
DSDP5: Software for Semidefinite Programming
Preprint ANL/MCS-P1289-0905

STEVEN J. BENSON

Mathematics and Computer Science Division, Argonne National Laboratory

and

YINYU YE

Department of Management Science and Engineering, Stanford University

DSDP implements the dual-scaling algorithm for semidefinite programming. The source code
for this interior-point algorithm, written entirely in ANSI C, is freely available. The solver can be

used as a subroutine library, as a function within the Matlab environment, or as an executable

that reads and writes to data files. Initiated in 1997, DSDP has developed into an efficient and
robust general-purpose solver for semidefinite programming. Its features include a convergence

proof with polynomially bounded worst-case complexity, primal and dual feasible solutions when

they exist, certificates of infeasibility when solutions do not exist, initial points that can be feasible
or infeasible, relatively low memory requirements for an interior-point method, sparse and low-

rank data structures, extensibility that allows applications to customize the solver and improve

its performance, a subroutine library that enables it to be linked to larger applications, scalable
performance for large problems on parallel architectures, and a well-documented interface and

examples of its use. The package has been used in many applications and tested for efficiency,
robustness, and ease of use.

Categories and Subject Descriptors: G.1.6 [Numerical Analysis]: Optimization; D.2.13 [Soft-

ware Engineering]: Reusable Software - Reusable libraries

General Terms: semidefinite programming, linear matrix inequalities, conic programming, interior-

point methods

Additional Key Words and Phrases: dual-scaling algorithm

1. SEMIDEFINITE PROGRAMMING

Over the last fifteen years, considerable attention has been paid to optimization
problems in which the variable is not a vector but a symmetric matrix that is
required to be positive semidefinite. Semidefinite programming (SDP) is concerned
with choosing a symmetric positive semidefinite matrix to optimize a linear function
subject to linear constraints. Part of the interest arises from the tight bounds
that these problems generate for global optimization [Henrion and Lasserre 2003],
and hard combinatorial optimization [Goemans and Williamson 1995; Anjos 2005;
Yildirim and Fan 2005]. Other uses of semidefinite programming arise in quantum
chemistry [Zhao et al. 2004], free material optimization [Zowe et al. 1997], stability
of differential equations [Löfberg 2001], sum of squares optimization [Prajna et al.
2004], and graph realization and distance geometry [Biswas and Ye 2004; So and
Ye 2005].

Part of the interest in semidefinite programming also derives from the great
advances in our ability to solve such problems efficiently in theory and in practice.
Interior-point methods such as those implemented in DSDP, CSDP [Borchers 1999a],

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005, Pages 1–0??.

2 · S. J. Benson, Y. Ye

SeDuMi [Sturm 1999], SDPA [Yamashita et al. 2003], and SDPT3 [Toh et al. 1999]
enjoy strong theoretical convergence properties. The generalized penalty method
in Pennon [Kocvara and Stingl 2003], the low-rank factorization method in SDPLR
[Burer and Monteiro 2003], and a spectral bundle method [Helmberg and Rendl
2000] have also proven effective for these kinds of problems. Surveys by Todd
[2001] and Wolkowicz et al. [2000] present examples of SDP and the algorithms
most frequently used for solving them.

The initial version of DSDP [Benson et al. 2000] was released to solve the semidef-
inite relaxations of the maximum-cut and equal-cut problems from combinatorial
optimization. A second release [Benson et al. 1999] targeted combinatorial problems
whose constraint matrices each had a rank of one. Later releases of DSDP could
solve broader classes, and results from them have been presented at conferences
[Center for Discrete Mathematics and Theoretical Computer Science 2000]. After
years of development, the software has matured and this manuscript presents the
implementation and performance of DSDP for general semidefinite programming.

2. NOTATION

The DSDP package implements a dual-scaling algorithm to find solutions (Xj , yi, Sj)
to linear and semidefinite optimization problems of the form

(P) inf
p∑

j=1

〈Cj , Xj〉 subject to
p∑

j=1

〈Ai,j , Xj〉 = bi, i = 1, . . . ,m, Xj ∈ Kj ,

(D) sup
m∑

i=1

bi yi subject to
m∑

i=1

Ai,jyi + Sj = Cj , j = 1, . . . , p, Sj ∈ Kj .

In this formulation, bi and yi are real scalars.
For semidefinite programming, the data Ai,j and Cj are symmetric matrices of di-

mension nj (Snj), and the cone Kj is the set of symmetric positive semidefinite ma-
trices of the same dimension. The inner product 〈C,X〉 := C •X :=

∑
k,l Ck,lXk,l,

and the symbol � (�) means the matrix is positive (semi)definite. In linear pro-
gramming, Ai and C are vectors of real scalars, K is the nonnegative orthant, and
the inner product 〈C,X〉 is the usual vector inner product.

More generally, users specify Cj , Ai,j from an inner-product space Vj that inter-
sects a cone Kj . Using the notation summarized in Table I, let the symbol A denote
the linear map A : V → Rm defined by (AX)i = 〈Ai, X〉; its adjoint A∗ : Rm → V
is defined by A∗y =

∑m
i=1 yiAi. Equivalent expressions for (P) and (D) can be

written

(P) inf 〈C,X〉 subject to AX = b, X ∈ K,
(D) sup bT y subject to A∗y + S = C, S ∈ K.

Formulation (P) will be referred to as the primal problem, and formulation (D) will
be referred to as the dual problem. Variables that satisfy the linear equations are
called feasible, whereas the others are called infeasible. The interior of the cone
will be denoted by K̂, and the interior feasible sets of (P) and (D) will be denoted
by F0(P) and F0(D), respectively.
ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

DSDP5: Software for Semidefinite Programming · 3

Table I. Basic terms and notation for linear (LP), semidefinite (SDP), and conic programming.

Term LP SDP Conic Notation

Dimension n n
P

nj n
Data Space (3 C, Ai) Rn Sn V1 ⊕ . . .⊕ Vp V

Cone x, s ≥ 0 X, S � 0 X, S ∈ K1 ⊕ . . .⊕Kp X, S ∈ K

Interior of Cone x, s > 0 X, S � 0 X, S ∈ K̂1 ⊕ . . .⊕ K̂p X, S ∈ K̂

Inner Product cT x C •X
P
〈Cj , Xj〉 〈C, X〉

Norm ‖x‖2 ‖X‖F
`P
‖Xj‖2

´1/2 ‖X‖
Product [x1s1 . . . xnsn]T XS X1S1 ⊕ . . .⊕XpSp XS

Identity Element [1 . . . 1]T I I1 ⊕ . . .⊕ Ip I

Inverse [1/s1 . . . 1/sn]T S−1 S−1
1 ⊕ . . .⊕ S−1

p S−1

Dual Barrier
P

ln sj ln det S
P

ln det Sj ln det S

3. DUAL-SCALING ALGORITHM

This section summarizes the dual-scaling algorithm for solving (P) and (D). For
simplicity, parts of this discussion assume that the cone is a single semidefinite
block, but an extension of the algorithm to multiple blocks and other cones is rel-
atively simple. This discussion also assumes that the Ais are linearly independent,
there exists X ∈ F0(P), and a starting point (y, S) ∈ F0(D) is known. The next
section discusses how DSDP generalizes the algorithm to relax these assumptions.

