by 
using a single sample could cause a false positive error 
and group these two independent system metrics into 
one cluster.  
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Fig. 1: Sample correlation coefficient between 

the number of transfers issued per second 
and the number of memory pages cached per 

second for 20 Cactus runs 

To reduce the chance of such false positive errors, 
we use a one-tailed Z-test to determine whether an 
observed correlation is statistically significant. The Z-
test is a statistical method used to test the viability of a 
hypothesis in the light of sample data with specific 
confidence. More specifically, in our strategy, the 
hypothesis to be tested is as follows: The actual 
correlation coefficient is less than or equal to the 
threshold value. Given a set of sample data, the Z-test 
tests the possibility of observing the sample correlation 
coefficient if the hypothesis is true. If the possibility is 
small (< 5% in our work), we can reject the hypothesis 
with more than 95% confidence and say that the real 
correlation coefficient is statistically larger than the 
threshold value. We then group the two system metrics 
involved into one cluster.  

Thus, given a set of samples, we proceed as 
follows. We perform the Z-test for the correlation 
coefficient between every pair of system metrics, and 
we group two metrics into one cluster only when the 
absolute value of their correlation coefficient is larger 
than the threshold value with 95% confidence. The 
result of this computation is a set of system metric 

clusters. System metrics in each cluster are strongly 
correlated, so only one metric from the cluster can be 
used as the representatives of the cluster while the 
others are deleted as redundant. Currently, we pick as 
the representative the system metric with the highest 
correlation coefficient value with the application 
performance metric. 

We also find it useful to identify and eliminate 
system metrics that have no variation in the sample 
data, which means that no correlation coefficient 
involving these metrics can be calculated. We group 
these metrics into a special cluster called “zero 
variation,” in which all metrics have a variation of zero. 
We consider all metrics with zero variations to be 
redundant metrics and immediately eliminate them, 
since (as far as we can determine based on our sample 
data) they do not carry any useful information for 
predicting the performance metric.  

We also need to decide the value of the threshold 
used to judge whether the correlation between two 
system metrics is strong enough to put them into one 
cluster. In Section 4, we discuss our selection of this 
value and its influence on data reduction. 

3.2. Statistical Variable Selection 
After eliminating all dependent system metrics, we 

obtain a subset of independent system metrics. 
However some of these system metrics may not relate 
to our chosen performance metric. Thus, in the second 
step of our strategy, we identify the subset of all 
predictors that are necessary to predict the performance 
metric, further reducing system metrics that either are 
unrelated to the performance metric, or, given other 
metrics, are not useful for predicting the performance 
metric. This data reduction is also known as variable 
selection. 

Two basic methods for variable selection have 
evolved. The first method uses a criterion statistic 
computed for all possible subsets of predictors. This 
method is able to find the best solution but is 
inefficient. The second method, generally called 
stepwise regression, provides a systematic technique 
for choosing a path through the possible subsets, first 
looking at a subset of one size, and then looking only at 
subsets obtained from preceding ones by deleting one 
potential predictor. This limiting of the number of 
subsets of each size that must be considered makes the 
second method more efficient than the first.  

We focus here on the second method. Specifically, 
we use the Backward Elimination (BE) stepwise 
regression method [19] to select our predictors. This 
method is a well-known variable selection technique 
commonly used in statistics to select a good set of 
predictors among many potential predictors for a 



 

response variable. We use it because of its simplicity 
and efficiency. 

To apply BE in our data reduction problem, we treat 
every system metric left after the first step as a 
potential predictor and the application performance 
metric as the response variable to be predicted. We 
start with a model that includes all potential predictors, 
and at each step, delete one metric that is irrelevant or, 
given other metrics, is not useful to the model, until all 
metrics left are statistically significant. More 
specifically, the algorithm can be described as follows: 
��� Build a full model by regressing the response 
variable on all possible predictors using a linear model:�

