
Computational Quality of Service in Parallel CFD ∗

L. McInnesa, B. Norrisa, I. Veljkovicb

aMathematics and Computer Science Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, IL 60439-4844, [mcinnes,norris]@mcs.anl.gov.

bDepartment of Computer Science and Engineering, The Pennsylvania State University,
IST Building, University Park, PA 16802-6106, veljkovi@cse.psu.edu.

1. INTRODUCTION

Component-based environments provide opportunities to improve the performance, numeri-
cal accuracy, and other characteristics of parallel simulations in computational fluid dynamics
(CFD). Because component-based software engineering combines object-oriented design with
the powerful features of well-defined interfaces, programming language interoperability, and
dynamic composability, it helps to overcome obstacles that make it difficult to share even well-
designed traditional numerical libraries. Not only can applications be assembled from com-
ponents selected to provide good algorithmic performance and scalability, but they can also be
changed dynamically during execution to optimize desirable characteristics. This concept of the
automatic selection and configuration of components to suit a particular computational purpose
is called computational quality of service (CQoS) [7, 13]. CQoS embodies the familiar concept
of quality of service in networking and the ability to specify and manage characteristics of the
application in a way that adapts to the changing (computational) environment. The factors that
affect performance are closely tied to a component’s parallel implementation, its management
of memory, the algorithms executed, the algorithmic parameters employed (for example, the
level of overlap in an additive Schwarz preconditioner), and other operational characteristics.
Scientific component software is also concerned with functional qualities, such as the level of
accuracy achieved for a particular algorithm.

This paper presents an overview of new infrastructure for automated performance gathering
and analysis of high-performance components, which is a key facet of our CQoS research, with
emphasis on using these capabilities in parallel CFD simulations, such as flow in a driven cavity
and compressible Euler flow. The remainder of this paper is organized as follows. Section 2
discusses parallel CFD applications and algorithms that motivate this infrastructure. Section 3
introduces the new framework for enabling CQoS in parallel nonlinear PDE-based applications,
while Section 4 discusses conclusions and opportunities for future work.

∗This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram
of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under
Contract W-31-109-ENG-38.

1



2 L. McInnes, B. Norris, I. Veljkovic

2. MOTIVATING APPLICATIONS AND ALGORITHMS

Flow in a Driven Cavity. The first parallel application that we use to motivate and validate
this work is driven cavity flow, which combines lid-driven flow and buoyancy-driven flow in
a two-dimensional rectangular cavity. We use a velocity-vorticity formulation of the Navier-
Stokes and energy equations, which we discretize using a standard finite-difference scheme
with a five-point stencil for each component on a uniform Cartesian mesh; see [6] for a detailed
problem description.

Compressible Euler Flow. Another motivating application is PETSc-FUN3D [2], which
solves the compressible and incompressible Euler equations in parallel; the sequential model
was originally developed by W. K. Anderson [1]. The code uses a finite-volume discretization
with a variable order Roe scheme on a tetrahedral, vertex-centered unstructured mesh. The
variant of the code under consideration here uses the compressible Euler equations to model
transonic flow over an ONERA M6 wing, a common test problem that exhibits the development
of a shock on the wing surface. Initially a first-order discretization is used, but once the shock
position has settled down, a second-order discretization is applied. This change in discretization
affects the nature of the resulting linear systems.

Newton-Krylov Algorithms. Both applications use inexact Newton methods (see, e.g., [12])
to solve nonlinear systems of the form f(u) = 0. We use parallel preconditioned Krylov meth-
ods to (approximately) solve the Newton correction equation f ′(u`−1) δu` = −f(u`−1), and
then update the iterate via u` = u`−1 + α · δu`, where α is a scalar determined by a line search
technique such that 0 < α ≤ 1. We terminate the Newton iterates when the relative reduction in
the residual norm falls below a specified tolerance. Our implementations use the Portable, Ex-
tensible Toolkit for Scientific Computation (PETSc) [3], a suite of data structures and routines
for the scalable solution of scientific applications modeled by PDEs.

Pseudo-Transient Continuation. For problems with strong nonlinearities, Newton’s method
often struggles unless some form of continuation is employed. Hence, we incorporate pseudo-
transient continuation [9], a globalization technique that solves a sequence of problems derived
from the model ∂u

∂t
= −f(u), namely,

g`(u) ≡
1

τ `
(u − u`−1) + f(u) = 0, ` = 1, 2, . . . , (1)

where τ ` is a pseudo time step. At each iteration in time, we apply Newton’s method to equa-
tion (1). As discussed by Kelley and Keyes [9], during the initial phase of pseudo-transient
algorithms, τ ` remains relatively small, and the Jacobians associated with equation (1) are well
conditioned. During the second phase, the pseudo time step τ ` advances to moderate values,
and in the final phase τ ` transitions toward infinity, so that the iterate u` approaches the root of
f(u) = 0.