It is well known that under these assumptions, both (P) and (D) have optimal
solutions X∗ and (y∗, S∗), which are characterized by the equivalent conditions
that the duality gap 〈X∗, S∗〉 is zero and the product X∗S∗ is zero. Moreover,
for every ν > 0, there exists a unique primal-dual feasible solution (Xν , yν , Sν)
satisfies the perturbed optimality equation XνSν = νI. The set of all solutions
C ≡ {(Xν , yν , Sν) : ν > 0} is known as the central path, and C serves as the basis
for path-following algorithms that solve (P) and (D). These algorithms construct
a sequence {(X, y, S)} ⊂ F0(P) × F0(D) in a neighborhood of the central path
such that the duality gap 〈X,S〉 goes to zero. A scaled measure of the duality gap
that proves useful in the presentation and analysis of path-following algorithms is
µ(X,S) = 〈X,S〉/n for all (X,S) ∈ K × K. Note that for all (X,S) ∈ K̂ × K̂,
we have µ(X,S) > 0 unless XS = 0. Moreover, µ(Xν , Sν) = ν for all points
(Xν , yν , Sν) on the central path.

The dual-scaling algorithm applies Newton’s method to AX = b, A∗y + S = C,
and X = νS−1 to generate

A(X + ∆X) = b, (1)
A∗(∆y) + ∆S = 0, (2)

νS−1∆SS−1 + ∆X = νS−1 −X. (3)

Equations (1)-(3) will be referred to as the Newton equations; their Schur comple-
ment is

ν

 〈A1, S
−1A1S

−1〉 · · · 〈A1, S
−1AmS

−1〉
...

. . .
...

〈Am, S
−1A1S

−1〉 · · · 〈Am, S
−1AmS

−1〉

 ∆y = b− νAS−1. (4)

The left-hand side of this linear system is positive definite when S ∈ K̂. In this
ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

4 · S. J. Benson, Y. Ye

manuscript, it will sometimes be referred to as M . DSDP computes ∆′y := M−1b
and ∆′′y := M−1AS−1. For any ν,

∆νy :=
1
ν

∆′y −∆′′y

solves (4). We use the subscript to emphasize that ν can be chosen after computing
∆′y and ∆′′y and that the value chosen for the primal step may be different from
the value chosen for the dual step.

Using ∆νy and (3), we get

X(ν) := ν
(
S−1 + S−1(A∗∆νy)S−1

)
, (5)

which satisfies AX(ν) = b. Because X(ν) ∈ K̂ if and only if

C −A∗(y −∆νy) ∈ K̂, (6)

DSDP applies a Cholesky factorization on (6) to test the condition. If X(ν) ∈ K̂, a
new upper bound

z̄ := 〈C,X(ν)〉 = bT y + 〈X(ν), S〉 = bT y + ν
(
∆νy

TAS−1 + n
)

(7)

can be obtained without explicitly computing X(ν). The dual-scaling algorithm
does not require X(ν) to compute the step direction defined by (4), so DSDP does
not compute it unless specifically requested. This feature characterizes the algo-
rithm and its performance.

For semidefinite blocks, DSDP uses two techniques for computing M . Both tech-
niques use a decomposition of each data matrix as a sum of vector outer products.
That is,

Ai =
rank∑
r=1

αi,rai,ra
T
i,r

such that αi,r ∈ R and ai,r ∈ Rn. An eigenvalue/eigenvector decomposition, for
example, satisfies this form. Since M is symmetric, DSDP computes only half of
the matrix, which we will assume is the lower half matrix. After inverting S, it
computes each row i of M using one the following two techniques.

Technique M1:
Set V ∈ Sn to zero;
for r ← 1 : rank(Ai) do
w ← S−1ai,r;
V ← V + αi,rww

T ;
end for
for j ← 1 : i do
Mi,j ←Mi,j + 〈Ai, V 〉;

end for

Technique M2:
for r ← 1 : rank(Ai) do
w ← S−1ai,r;
for j ← 1 : i do
Mi,j ←Mi,j + αj,kw

TAjw;
end for

end for

The first technique is most common, but the second is used when rank of Ai

is small. For semidefinite blocks such that S is sparse, DSDP does not invert S.
Instead, it solves Sw = ai,r using the Cholesky factorization of S. Both of these
techniques exploit the rank structure of the data matrices instead of the sparsity
structure that is exploited by other interior-point solvers [Fujisawa et al. 1997].
ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

DSDP5: Software for Semidefinite Programming · 5

The preconditioned conjugate gradient (CG) method computes ∆′y and ∆′′y.
Initially, the preconditioner is the diagonal of M ; but once the number of CG iter-
ations exceeds m/50, DSDP preconditions it using the Cholesky factorization of M .
Using the explicit factor, CG requires a single iteration until the condition number
deteriorates. Usually, M is a dense matrix that uses LAPACK to implement the
Cholesky factorization, triangular solves, and matrix-vector multiplication. Sparse
matrix formats that also implement these operations get used when appropriate.

The improvement provided by the step direction and the convergence of the dual-
scaling algorithm depends on the proximity of the current solution to a point on
the central path. Let ρ > 0 and z̄ = 〈C,X〉 for some feasible X. The dual potential
function

ψ(y) := ρ log(z̄ − bT y)− ln detS (8)

has a gradient

∇ψ = − ρ

z̄ − bT y
b+AS−1 (9)

and a minimum (yν , Sν) for ν = z̄−bT y
ρ . The first term in (8) improves the objective

value of (y, S), and the second term forces it away from the boundary of the cone.
Because ∇ψ = 0 at (yν , Sν), norms of the gradient are a measure of the distance
between the point and (yν , Sν). The norm of

P (ν) =
1
ν
S.5X(ν)S.5 − I (10)

can be interpreted as the scaled distance between X(ν) and Xν . Furthermore,

‖P (ν)‖2 = = ‖S.5(S−1 − S−1∆SS−1)S.5 − I‖2
= ‖S−.5∆SS−.5‖2
= 〈S−.5∆SS−.5, S−.5∆SS−.5〉
= 〈∆S, S−1∆SS−1〉
=

∑
i

∑
j ∆νyi〈Ai, S

−1AjS
−1〉∆νyj

= ∆νy
TM∆νy

= −∇ψT ∆νy
= ‖∇ψ‖2M−1 .

DSDP sets ρ = (z̄ − bT y)/ν and selects a steplength αd ∈ (0, 1] such that
y+ := y + αd∆νy, C − A∗y+ ∈ K̂, and y+ achieves sufficient reduction in (8).
Since M is positive definite, the step direction will reduce the potential function for
sufficiently small step sizes. For ‖P (ν)‖ > 1, the line search reduces the potential
function by at least 0.05. To find αd, DSDP computes the distance to the bound-
ary of the cone, which is the reciprocal of the largest eigenvalue of −L−1∆SL−T ,
where L is the lower triangular Cholesky factorization of S and ∆S ← −A∗∆νy.
The Lanczos procedure analyzed by Toh [2002] computes this eigenvalue using
the forward and backward solutions involving L and matrix-vector multiplications
involving ∆S. Denoting the maximum eigenvalue as λmax, DSDP initially sets
αd = min{1.0, 0.95/λmax} and backtracks until it achieves sufficient descent or the
steplength is less than a prescribed termination tolerance. Line searches based on a
simple backtracking strategy were used in earlier versions, but the Lanczos strategy
reduced the number of iterations by about 30% over a broad test set.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

6 · S. J. Benson, Y. Ye

Before taking the dual step, however, DSDP updates the bound z̄ and selects a
new value for ν. A simple strategy discussed in Ye [1997] sets ν = (z̄ − bT y)/ρ
for ρ > n +

√
n. DSDP allows users to specify a parameter ρn > 1 that will set

ρ = n× ρn. Another simple strategy fixes ν for several iterations and decreases it
only when ‖P (ν)‖ is sufficiently small.