Y=β0+β1x1+β2x2+…βnxn         (1) 
where Y is the response variable, or performance 
metric in our work; and xi (i=1…n) are all potential 
predictors, namely., the independent system metrics 
considered in our work. 
2) Pick the least significant predictor in this model by 
calculating the F value of every predictor in current 
model. The F value of a predictor captures its 
contribution to the model. A smaller value indicates a 
smaller contribution, thus a less significant predictor. 
The F value of a predictor x is defined as the result of 
an F test, which assesses the statistical significance of 
two different models: one with all predictors 
considered, called the full model; the other with all the 
other metrics except the predictor x, called the reduced 
model. The F value indicates how different the two 
models are: a small F value means there is little 
difference between the two models, and thus x does not 
make a large contribution. Hence. we can remove it 
without reducing the prediction power of the model.  
3) If the smallest F value is less than some predefined 
significant value (in our case, 2 as suggested by [19]), 
remove the corresponding predictor from the model. 
Go to step 4; if not, the algorithm stops. The remaining 
predictors are considered to be significantly related to 
the response variable and necessary when predicting 
the response variable.  
4) Re-regress the response variable on all left 
potential predictors as function 1. Go to step 2. 
We note that while the BE regression method is usually 
employed with a linear model as defined in function 1, 
it need not be limited to a linear function. For example, 
we can add a quadratic item for every potential 
predictor in the model. For each system metric x, we 
not only consider x itself, but also treat x2 as a potential 
predictor to predict the performance of application. The 
new regression model is:  

Y=β0+β1x1+β2x2+…βnxn+βn+1x1
2+βn+2x2

2+…β2nxn
2

    (2) 
Using this model, the BE method will select those 

system metrics that are either linearly or quadratically 

related to the performance metric. Quadratic terms turn 
out to be important in the GridFTP data transfer that 
we consider in Section 4.4. 

3.3. Evaluating Data Reduction Strategies 
Recall that the general goal of our strategy is to 

reduce the number of system metrics to be monitored 
while still capturing enough important information. We 
use two criteria to evaluate this data reduction strategy. 

The reduction degree criterion is the total 
percentage of system metrics eliminated. This criterion 
measures how many system metrics are reduced by the 
strategy, so the larger the better. This criterion is used 
to ensure that we do not leave many redundant or 
unnecessary metrics in the results. 

The coefficient of determination [19] criterion, 
denoted as R2, uses a statistical measurement that 
indicates the fraction of the total variability in the 
response variable (performance of application in our 
case) that can be explained by the predictors (the 
system metrics in our work) in a given model. In 
another words, R2 measures whether the predictors 
used in this model are sufficient to predict the response 
variable. R2 is a scale-free number, ranging from 0 to 1, 
the larger the better. A small value of R2 may indicate 
that we lost useful information.   

R2 can be calculated by the following formula: 

                
SSyy

SSE
R −= 12                                    (3) 

where, SSE is the error sum of squares = Σ((Yi - 
EstYi)2),  Yi is the actual value of Y for the ith case 
and EstYi is the regression prediction for the ith case; 
and SSyy is the total sum of squares = Σ((Yi - MeanY)2). 

4. Experimental Evaluation 
To evaluate the validity of our data reduction 

strategy, we ran a series of comparative experiments 
involving one parallel program running in a shared 
local area network environment and GridFTP data 
transfers in a shared wide area network environment. 

4.1. Test Applications and Data Collection 
      We tested our strategy on data collected on one 
CPU-bound Grid application, Cactus, and on GridFTP 
data transfers. Cactus [3] is a numerical simulation of a 
3D scalar field produced by two orbiting astrophysical 
sources. The application can run on multiple processors; 
each processor updates each iteration its local point and 
then uses MPI to synchronize the boundary. This 
performance metric is defined as the elapsed time per 
iteration.  
      GridFTP [2] is part of the Globus Toolkit [6] and is 
widely used as a secure, high-performance data transfer 
protocol. It extends the standard FTP implementation 



 

with several features needed in Grid environments, 
such as security, partial file transfers and third party 
transfers. The application metric of the GridFTP 
transfer is the rate with which the data transferred, in 
megabits per second. 

We collected system metrics and application 
metrics at a frequency of 0.033 Hz. Each data point 
included one performance metric and roughly 100 
system metrics on each machine. All machines were 
shared with other users during the data collection 

We collected system metrics on each machine 
using three utilities: (1) the sar command of the 
SYSSTAT tool set [1], (2) network weather service 
(NWS) sensors [20], and (3) the Unix tool ping. A 
detailed description of the system metrics used for each 
application is available online [21]. 