Adaptive Solvers. In both applications the linearized Newton systems become progressively
more difficult to solve as the simulation advances due to the use of pseudo-transient continua-
tion [9]. Consequently both are good candidates for the use of adaptive linear solvers [4, 11],
where the goal is to improve overall performance by combining more robust (but more costly)
methods when needed in a particularly challenging phase of solution with faster (though less
powerful) methods in other phases. Parallel adaptive solvers are designed with the goal of
reducing the execution time of the simulation by dynamically selecting the most appropriate
method to match the characteristics of the current linear system.



Computational quality of service in parallel CFD 3

A key facet of developing adaptive methods is the ability to consistently collect and access
both runtime and historical performance data. Our preliminary research in adaptive methods [4,
11], which employed ad hoc techniques to collect, store, and analyze data, has clearly motivated
the need for a framework to analyze performance and help to manage algorithmic adaptivity.

3. COMPONENT CQOS FOR PARALLEL CFD CODES

For a given parallel fluids problem, the availability of multiple solution methods, as well as
multiple configurations of the same method, present both a challenge and an opportunity. On
one hand, an algorithm can be chosen to better match the application’s requirements. On the
other hand, manually selecting a method in order to achieve good performance and reliable
results is often difficult or impossible. Component-based design enables us to automate, at least
partially, the task of selecting and configuring algorithms based on performance models, both
for purposes of initial application assembly and for runtime adaptivity. Algorithmic parameters
and different metrics of expressing CQoS properties that affect the performance of an algorithm
will be referred to as metadata.

The Common Component Architecture (CCA) specification [5] defines a component model
that specifically targets high-performance scientific applications, such as parallel CFD. Briefly,
CCA components are units of encapsulation that can be composed to form applications; ports
are the entry points to a component and represent public interfaces through which components
interact; provides ports are interfaces that a component implements, and uses ports are inter-
faces that a component uses. A runtime framework provides some standard services to all
CCA components, including instantiation of components, and uses and provides port connec-
tions. Components can be instantiated/destroyed and port connections made/broken at runtime,
thereby allowing dynamic adaptivity of CCA component applications and enabling the imple-
mentation of the adaptive linear solver methods introduced above.

In this paper, we present a CCA component infrastructure that allows researchers to mon-
itor and adapt a simulation dynamically based on two main criteria: the runtime information
about performance parameters and the information extracted from metadata from previous in-
stances (executions) of a component application. This infrastructure includes components for
performance information gathering, analysis, and interactions with off-line databases. Figure
1 shows the principal components and their relationships in a typical application. This design
makes development of adaptive algorithms easier and less error-prone, by separating as much
as possible unrelated concerns from the adaptive strategy itself. By contrast, because the imple-
mentation was interleaved with unrelated functionality, our initial implementation of adaptive
linear solvers ( [4, 11]) became difficult to maintain (mixed code for multiple heuristics) and
extend (e.g., adding new adaptive heuristics). This motivated us to define a simple interface that
is flexible enough to enable the implementation of a wide range of adaptive linear solver heuris-
tics. We have been able to reproduce some of our original results using this new infrastructure.

We briefly introduce the terminology used in our CQoS infrastructure. We collectively refer
to performance-relevant attributes of a unit of computation, such as a component, as perfor-
mance metadata, or just metadata. These attributes include algorithm or application parame-
ters, such as problem size and physical constants, compiler optimization options, and execution
information, such as hardware and operating system information. Performance metrics, also
referred to as CQoS metrics, are also part of the metadata, for example, execution time and



4 L. McInnes, B. Norris, I. Veljkovic

Nonlinear
Solver

Adaptive
Heuristic

Linear Solver A

Linear Solver B

Linear Solver C

Physics

Monitor
Performance

Checkpointing

Figure 1. Components of CQoS framework.

convergence history of iterative methods. Ideally, for each application execution, the metadata
should provide enough information to be able to repeat the run; we collectively refer to these
metadata as an application instance, or experiment.

Our initial implementation of this infrastructure uses the Tuning and Analysis Utilities (TAU)
toolkit [14] and the Parallel Performance Data Management Framework (PerfDMF) [8]. A
summary of the components used for run-time adaptivity follows.

• TAU Measurement Component. This component collects runtime data from hardware
counters, timing, and user-defined application-specific events. This component was pro-
vided by the developers of TAU, and complete implementation details can be found
in [10].