With the current value of ν denoted as νk, computational tests show that if
X(νk) ∈ K̂, better performance can be achieved by using the smallest value of ν
such that X(ν) ∈ K̂. To estimate this value, let ν = σνk for 0 < σ < 1 and use the
identity 1

σ = 1 + (1−σ
σ) to write

∆νy = 1
ν ∆′y −∆′′y

= 1
νk ∆′y −∆′′y + (1−σ

σ) 1
νk ∆′y

= ∆νky + (1−σ
σ) 1

νk ∆′y.

The Lanczos line search computes the largest step αν such that

C −A∗(y −∆νky) + ανA∗(
1
νk

∆′y) ∈ K.

If one sets αν = 1−σ
σ , then σ = 1

1+αν
. Using the steplength, DSDP sets ν :=

1
1+0.95αν

νk. If X(νk) 6∈ K̂, one line search finds the largest αp such that Ŝ ←
C − A∗(y − αp∆νky) ∈ K̂, a second line search computes αν such that Ŝ −
ανA∗(αp/ν

k)∆′y ∈ K̂, and ν = αpν
k/(1 + αν) + (1 − αp)µk. In either case,

an upper bound of µk = (z̄ − bT y)/n and a lower bound of µk/ρn (ρn > 1) limit
the change in the barrier parameter.

To get closer to the central path and make further use of M , whose computa-
tion and factorization usually dominate the computation time, DSDP generates a
sequence of corrector steps. The corrector steps compute AS−1 using the current
S and ∆cy := M−1AS−1. Since the computation of M used previous values of S,
the corrector step

∆c
νy :=

1
ν

∆′y −∆cy

is not a Newton step. A new barrier parameter

ν :=
(
bT ∆′y

bT ∆cy

) (
n

n+
√
n

)
applies when the numerator and denominator of the first term are positive. The
first term in this heuristic is the value such that bT ∆c

νy = 0 and the second term
slightly reduces the parameter. A line search computes a step length, αc, that
improves the merit function

φν(y) := bT y + ν ln detS, (11)

whose gradient differs from (9) by a factor of −ν. Between 0 and 12 corrector steps
are applied each iteration. The exact number is chosen heuristically based on the
square of the ratio of m and the dimension of the largest semidefinite block. Fewer
corrector steps may be used if the steplength falls below a tolerance or the relative
duality gap is less than 10−5. This choice of corrector steps is different from a
corrector step that solves M∆cy = A

(
S−1∆SS−1∆SS−1

)
and takes a single step.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

DSDP5: Software for Semidefinite Programming · 7

However, the step in DSDP is cheaper to compute, and computational tests verify
that it works well.

The primal, dual, and corrector steps are designed to reduce µ(X,S) and the dual
potential function at each iteration. As a safeguard, the last step of the algorithm
checks that ν ≤ (z̄ − bT y)/n. The barrier parameter at the beginning of each
iteration should decrease monotonically, but the first X(ν) ∈ K̂ may increase the
initial z̄ and increase the barrier parameter. Computational experience confirms
that since the initial upper bound and barrier parameter is arbitrary, resetting these
parameters based on a feasible X(ν) improves performance.

As the algorithm converges, numerical difficulties will eventually inhibit the ac-
curate computation of the Newton step and prevent further progress. Although
DSDP lets users terminate the solver through tolerances on the relative duality gap,
DSDP will also terminate if the step sizes are too short or consecutive iterations
show no progress in the solution.

Although DSDP does not compute X(ν) at each iteration, it can compute it using
ν, y, and ∆νy. The following algorithm for computing X(ν) is typically used after
the solver converges.

Compute X:
Set S ← C −A∗y and invert it.
Set X ∈ Sn to zero
for i← 1 : m do

for r ← 1 : rank(Ai) do
w ← S−1ai,r

X ← X + (ν∆νyiαi,r)wwT

end for
end for
X ← X + νS−1

This technique is numerically stable and yields high accuracy in the solution. Af-
terward, DSDP will add a small multiple of the identity matrix to this solution until
a Cholesky factorization verifies that it is positive definite.

4. BRIEF NOTE ON CONVERGENCE

If we define P (ν) and X(ν) as in (5) and (10), the following two lemmas from
[Benson et al. 2000] provide some insight about convergence of the algorithm.

Lemma 1. Let µk = z̄−bT y
n , µ = 〈C,X(ν)〉−bT y

n , ν < z̄−bT y
n+

√
n
, and α < 1. If

‖P (ν)‖ < min(α
√

n

n+ α2
, 1− α),

then the following three inequalities hold:

(1) X(ν) ∈ K̂;
(2) ‖S.5X(ν)S.5 − µI‖ ≤ αµ;
(3) µ ≤ (1− .5α/

√
n)µk.

Lemma 2. Let ν < z̄−bT y
n+

√
n
, and α < 1. If y+ = y+ α

‖P (ν)‖∆νy, then the following
two inequalities hold:

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

8 · S. J. Benson, Y. Ye

1: Setup data structures and factor Ai.
2: Choose y such that S ← C −A∗y ∈ K̂.
3: Choose an upper bound z̄ and a barrier parameter ν.
4: for k ← 0, . . . , kmax do
5: Monitor solution and check for convergence.
6: Compute M and AS−1.
7: Solve M∆′y = b, M∆′′y = AS−1.
8: if C −A∗(y −∆νy) ∈ K̂ then
9: z̄ ← bT y + ν

(
∆νy

TAS−1 + n
)
.

10: y ← y, ∆y ← ∆νy, µ← ν.
11: end if
12: Select ν.
13: Find αd to reduce ψ, and set y ← y + αd∆νy, S ← C −A∗y.
14: for kk = 1, . . . , kkmax do
15: Compute AS−1.
16: Solve M∆cy = AS−1.
17: Select ν.
18: Find αc to reduce φν , and set y ← y + αc∆c

νy, S ← C −A∗y.
19: end for
20: end for
21: Optional: Compute X using y, ∆y, µ.

(1) y+ ∈ K̂;

(2) ∇ψT (y+ − y) = −α‖P (ν)‖.

In other words, when ‖P (ν)‖ is small, the dual-scaling algorithm generates an
improved X, and when ‖P (ν)‖ is large, the new points (y, S) reduce the dual
potential function. Either (y, S) or X reduces the Tanabe-Todd-Ye primal-dual
potential function

Ψ(X,S) = ρ ln(X • S)− ln detX − ln detS

enough at each iteration to achieve linear convergence. When ρ > n, the infimum
of the potential function occurs at an optimal solution; and when ρ > n +

√
n,

convergence in the worst case is bounded above by O (
√
n log(ε)) iterations, where

n is the dimension of the cone and ε > 0 is the desired fractional reduction in the
duality gap.