4.2. Experimental Methodology  
We divided the data collected into two disjoint sets: 

the training data and the verification data. The first step 
of our experiment involved using our data reduction 
strategy on the training data to select a subset of system 
metrics that are both necessary and sufficient to capture 
the application behavior. In this step, we also evaluated 
the influence of the threshold parameter (Section 3.1) 
on our data reduction strategy, by exhaustively 
searching the space of feasible selections. We present 
our results in Sections 4.3 and 4.4. 

In the second step of our experiment, we evaluate 
the efficiency of our strategy using the verification data. 
We compared the result of our statistical data reduction 
strategy (SDR) to two other strategies. The first 
method, RAND, randomly picks a subset of system 
metrics equal in number to those selected by our 
strategy. The second method, MAIN, uses a subset of 
system metrics that are commonly used to model the 
performance of applications [15]. More specifically, 
the MAIN metrics for Cactus application included (1) 
network measurements, including bandwidth, latency 
and the time required to establish a TCP connection 
between every pair of the machines; (2) CPU 
measurements, including the fraction of CPU available 
to a process that is already running and to a newly 
started process, and the system load average for the 
last minute on every machine; (3) the amount of space 
unused in memory on every machine; and (4) the 
amount of space unused on the disk of every machine. 
For GridFTP data transfer, besides the cited MAIN 
metrics, disk I/O behavior plays a large role in data 
transfer time [17]. Therefore, we added disk I/O 
measurements when applying MAIN strategy to the 
GridFTP transfer data: (5) amount of data read 
from/write to the physical disk per sec on every 
machine. 

In the second step, we used the coefficient of 
determination (R2) to determine whether the system 
metrics selected on the training data are sufficient to 
capture the application behavior. As noted above, R2 
indicates the fraction of the total variability in the 
application performance that can be explained by the 
system metrics considered. A small value may indicate 
that the system metrics selected are not sufficient and 
that the strategy is less effective. 

4.3. Cactus Results 
We ran Cactus on six shared Linux machines at 

the University of California, San Diego over a one-day 
period. Data was partitioned into 12 roughly equal-
sized chunks. Every data point comprised the values of 
a total of 628 system metrics for six machines and one 
application metric. We used the first chunk of data as 
the training data to select the necessary and sufficient 
system metrics, while varying the threshold value to 
evaluate its influence on the data reduction result. The 
threshold value was evaluated at intervals of 0.05 
between 0 and 1. Two criteria, the coefficient of 
determination (R2) and reduction degree (RD), were 
calculated for every selection, as shown in Figure 2.  
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Fig. 2: R2 and RD as function of threshold 
value on Cactus data 

As expected, when the threshold increases, fewer 
system metrics are grouped into one cluster and 
removed as redundant. At the same time, R2 increases 
since more information is available to model the 
application performance. However, when the threshold 
value reaches 1, dependent system metrics are left as 
potential predictors in the multiple regression model 
and we obtain confusing and unreasonable results. The 
regression fails, and no unrelated system metrics are 
reduced. This problem is called multicollinearity [19]. 
The reduction degree decreases dramatically to as low 
as 40%, and no R2 value is calculated. Thus, before we 
begin the BE stepwise to delete unrelated predictors, 
we must identify and reduce the dependent predictors 
to avoid the multicollinearity problem. 

When the threshold value is equal to 0.95, our 
strategy produces  a reduction degree equal to 0.78 and 
R2 as high as 0.98. In other words, 78% of the 628 
metrics has been eliminated and a total of 141 system 
metrics that remain on the six machines (i.e., about 24 
per machine on average) can explain 98% of the 



 

variation in the application performance metric. Each 
of these metrics is related linearly to Cactus 
performance. An example of the system metrics 
selected on one machine is provided online [21]. We 
have observed that in addition to CPU, network and 
memory capability measurements, which are 
commonly used to model application performance (as 
selected by MAIN strategy), cache, system page, and 
signal measurements are also important for modeling 
Cactus performance. 