• Checkpoint Component. This component checkpoints and stores the collected data into
a runtime database that can be queried efficiently during the execution for the purpose of
runtime performance monitoring and adaptation. The TAU profiling API can only give ei-
ther callpath-based or cumulative performance information about an instrumented object
(from the time execution started). Hence, we have introduced the Checkpoint component
to enable us to store and retrieve data for the instrumented object during the application’s
execution (for example, number of cache misses for every three calls of a particular func-
tion). The period for checkpointing can be variable; the component can also be used by
any other component in the application to collect and query context-dependent and high-
level performance information. For example, a linear solver component can query the
checkpointing component for performance metadata of the nonlinear solver (the linear
solver itself has no direct access to the nonlinear solver that invoked it). We can there-
fore always get the latest performance data for the given instrumented object from the
database constructed during runtime.

• Metadata Extractor. This component retrieves metadata from the database at runtime.
After running several experiments, analyzing the performance data, and finding a com-
mon performance behavior with some parameter values, we store data summarizing this
behavior in the database. An example of derived metadata is the rate of convergence of a
nonlinear or a linear solver. During runtime, these data are used in adapting our parame-
ter and algorithm selection, and the Metadata Extractor component can retrieve compact
metadata from the database efficiently.



Computational quality of service in parallel CFD 5

• Monitor Component. This component monitors the application and the algorithm and
parameter selection based on runtime performance data and stored metadata.

4. CONCLUSIONS AND FUTURE WORK

This work has introduced new infrastructure for performance analysis and adaptivity of par-
allel CFD applications. The full paper will discuss in more depth the use of this tool in parallel
fluids simulations. Future work will include extending the infrastructure to include off-line anal-
ysis of performance data and new adaptive heuristics, as well as evaluating these capabilities in
additional large-scale applications.

REFERENCES

1. W. K. Anderson and D. Bonhaus. An implicit upwind algorithm for computing turbulent flows on
unstructured grids. Computers and Fluids, 23(1):1–21, 1994.

2. W. K. Anderson, W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith. Achieving high
sustained performance in an unstructured mesh CFD application. In Proceedings of Supercomputing
1999. IEEE Computer Society, 1999. Gordon Bell Prize Award Paper in Special Category.

3. S. Balay, K. Buschelman, W. Gropp, D. Kaushik, M. Knepley, L. McInnes, Barry F. Smith, and
H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 2.2.1, Argonne National
Laboratory, 2004. http://www.mcs.anl.gov/petsc .

4. S. Bhowmick, L. C. McInnes, B. Norris, and P. Raghavan. The role of multi-method linear solvers
in PDE-based simulations. Lecture Notes in Computer Science, Computational Science and its
Applications-ICCSA 2003, 2667:828–839, 2003.

5. CCA Forum homepage. http://www.cca- forum.org/ , 2005.
6. T. S. Coffey, C.T. Kelley, and D.E. Keyes. Pseudo-transient continuation and differential algebraic

equations. SIAM J. Sci. Comp, 25:553–569, 2003.
7. P. Hovland, K. Keahey, L. C. McInnes, B. Norris, L. F. Diachin, and P. Raghavan. A quality of

service approach for high-performance numerical components. In Proceedings of Workshop on QoS
in Component-Based Software Engineering, Software Technologies Conference, Toulouse, France,
20 June 2003.

8. K. Huck, A. Malony, R. Bell, L. Li, and A. Morris. PerfDMF: Design and implementation of a
parallel performance data management framework. 2005. To appear.

9. C. T. Kelley and D. E. Keyes. Convergence analysis of pseudo-transient continuation. SIAM Journal
on Numerical Analysis, 35:508–523, 1998.

10. A. Malony, S. Shende, N. Trebon, J. Ray, R. Armstrong, C. Rasmussen, and M. Sottile. Perfor-
mance technology for parallel and distributed component software. Concurrency and Computation:
Practice and Experience, 17:117–141, Feb 2005.

11. L. McInnes, B. Norris, S. Bhowmick, and P. Raghavan. Adaptive sparse linear solvers for implicit
CFD using Newton-Krylov algorithms. Proceedings of the Second MIT Conference on Computa-
tional Fluid and Solid Mechanics, June 17-20,2003.

12. J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, 1999.
13. B. Norris, J. Ray, R. Armstrong, L. McInnes, Bernholdt, W. Elwasif, A. Malony, and S. Shende.

Computational quality of service for scientific components. Proceedings of the International Sym-
posium on Component-Based Software Engineering, (CBSE7), Edinburgh, Scotland, 2004.

14. Department of Computer, University of Oregon Information Science, Los Alamos National Labora-
tory, and Germany Research Centre Julich, ZAM. TAU User’s Guide (Version 2.13), 2004.



6 L. McInnes, B. Norris, I. Veljkovic

The submitted manuscript has been created by the Uni-
versity of Chicago as Operator of Argonne National
Laboratory (”Argonne”) under Contract No. W-31-
109-ENG-38 with the U.S. Department of Energy. The
U.S. Government retains for itself, and others act-
ing on its behalf, a paid-up, nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf
of the Government.
This government license is not intended to be pub-
lished with this manuscript.