5. FEASIBLE POINTS, INFEASIBLE POINTS, AND STANDARD FORM

The convergence of the algorithm assumes that both (P) and (D) have an interior
feasible region and the current solutions are elements of the interior. To satisfy these
assumptions, DSDP bounds the variables y such that l ≤ y ≤ u where l, u ∈ Rm. By
default, li = −107 and ui = 107 for each i from 1 through m. Furthermore, DSDP

bounds the trace of X by a penalty parameter Γ whose default value is Γ = 1010.
Including these bounds and their associated Lagrange variables xl ∈ Rm, xu ∈ Rm,
and r, DSDP solves following pair of problems:
ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

DSDP5: Software for Semidefinite Programming · 9

(PP) minimize 〈C,X〉 + uTxu − lTxl

subject to AX + xu − xl = b,
〈I,X〉 ≤ Γ,
X ∈ K, xu ≥ 0, xl ≥ 0.

(DD) maximize bT y − Γr
subject to C −A∗y + Ir = S ∈ K,

l ≤ y ≤ u, r ≥ 0.

The reformulations (PP) and (DD) are bounded and feasible, so the optimal ob-
jective values to this pair of problems are equal. Furthermore, (PP) and (DD) can
be expressed in the form of (P) and (D).

Unless the user provides a feasible point y, DSDP uses the y values provided by
the application (usually all zeros) and increases r until C −A∗y + Ir ∈ K̂. Large
values of r improve robustness, but smaller values often improve performance. In
addition to bounding X, the parameter Γ penalizes infeasiblity in (D) and forces
r toward zero. The nonnegative variable r increases the dimension m by one and
adds an inequality to the original problem. The M matrix treats r separately
by storing the corresponding row/column as a separate vector and applying the
Sherman-Morrison-Woodbury formula. Unlike other inequalities, DSDP allows r to
reach the boundary of the cone. Once r = 0, it is fixed and effectively removed
from the problem.

The bounds on y add 2m inequality constraints to the original problem; and, with
a single exception, DSDP treats them the same as the constraints on the original
model. The lone difference between these bounds and the other constraints is that
DSDP explicitly computes the corresponding Lagrangian variables xl and xu at each
iteration to quantify the infeasibility in (P). The bounds l and u penalize infeasiblity
in (P), force xl and xu toward zero, and prevent numerical difficulties created by
variables with large magnitude.

The solution to (PP) and (DD) is a solution to (P) and (D) when the optimal
objective values of (P) and (D) exist and are equal, and the bounds are sufficiently
large. DSDP identifies unboundedness or infeasibility in (P) and (D) through ex-
amination of the solutions to (PP) and (DD). Given parameters εP and εD,

—if r ≤ εr, ‖AX − b‖∞/〈I,X〉 > εP , and bT y > 0, it characterizes (D) as un-
bounded and (P) as infeasible;

—if r > εr and ‖AX − b‖∞/〈I,X〉 ≤ εP , it characterizes (D) as infeasible and (P)
as unbounded.

Normalizing unbounded solutions will provide an approximate certificate of infeasi-
bility. Larger bounds may improve the quality of the certificate of infeasibility and
permit additional feasible solutions, but they may also create numerical difficulties
in the solver.

6. THE SOFTWARE

The DSDP software package implements the dual-scaling method using ANSI C. It is
designed as a subroutine library that requires users to call a sequence of subroutines

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

10 · S. J. Benson, Y. Ye

that create a solver structure, set the data into the structure, apply the dual-scaling
algorithm, and retrieve the solution from the solver. The use of these subroutines
is documented in a user manual [Benson and Ye 2004], HTML pages created by
Doxygen, and several examples.

One example is a mex function that calls DSDP from the Matlab environment.
Most users of DSDP use the solver from Matlab, so several Matlab examples and a
separate user guide are provided in the distribution.

Another example reads input files in SDPA format and prints the output to so-
lution files. Since other SDP solvers also accept data in this format, its use is
particularly convenient for those not interested in learning the syntax of a specific
solver. Other examples provided in the distribution read a graph from a file, formu-
late the semidefinite relaxation of a combinatorial optimization problem, and call
the DSDP solver.

DSDP has been compiled successfully by using GCC, Intel, Microsoft, and Solaris
compilers. It must also be linked to an implementation of the BLAS and LAPACK.
Reference Fortran, Atlas, and MKL implementations of these libraries have all been
linked successfully.

6.1 Data Structures

The DSDP solver computes ∆′y, ∆′′y, ∆νy, ‖P (ν)‖, 〈X(ν), S〉, and other quantities
using operations on vectors, the Schur matrix, and the cones. Vector operations
include sums and inner products. Operations on the Schur matrix include inserting
elements and factoring the matrix. Objects representing a cone implement routines
for computing its dual matrix S from y, evaluating the logarithmic barrier function,
computing AS−1, and computing M . The solver object computes M , for example,
by calling the corresponding operations on each cone and summing the results. The
solver computes ∆′y through calls to the Schur matrix object that can factor the
matrix and solve systems of linear equations.

The LP cone and SDP cone objects implement the same interface for cones, but
the implementation of these operations depends on whether the cone is a semidefi-
nite cone, linear programming cone, or another type. The solver structure operates
on the cone objects without knowing whether it is an SDP cone or another type.
DSDP uses opaque pointers and function pointers to achieve polymorphic behavior.

The semidefinite cone uses a dense array, V , to represent S−1AiS
−1, X(ν), and

arbitrary symmetric matrices. By default, the array has n(n+1)/2 elements ordered

[a1,1 a2,1 a2,2 a3,1 a3,2 a3,3 . . . an,n]. (12)

This format is also known as packed symmetric format. Data matrices sum into
this array and take inner products with this array. Sparse, dense, and low rank data
structures represent the data. From the dense array, the S and ∆S matrix insert
nonzeros into their data structures. Although packed symmetric sparse formats
have been implemented for S, DSDP usually uses the “upper” half of a n×n dense
array because the Atlas BLAS provide good performance on this format. DSDP also
supports the matrix V in full format with n×n array elements, and coordinates the
different representation with the other data structures. Many problems have multi-
ple semidefinite blocks. These blocks may be placed in separate semidefinite cones,
but it is often more efficient to couple the blocks together in a single semidefinite
ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

DSDP5: Software for Semidefinite Programming · 11

Table II. Summary of primary data structures and their functionality.

Solver: Implements an algorithm for linear and semidefinite programming.
Operations: ∆′y, ∆′′y, ∆νy, ∆cy, ‖P (ν)‖, 〈X(ν), S〉, reduce ν.

Implementations: Dual-Scaling Algorithm.
Instances: one.

Requires: Vector, Cone, Schur.

Vector: Represents y, AS−1, b, ∆′y, ∆′′y, ∆νy, and other internal work vectors.
Operations: sum, inner product, norm.
Implementations: dense one-dimensional array.
Instances: about two dozen.

Schur: Represents M , the Schur complement of Newton equations.

Operations: add to row, add to diagonal, factor, solve, vector-multiply.