Although we choose the subset of 141 system 
metrics for further verification in the next step, we 
could further increase the reduction degree of our 
strategy by decreasing the threshold value. For 
example, the total system metrics can be reduced to 44 
on the six machines, with about 7 system metrics per 
machine on average, when the threshold value is equal 
to 0.70. The R2 value decreases to 0.90 in this case, but 
it is still acceptable. It indicates that 90% of the 
variation in the application performance metric can be 
explained by the 44 system metrics selected.  We 
choose the result set that achieves the highest R2 value 
because we prefer to keep as many as possible the 
meaningful event characteristics for our anomaly 
detection purpose in the future. In the case that the 
number of system metrics selected is the main concern, 
we could increase the reduction degree by sacrificing 
the R2 value.  
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Fig. 3: R2 values when regressing Cactus 

performance on the system metrics selected 
by three strategies 

In the second step of our experiment, we validated 
our strategy by comparing its result to those of other 
two strategies, MAIN and RAND, using the 
verification data. The coefficient of determination (R2) 
was calculated for every strategy, as shown in Figure 3. 
We see from Figure 3 that over the 11 chunks of data, 
our statistical data reduction strategy exhibited an 
average R2 value of 0.907, with a range of 0.831 to 
0.957. This result is 55.0% and 98.5% higher than 
those of RAND and MAIN, which have an average R2 
value of 0.585 and 0.457, respectively. We conclude 
that the system metrics selected by our strategy are 
significantly more efficient than the alternatives for 
predicting Cactus performance. We also observed that 
in many cases, the RAND strategy outperforms MAIN. 
One possible explanation is that the MAIN metric 
commonly used to model the performance of Cactus 

application is far from complete. Thus, it achieves even 
worse results than randomly picked metrics when to 
predict the performance of Cactus in a dynamic 
environment during a relatively long period. 

4.4. GridFTP Data Transfer 
We ran GridFTP experiments on PlanetLab [4], 

transferring files ranging from 10MB to 200MB. We 
ran the server on a node at Harvard University and ran 
the 25 clients on nodes located in 18 different countries. 
All nodes are connected via a 100Mb/s network and 
have processor speeds exceeding 1.0 GHz IA32 PIII 
class processor and at least 1 GB RAM. Each data 
point includes values for 217 system metrics on one 
pair of server and client machines and one transfer rate. 
All transfers were made with TCP buffers size of 1MB 
and one TCP socket. A list of the name of the machines 
used is available on line [21]. 

We first ran GridFTP using one client at North 
Carolina State University for one-day period and 
partitioned the data into 12 roughly equal-sized chunks. 
We used the first two chunks of data as the training 
data to select the subset of system metrics, while 
changing the threshold value from 0 to 1 as we did for 
Cactus. However, the highest R2 achieved was only 
0.77. This low R2 value indicates that we lacked some 
information when modeling GridFTP performance. 
Thus, we extended the linear model to include 
quadratic items, as described in Section 3.2. 

We redid the experiment using the new model 
including quadratic items for the GridFTP data. The 
results are shown in Figure 4. We now obtain far better 
results. As with Cactus, the reduction degree decreases 
and the R2 value increases as the threshold value 
increases, except that when the threshold value reaches 
1, the BE regression fails because of multicollinearity.  
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Fig.4: R2 and RD as function of threshold on 
GridFTP data 

When the threshold value is equal to 0.95, our data 
reduction strategy achieved a data reduction degree of 
0.783 and an R2 value as high as 0.920, which indicates 
that 92.0% of the variation in GridFTP performance is 
explained by the system metrics selected on linear 
and/or quadratic relations. Of the 217 metrics, 78.3% 
has been reduced by our strategy and only 47 system 
metrics in total are left on server and client machines, 
about 23 system metrics per machine on average. An 
example of the system metrics selected on server 



 

machine is presented online [21]. We have observed in 
the GridFTP server case that in addition to CPU, 
network, and disk capability measurements (system 
metrics selected by MAIN strategy), the memory page, 
buffer, and cache measurements are important 
predictors of GridFTP transfer rate. In addition, we 
note that the memory related system metrics 
(kbmemfree, kbbuffers, kbcached, frmpg/s, etc.) are 
quadratic in the regression model. This result may 
indicate that memory capability is quadratically related 
to GridFTP transfer rate. 

Although we choose the subset of 46 system 
metrics for further study, we could further reduce the 
number of system metric selected by decreasing the 
threshold value. As seen in Figure 4, when the 
threshold value is equal to 0.75, our data reduction 
strategy can achieve a reduction degree as high as 0.88 
and a R2 value still equal to 0.898. This result indicates 
that about 90% of the variation in GridFTP 
performance can be explained by only 26 system 
metrics selected.     