Implementations: sparse, dense, parallel dense.
Instances: one.

Cone: Represents data C and Ai.

Operations: check if S ← C −A∗y ∈ K, ln det S, AS−1, M , X(ν).
Implementations: SDP Cone, LP Cone, Bounds on y, Variable r ≥ 0.
Instances: three or more.
Requires: Vector, Schur.

SDP Cone requires: SDP V Matrix, SDP Data Matrices, SDP S Matrix, SDP DS Matrix.

SDP V Matrix: Represents X, S−1AiS
−1, and a buffer for C −A∗y.

Operations: V ← 0, V ← V + γwwT , get array.
Implementations: dense.

Instances: one per block.

SDP Data Matrix: Represents a symmetric data matrix.
Operations: V ← V + γA, 〈V, A〉, wT Aw, get rank, get eigenvalue/vector.

Implementations: sparse, dense, identity, low-rank.
Instances: up to m + 1 per block.

SDP S Matrix: Represents S and checks whether X(ν) � 0.
Operations: S ← V , Cholesky factor, forward solve, backward solve, invert.

Implementations: sparse, dense.

Instances: two per block.

SDP DS Matrix: Represents ∆S.
Operations: ∆S ← V , w ← ∆Sv.
Implementations: dense, sparse, diagonal.

Instances: one per block.

cone and specify the block structure.
Since M is symmetric, it may store only the lower half matrix, upper half matrix,

or half of some permutation of the matrix. Each of these representations for M
has been implemented in DSDP, and the cones work with each representation. The
operations implemented for M allow cones to query it for the required indices and
add the corresponding elements into the matrix. This interface is the basis for the
using DSDP in parallel [Benson 2003], which distributes M and the computation of
M over multiple processors.

Table II shows eight of the primary data structures used in DSDP, the operations
they implement, and the other objects required to implement those operations. For
dense matrix structures, DSDP uses BLAS and LAPACK to operate on the data.

6.2 Parameters

Table III summarizes the significant parameters, options, and default values. An
asterisk (*) indicates that significant improvements in performance can often be

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

12 · S. J. Benson, Y. Ye

Table III. Summary of important parameters and initial values.

r: Dual infeasibility.

Default: heuristic (large) Suggested Values: 102 − 1012

*Comments: Larger values ensure robustness, but smaller values can signficantly im-
prove performance.

y: Initial solution.

Default: 0 Suggested Values: Depends on data

Comments: Initial points that improve performance can be difficult to find.

ρn: Bound ρ above by n× ρn and influence the barrier parameter.
Default: 3.0 Suggested Values: 2.0− 5.0

Comments: Smaller values ensure robustness, but larger values can significantly improve

performance.

kkmax : Maximum number of corrector steps.
Default: 4 Suggested Values: 0− 15
*Comments: For relatively small block sizes, increase this parameter.

Γ: The penalty parameter r and the bound on the trace of X.

Default: 1e10. Suggested Values: 103 − 1015

Comments: Other values can improve performance.

l,u: Bounds on the variables y.
Default: −107, 107 Suggested Values: Depends on the data.

Comments: Tighter bounds do not necessarily improve performance.

z̄: Upper bound on (D).

Default: 1010 Suggested Values: Depends on the data.
Comments: A high bound is usually sufficient.

ν: Dual barrier parameter.
Default: Heuristic Suggested Values: Depends on the current solution.

Comments: The default method sets ν = (z̄ − bT y)/ρ.

kmax : Maximum number of dual-scaling iterations.

Default: 200 Suggested Value: 50− 500
Comments: Iteration counts of 20-60 are common.

η: Terminate when (z̄ − bT y)/(|bT y|+ 1) is less than η.
Default: 10−6 Suggested Values: 10−2 − 10−6

Comments: Many problems do not require high accuracy.

ρ : Either a dynamic of a fixed value can be used.
Default: Dynamic. Suggested Values: Dynamic

Comments: The fixed strategy sets ρ = n×ρn and ν = (z̄−bT y)/ρ, but its performance

is usually inferior to the dynamic strategy.

εr, εP : Classify solutions as feasible.
Default: 10−8, 10−4 Suggested Values: 10−2 − 10−10

Comments: Adjust if the scaling of the problem is poor.

Table IV. Impact of parameters on the time and number of iterations.

Problem Test 1 Test 2 Change
It. (Sec.) It. (Sec.)

arch0 49(5) 36(3) Change initial r from 107 to 102.
truss8 33(19) 21(12) Change initial r from 106 to 102.

control10 31(114) 27(105) Change bounds u and l from ±107 to ±100.
qpG11 31(48) 27(43) Change ρ from 3 to 5.
gpp500-1 42(23) 26(46) Change number of corrector steps from 0 to 5.

vibra3 190(78) 92(74) Change number of corrector steps from 0 to 8.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

DSDP5: Software for Semidefinite Programming · 13

found by varying this parameter. The most important of these options is the initial
variable r. By default, DSDP selects a value much larger than required to make
S ∈ K̂. Computational experience indicates that large values are more robust
than smaller values. As Table IV shows, however, smaller values can significantly
improve performance. DSDP then sets the initial values of z̄ = 1e10 and ν =
(z̄− bT y+ Γr)/(nρn). Users can manually set z̄ and ν, but choices better than the
defaults usually require insight into the solution. The number of corrector steps
can also significantly improve performance. In some examples, corrector steps can
reduce the number of iterations by half—although the impact in total computation
time is not as significant. Computational experience suggests that the number of
corrector steps should be between 0 and 12, and the time spent in these steps should
not exceed 30%.

Instead of solving a problem with a single call to DSDP, users can apply a single
iteration of the dual-scaling algorithm inside their own loop. By initializing the
solver with the values of y, r, z̄, and ν from the previous iteration, users can
recreate the loop used by DSDP. This process may duplicate some computations
that cause a loss in efficiency, but sequence of (Xk, yk, Sk) will remain the same.

6.3 Event Profiling

Event profiling in DSDP helps users understand the dual-scaling algorithm, analyze
the performance of the solver, and tune the parameters. The events listed in Table
V are profiled by the software and consist of one or more subroutines. The columns
left of the events indicate sets of mutually exclusive events. For each event, DSDP

prints the number of times it was called, the time spent in it, and its percentage of
the overall time. Only the most computationally dominant events are profiled, so
the percentage of time in mutually exclusive events may not add to 100%.

Table VI shows some profiling data for three semidefinite programming problems
from SDPLIB [Borchers 1999b]. In the control problem, the most computationally
dominant event was computing M . The high percentage of time spent in SDP Dot
indicates that DSDP used Technique M1 to compute M . Furthermore, a significant
amount of time was spent factoring the data matrices. In the theta and maxcut
problems, factoring M required more time than did any other event. Less time
spent computing M and factoring the data reflects the simple structure of the
data matrices. Both of these examples used Technique M2 to compute M , but the
maxcut problem did not invert S as evidenced by the high percentage of time spent
solving linear equations involving it. Furthermore, the maxcut problem did not use
corrector steps, as evidenced by the absence of time spent in the corresponding
events. The dimension of the semidefinite block in this example is the same as the
dimension of M , so a corrector step would cost almost the same as a Newton step.
About 20% of the time spent solving maxcut was spent computing X(ν) once at
the end of the algorithm. The high cost illustrates the potential advantages of the
dual-scaling algorithm over other interior-point algorithms when the block sizes are
very large. In each of the three problems, the high percentage of time in factoring
M and other dense array computations emphasizes the importance of linking to a
fast implementation of BLAS and LAPACK.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

14 · S. J. Benson, Y. Ye

Table V. Events profiled by DSDP and subsets that are mutually exclusive.

Event and Description

• • • Cone Setup: Compute eigenvalues and eigenvectors of Ai,j .
• Cone Invert S: Invert S from its factorization.
• Cone RHS: Compute AS−1.
• • Cone Compute Newton Eq.: Compute M and AS−1.
• Cone Max P Step Length: Largest αP such that X ∈ K.
• Cone Compute and Factor SP: Check if SP ← C −A∗(y − αP ∆νy) ∈ K.
• Cone Max D Step Length: Largest αD such that S ∈ K.
• Cone Compute and Factor S: Check if S ← C −A∗(y + αD∆νy) ∈ K.
• Cone Potential: Compute log det S from the factorization of S.

• • • Cone Compute X: Compute X(ν).

• R Cone: Cone operations for r ≥ 0.
• Bound Y Cone: Cone operations for l ≤ y ≤ u.
• LP Cone: Cone operations for LP cone.

• SDP Cone: Cone operations for SDP cone.
SDP VecMatVec: vT Av
SDP SSolve: Solve Sv = ai from its factorization.
SDP V+vv’: V ← V + αvvT .

SDP Dot: AV .
• • • Factor Newton Eq.: Cholesky Factorization of M .

• Direct Solve: Direct solves using factorization of M .

• • CG Solve: Compute ∆y using CG.
• Primal Step: Compute αD.
• Dual Step: Compute αD and factor S.
• Corrector Step: Compute AS−1, ∆y, and step length.

• DSDP Solve: Apply dual-scaling algorithm to SDP.

6.4 Iteration Monitor

The progress of the DSDP solver can be monitored by using standard output printed
to the screen. The data below shows an example of this output.

Iter PP Objective DD Objective PInfeas DInfeas Nu StepLength Pnrm

0 1.00000000e+02 -1.13743137e+05 2.2e+00 3.8e+02 1.1e+05 0.00 0.00 0.00

1 1.36503342e+06 -6.65779055e+04 5.1e+00 2.2e+02 1.1e+04 1.00 0.33 4.06

2 1.36631922e+05 -6.21604409e+03 5.4e+00 1.9e+01 4.5e+02 1.00 1.00 7.85

3 5.45799174e+03 -3.18292092e+03 1.5e-03 9.1e+00 7.5e+01 1.00 1.00 17.63

4 1.02930559e+03 -5.39166166e+02 1.1e-05 5.3e-01 2.7e+01 1.00 1.00 7.58

5 4.30074471e+02 -3.02460061e+01 3.3e-09 0.0e+00 5.6e+00 1.00 1.00 11.36

...

11 8.99999824e+00 8.99999617e+00 1.1e-16 0.0e+00 1.7e-08 1.00 1.00 7.03

12 8.99999668e+00 8.99999629e+00 2.9e-19 0.0e+00 3.4e-09 1.00 1.00 14.19

The program will print a variety of statistics for each problem to the screen.
ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

DSDP5: Software for Semidefinite Programming · 15

Table VI. Percentage of time in DSDP events for three examples.

Event Control11 theta5 maxG11

Cone Setup 9 0 3
Cone Invert S 0 2 0

Cone RHS 1 0 -
Cone Compute Newton Eq. 57 31 40
Cone Max P Step Length 0 0 1

Cone Compute and Factor SP 0 0 2
Cone Max D Step Length 2 2 1
Cone Compute and Factor S 1 1 2

Cone Potential 0 0 0
Cone Compute X 0 1 20
R Cone 0 0 0
Bound Y Cone 0 0 0
SDP Cone 70 36 68
SDP VecMatVec 1 23 14

SDP Dot 40 0 0
SDP SSolve 7 1 20

SDP V+vv’ 5 1 18
Factor Newton Eq. 25 46 25

Direct Solve 3 5 2

CG Solve 3 16 5
Primal Step 1 0 3

Dual Step 1 0 3

Corrector Step 6 17 -
DSDP Solve 90 99 77

Iter the iteration number.
PP Objective the upper bound z̄ and objective value in (PP).
DD Objective the objective value in (DD).

PInfeas the primal infeasiblity in (P) is ‖xu − xl‖∞.
DInfeas the dual infeasibility in (D) is the variable r.

Nu the barrier parameter ν.
StepLength the multiple of the step-directions in (P) and (D).

Pnrm the proximity to the central path: ‖∇ψ‖M−1 .

6.5 Performance

DSDP has been used in many applications such as minimum-error convex fitting
[Roy et al. 2005], maximum likelihood decoding [Mobasher et al. 2005], frequency
response functions [Rotea and D’Amato 2001], protein clustering [Lu et al. 2005],
pattern analysis [Keuchel et al. 2003], binary imaging [Keuchel et al. 2001], wireless
sensor network localization [Jin and Saunders 2005; Biswas and Ye 2004], Terwil-
leger algebras [Schrijver 2005], cell cycle regulatory genes [Bhargava and Kosaraju
2003], linear matrix inequalities [Löfberg 2001], and combinatorial optimization
[ENSTA 2005].

Its performance has been benchmarked by Mittelmann [2005] relative to six other
SDP solvers. His test include examples from SDPLIB [Borchers 1999b], DIMACS
[Center for Discrete Mathematics and Theoretical Computer Science 2000], and his
own collection of large sparse problems. His statistics are public and frequently

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

16 · S. J. Benson, Y. Ye

updated, so a snapshot of them will not be shown in this paper. They show,
however, that DSDP is a competitive solver on a broad set of SDP problems. Of
108 tests, DSDP solved 102 and exhausted the 4 GB of memory on the other six
problems. In most of the examples ‖AX − b‖/‖b‖ < 10−6, and the objective is
correct to at least six digits of precision, although solutions whose norm is very
large usually exhibited less precision.

On a subset of 25 problems, we evaluate the performance of DSDP, version 5.8,
against five other “solvers”: itself using no corrector steps (No Corrector), itself
using no corrector steps and a simpler strategy for reducing the barrier parameter
(NC & Fixed ρ), itself linked to reference implementation of BLAS and LAPACK

instead of an Atlas implementation (Ref. BLAS), an earlier version of the solver (v.
4.7), and a competing interior-point solver for semidefinite programming (Other).
Following the performance profiling methodology of [Dolan and Moré 2002], we
identify the best of the six solvers for each of the 25 problems. Define tp,s as the
computing time required to solve problem p by solver s, and let failure be denoted
with a time greater than all other times. For each problem, compare the best solver
to each of the solvers using the performance ratio

rr,s =
tp,s

min{tp,s : s ∈ S}
Figure 1 shows the percentage of problems for which each solver found a solution
within a factor of τ (≥ 1) of the best solver. For τ = 1, these profiles shows the
percentage for which each each solver was the fastest. The right side of the graph
shows the percentage problems for which each solver was successful. These tests
used an Intel Pentium 4 CPU with 1.80 GHz, 256 KB cache, 512 MB RAM. DSDP

was compiled using GCC 3.3 with O3 optimization, while the binary for competing
solver was downloaded from the developer’s website. Both solvers linked to the
Atlas BLAS.