We then verified the stability of this result in two 
steps. First, we compared the results of three strategies 
using the remaining 10 chunks of verification data 
collected from one client. Then we ran GridFTP using 
24 different clients distributed all over the world, and 
collected two hours of data for each client. At any time, 
only one client was transferring data. We also verified 
that the results were consistent for different clients. The 
coefficient of determination (R2) of three data 
reduction strategies were calculated, in both steps, as 
shown in Figure 5 and Figure 6, respectively.  
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Fig. 5: R2 value when regressing the transfer 
rate of GridFTP on the system metrics 
selected by three strategies on one client data 

The linear and quadratic items of every system 
metric selected were treated as a potential predictor 
when modeling the GridFTP transfer rate. The results 
in Figures 5 and 6 show that our statistical data 

reduction strategy achieves better results than do the 
other strategies considered for GridFTP transfer data. 
Over 10 chunks of data collected on one client, our 
statistical data reduction strategy achieved a mean R2 
value of 0.947 (from 0.884 to 0.982). This result is 
92.5% and 28.1% higher than those of the RAND and 
MAIN strategies, which have average R2 values of 
0.492 and 0.739, respectively. Over 24 chucks of data 
collected from 24 different clients, our statistic data 
reduction strategy achieves a mean R2 value of 0.935. 
The result is 93.2% and 35.1% higher than those of the 
RAND and MAIN strategies, which have average R2 
value of 0.484 and 0.692 respectively. This consistent 
result with different clients indicates that the set of 
system metrics selected by our data reduction strategy 
is fairly stable with the machines if all machines have 
the same configurations. 

5. Related Work 
Data management and reduction have been widely 

studied in many areas. In the area of application 
performance monitoring and analysis, event throttling 
[14] can replace event tracing with less invasive 
measures like counts. Although throttling prevents 
generation of large data volumes, it sacrifices the 
consistent behavior view.  

Duesterwald et. al studied the time-varying 
behavior of programs using metrics derived from 
hardware counters [5]. However, they focused on 
several system metrics and assume all system metrics 
studied were related to the targeted applications. Our 
work, instead, aims at selecting a subset of related 
system metrics among a larger set. 

Zhang et. al showed how to predict compliance 
with service-level objectives in a dynamic environment 
by managing an ensemble of Bayesian network models 
[22]. Their strategy includes a process called feature 
selection, for selecting the subset of metrics that are 
most relevant to modeling the relations in the data. 

Dynamic clustering [13] and statistical sampling 
[11] allow the analysis to focus on subsets of 
processors or metrics, thus reducing the data to be 
collected. But their usage is limited to simple cases, 
such as finding free nodes and estimating average load. 
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Fig. 6: R2 value when regressing the transfer rate of GridFTP on the system metrics selected by 

three strategies on data collected from 24 different clients 



 

Two approaches that are similar to the work 
described in this paper are correlation elimination [8] 
and projection pursuit [18], both of which identify a 
relevant, statistically interesting subset of system 
metrics. Correlation elimination [8] diminishes the 
volume of performance data by grouping metrics with 
high correlation coefficient into clusters and picking 
only one as a representative. However, that work 
assumes that all metrics collected are related to the 
performance metrics. Thus, only redundant metrics are 
reduced by using the correlation elimination technique, 
as in the first step of our data reduction strategy. Our 
strategy further improves the correlation elimination 
technique by using a statistical Z-test instead of a pure 
mathematical comparison when trying to group two 
metrics into one cluster.  

Projection pursuit [18] focuses performance 
analysis on interesting performance metrics. However, 
projection pursuit selects those metrics from all 
smoothed input data at some discrete point in time, and 
thus captures only transient relationships between data. 
The cited work presented only data reduction results 
using a total of 12 system metrics, while our strategy 
tries to capture inherent relationships between data and 
the system metrics selected by our strategy are able to 
capture the application performance variation over a 
longer time and for a much larger metrics set.  

6. Conclusions  
The work described in this paper comprises two 

steps. First, we show how to reduce redundant system 
metrics using correlation elimination and a Z-test. The 
result of this step is a set of independent system metrics. 
Then, we show how to identify system metrics that are 
related to an application performance metric by a 
stepwise regression-based technique. We have applied 
our data reduction strategy to data collected from two 
applications. We find that our strategy reduces about 
80% of total system metrics and that the remaining 
system metrics can explain application performance 
variation as high as 90%, 35% to 98% more than 
metrics selected by other strategies.  
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