Figure 1 supports several conclusions. First, the speed and robustness of this
version of DSDP is much superior to preliminary versions. Years of work and ex-
perience have been encapsulated into this piece of software. Some its improvement
can be credited to the introduction of corrector steps and the use dense data struc-
tures exploited by LAPACK. The effects of these changes are shown in the figure.
Other changes include the bounding of variables and better parameter choices have
significantly improved robustness.

Additional conclusions concerns its performance relative to other solvers. DSDP

was the fastest solver in more than half of the test problems, and within a factor of
two of the best solver on over 80% of the problems. The other interior-point solver
was the fastest on almost half of the problems, and within a factor of two on about
60% of the problems.

On some classes of problems, DSDP performs exceptionally well. In particular,
problems with

—large semidefinite blocks,
—a sparse Cholesky factorization of S, or
—a low-rank constraint structure

especially benefit from the solver. The previous presentation of the dual-scaling
ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

DSDP5: Software for Semidefinite Programming · 17

Fig. 1. Profiling the Performance of DSDP.

algorithm [Benson et al. 2000] explained why the algorithm is appropriate for the
semidefinite relaxation of the max-cut problem. For these problems, the dimension
of the semidefinite block equals the dimension ofM , so theX variables are expensive
to compute. By not maintaining these variables at each iteration, DSDP reduces
the time and memory needed to solve these problems. Sparsity in the Cholesky
factorization of S magnifies this advantage. Relaxations of hard combinatorial op-
timization problems and linear matrix inequalities arising in control theory exhibit
low-rank structure in the constraint matrices. Both Technique M1 and Technique
M2 take advantage of this structure, and DSDP performs well on these problems.
Whereas the dual-scaling algorithm exploits the first two structural properties, our
implementation of the algorithm exploits the third property.

For problems without a dual interior region, DSDP provides primal solutions
near the bounds that suffer less precision. These problems arise, for instance, when
an equality is split into two inequalities. The incorporation of equalities into the
standard form (D) may be in future releases, but current models with many linear
equations may find better performance in another solver or a reformulation of the
model. Performance of the solver could also improve on examples where C equals
zero and applications (see e.g. [Zhao et al. 2004]) with high-rank data matrices.
Primal-dual algorithms in other solvers may enjoy an algorithmic advantage of the
former class of problems, but their advantage on high-rank problems is primarily
due to implementation choices of the developers.

Although the authors welcome use of DSDP, others may want to reimplement
the dual-scaling algorithm. Valid reasons include a difference in design philosophy,
licensing issues, and special structure in an application. The following list of sug-
gestions may help write an efficient implementation. Some of these suggestions are

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

18 · S. J. Benson, Y. Ye

particular to the dual-scaling algorithm, while others generalize to interior-point
methods, semidefinite programming, or numerical computing. These suggestions
are probably known to experienced developers of numerical software, but they are
worth repeating.

(1) Bound y. Some combinatorial problems, for instance, set 〈1, X〉 = 0 which
permits no interior primal feasible point. The corresponding y variable grows
very large and creates numerical difficulties. If C = 0, the dual feasible set
is unbounded (or empty), no central path exists, and y grows very large. To
prevent such problems, explicitly bound the variables.

(2) Bound X. Equalities expressed as a pair of inequalities in (D), for example,
permit no interior dual feasible points and the norm of X grows very large.
Bounding X allows the feasible-point algorithm to converge to an approximate
solution according to the theory.

(3) Large initial barrier parameter. Some problems (trto, vibra, control, biggs)
require a large initial r and a large initial barrier parameter. When these
parameters are too small, many consecutive iterations can be characterized by
‖P (ν)‖ ∼ 1.7 and short primal steps that do not update the primal solution.

(4) Reduce the barrier parameter. Simple strategies may work well, but more com-
plicated strategies significantly reduce the number of iterations for many prob-
lems.

(5) Sparse data matrices. Sparse versions of (12) usually permit efficient operations
on the data.

(6) Use LAPACK. Dense matrix operations define much of the algorithm, so use
dense data structures supported by fast implementations of LAPACK.

(7) Use structure to compute M. The high computational complexity of this event
means there are many techniques compute it. Find a technique that exploits
the structure in the problems of interest.

(8) Solve M accurately. Especially when y is large, it takes more than a factor-
ization. Augmenting its diagonal elements and generating approximate step
directions may suffice for the dual step, but the construction of a feasible X
matrix requires accurate Newton step directions, so be careful.

(9) Corrector step. Corrector steps significantly reduce the number of iterations
for some problems (truss, trto, vibra, buck), but they are expensive when the
block sizes are large (gpp, maxcut, shmup).

(10) Use the potential function. Many interior-point methods simply take a fraction
of the distance to the boundary of the cone, but this method is more robust
when the line search also reduces the potential function.

In short, the formulation of the model matters, the choice of data structures is
important, and the theory is very relevant.

7. EXTENSIONS

The use of function pointers and opaque structures enables polymorphic behavior
in DSDP. More specifically, DSDP accepts data matrices that implement its inter-
face but are not included in the distribution. Some combinatorial problems, for
ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

DSDP5: Software for Semidefinite Programming · 19

example, have a data matrix that such that every element is 1. Data structures
that individually represent each element may suffice, but other data structures may
operate on the data more quickly and use computer memory more efficiently. An
example of this extension is included in the distribution. Similar facilities exist
for the future support of second-order cones and structured semidefinite cones for
specific applications.

8. CONCLUSIONS

This version of DSDP was written to demonstrate the competitiveness of the dual-
scaling algorithm for semidefinite programming, maintain exceptional performance
on several classes of semidefinite programs, and provide computational scientists
with a robust, efficient, and well-documented solver for their applications. Em-
phasis is given to semidefinite programming, but the solver is designed to allow
its use for linear programming problems and extensions to the second-order cone
and other structured cones. The software is freely available from the Mathematics
and Computer Science Division at Argonne National Laboratory and the authors
encourage its use with the terms the license.

Acknowledgments

We thank Xiong Zhang and Cris Choi for their help in developing this code. Xiong
Zhang, in particular, was fundamental to the initial version of DSDP. We also thank
Hans Mittelmann[Mittelmann 2005] for his efforts in testing and benchmarking the
different versions of the code. Finally, we thank Johan Löfberg, Stefan Ratschan,
and all of the users who have commented on previous releases and suggested im-
provements to the software. Their contributions have made DSDP a more reliable,
robust, and efficient package.

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing Re-
search, Office of Science, U.S. Department of Energy, under Contract W-31-109-
ENG-38.

REFERENCES

Anjos, M. F. 2005. An improved semidefinite programming relaxation for the satisfiability prob-

lem. Math. Program. 102, 3, 589–608.

Benson, S. J. 2003. Parallel computing on semidefinite programs. Tech. Rep. ANL/MCS-P939-
0302, Mathematics and Computer Science Division, Argonne National Laboratory. March.

Benson, S. J. and Ye, Y. 2004. DSDP5 user guide – the dual-scaling algorithm for semidefinite
programming. http://www.mcs.anl.gov/~benson/dsdp.

Benson, S. J., Ye, Y., and Zhang, X. 1999. Mixed linear and semidefinite programming for
combinatorial and quadratic optimization. Optimization Methods and Software 11, 515–544.

Benson, S. J., Ye, Y., and Zhang, X. 2000. Solving large-scale sparse semidefinite programs for

combinatorial optimization. SIAM Journal on Optimization 10, 2, 443–461.

Bhargava, A. and Kosaraju, S. 2003. Identifying cell cycle regulatory genes. http://www.cs.

jhu.edu/~ankur/.

Biswas, P. and Ye, Y. 2004. Semidefinite programming for ad hoc wireless sensor network

localization. In 3rd International Symposium on Information Processing in Sensor Networks

(IPSN).

Borchers, B. 1999a. CSDP 2.3 user’s guide. Optimization Methods and Software 11/12, 1-4,
597–611.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

20 · S. J. Benson, Y. Ye

Borchers, B. 1999b. SDPLIB 1.2, a library of semidefinite programming test problems. Opti-

mization Methods and Software 11, 683–690.

Burer, S. and Monteiro, R. 2003. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical Programming (series B) 95, 2, 329–357.

Center for Discrete Mathematics and Theoretical Computer Science. 2000. Seventh

DIMACS implementation challenge: Semidefinite and related optimization problems. http:

//dimacs.rutgers.edu/Challenges/Seventh/.

Dolan, E. D. and Moré. 2002. Benchmarking optimization software with performance profiles.

Mathematical Programming 91, 201–213.

ENSTA. 2005. Optimisation combinatoire and recherche opérationnelle. www.ensta.fr/~diam/

ao303/index.php.

Fujisawa, K., Kojima, M., and Nakata, K. 1997. Exploiting sparsity in primal-dual interior-

point methods for semidefinite programming. Mathematical Programming B79, 235–253.

Goemans, M. X. and Williamson, D. P. 1995. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of ACM 42, 1115–

1145.

Helmberg, C. and Rendl, F. 2000. A spectral bundle method for semidefinite programming.

SIAM Journal of Optimization 10, 3, 673 – 696.

Henrion, D. and Lasserre, J. B. 2003. GloptiPoly: Global optimization over polynomials with

Matlab and SeDuMi. ACM Transactions on Mathematical Software 29, 2 (June), 165–194.

Jin, H. and Saunders, M. 2005. A distributed algorithm for sensor localization. Tech. rep.,

Stanford University.

Keuchel, J., Schellewald, C., Cremers, D., and Schnörr, C. 2001. Convex relaxations for

binary image partitioning and perceptual grouping. In Pattern Recognition (23rd DAGM Sym-

posium, Munich), Lecture Notes in Computer Science, S. F. e. B. Radig, Ed. Vol. 2191. Springer,
Berlin, 353–360. Awarded a prize of the German Pattern Recognition Society (DAGM).

Keuchel, J., Schnörr, C., Schellewald, C., and Cremers, D. 2003. Binary partitioning,

perceptual grouping, and restoration with semidefinite programming. IEEE Transactions on
Pattern Analysis and Machine Intelligence 25, 11 (Nov.), 1364–1379. Special Issue on Energy

Minimization Methods in Computer Vision and Pattern Recognition.

Kocvara, M. and Stingl, M. 2003. PENNON - a code for convex nonlinear and semidefinite

programming. Optimization Methods and Software 18, 3, 317–333.

Löfberg, J. 2001. YALMIP, Yet another LMI parser. University of Linköping, Sweden. Available
at http://www.control.isy.liu.se/∼johanl.

Lu, F., Keles, S., Wright, S., and Wahba, G. 2005. A framework for kernel regularization

with application to protein clustering. Tech. Rep. 1107, Department of Statistics, University of
Wisconsin-Madison. May.

Mittelmann, H. D. 2005. Benchmarks for optimization software. ftp://plato.la.asu.edu/pub/
{sdplib.txt,sparse_sdp.txt,dimacs.txt}.

Mobasher, A., Taherzadeh, M., Sotirov, R., and Khandani, A. K. 2005. A near maximum
likelihood decoding algorithm for MIMO systems based on semi-definite programming. Tech.
Rep. UW-E&CE#2005-12, University of Waterloo.

Prajna, S., Papachristodoulou, A., Seiler, P., and Parrilo, P. A. 2004. SOSTOOLS: Sum
of squares optimization toolbox for MATLAB.

Rotea, M. A. and D’Amato, F. J. 2001. LFTB: An optimized algorithm to bound worst-

case frequency response functions. In Proceedings of the 2001 American Control Conference.
Washington, D.C., 3041 – 3048.

Roy, S., Chen, W., and Chen, C. C.-P. 2005. ConvexFit: An optimal minimum-error convex
fitting and smoothing algorithm with application to gate-sizing. In International Conference

on Computer Aided Design (ICCAD). San Jose, California.

Schrijver, A. 2005. New code upper bounds from the Terwilliger algebra and semidefinite
programming. IEEE Transactions on Information Theory 51, 2859–2866.

So, A. and Ye, Y. 2005. Theory of semidefinite programming for sensor network localization. In

Proceedings of SODA. To appear in Mathematical Programming.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

DSDP5: Software for Semidefinite Programming · 21

Sturm, J. F. 1999. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric

cones. Optimization Methods and Software 11/12, 1-4, 625–653.

Todd, M. J. 2001. Semidefinite Optimization. Vol. 10. Cambridge University Press, Cambridge,
515–560.

Toh, K., Todd, M., and Tutuncu, R. 1999. SDPT3 — A Matlab software package for semidef-

inite programming, version 2.1. Optimization Methods and Software 11, 545–581.

Toh, K. C. 2002. A note on the calculation of step-lengths in interior-point methods for semidef-
inite programming. Computational Optimization and Applications 21, 301–310.

Wolkowicz, H., Saigal, R., and Vandenberghe, L., Eds. 2000. Handbook of Semidefinite

Programming. International Series in Operations Research and Management Science, vol. 27.
Kluwer.

Yamashita, M., Fujisawa, K., and Kojima, M. 2003. Implementation and evaluation of SDPA

6.0 (semidefinite programming algorithm 6.0). Optimization Methods and Software 18, 491–505.

Ye, Y. 1997. Interior Point Algorithms: Theory and Analysis. Wiley-Interscience Series in

Discrete Mathematics and Optimization. John Wiley & Sons, New York.

Yildirim, E. A. and Fan, X. 2005. On extracting maximum stable sets in perfect graphs using

lovasz’s theta function. Computational Optimization and Applications 32, 1–30.

Zhao, Z., Braams, B. J., Fukuda, M., Overton, M. L., and Percus, J. K. 2004. The re-

duced density matrix method for electronic structure calculations and the role of three-index
representability. Journal of Chemical Physics 120, 2095–2104.

Zowe, J., Kočvara, M., and Bendsøe, M. 1997. Free material optimization via mathematical

programming. Mathematical Programming 79, 445–466.

The submitted manuscript has been created by
the University of Chicago as Operator of Argonne
National Laboratory (”Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department
of Energy. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

ACM Transactions on Mathematical Software, Vol. V, No. N, September 2005.

