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Abstract

We propose a new approach to convex nonlinear multiobjective optimization that
captures the geometry of the Pareto set by generating a discrete set of Pareto points
optimally. We show that the problem of finding an optimal representation of the
Pareto surface can be formulated as a mathematical program with complementarity
constraints. The complementarity constraints arise from modeling the set of Pareto
points, and the objective maximizes some quality measure of this discrete set. We
present encouraging numerical experience on a range of test problem collected from
the literature.

Keywords: Multiobjective optimization, nonlinear programming, complemen-
tarity constraints, mathematical program with complementarity constraints.

1 Introduction

We consider the solution of nonlinear multiobjective optimization problems (MOOPs).
MOOPs arise in engineering and economic applications with multiple competing ob-
jectives. Applications include the construction of structures to minimize total mass
and maximize stiffness, design problems with multiple loading cases, and airplane de-
sign to maximize fuel efficiency and minimize cabin noise; see the recent monographs
[14, 22, 28, 31, 32].

The multiobjective optimization problem is formally defined as

(MOOP)

{
minimize

x≥0
f(x)

subject to c(x) ≥ 0,

where x ∈ IRn. We assume that the objective functions f(x) = (f1(x), . . . , fp(x)) : IRn →
IRp and that the constraints c(x) = (c1(x), . . . , cm(x)) : IRn → IRm are twice continuously
differentiable. We denote the feasible set by

F := {x ≥ 0 : c(x) ≥ 0}
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and assume that it is nonempty.
We present a new approach to nonlinear multiobjective optimization that captures the

geometry of the Pareto set by optimally generating a discrete set of Pareto points. We
show that the problem of finding an optimal discrete representation of the Pareto set can
be formulated as a bilevel optimization problem. If MOOP is convex, then we show how
to solve the bilevel problem as a mathematical program with complementarity constraints
(MPCC) by taking advantage of recent progress on the solution of MPCCs.

This paper is organized as follows: In the remainder of this section we review optimality
conditions for MOOPs, discuss existing solution methods, and motivate our approach with
a small example. The next section formally introduces our new approach and derives some
theoretical properties of our formulation. Section 3 describes a random MOOP generator
and a collection of test problems from the literature, and presents our numerical results.

1.1 Review of Multiobjective Optimization

We start by reviewing some basic concepts of MOOPs that will be used throughout the
paper. Let x∗k denote a solution to the single objective nonlinear program (NLP) given
by {

minimize
x≥0

fk(x)

subject to c(x) ≥ 0,
(1.1)

and define the payoff matrix Z ∈ IRp×p as Zij := fi(x
∗
j), which provides useful information

on the trade-offs between the multiple objectives. Note that the minima of each single
objective NLP (1.1) are the diagonal of entries of Z and are also referred to as ideal values .
The largest entry in each row is referred to as the nadir values . We define

z∗ :=
(
f1(x

∗
1), . . . , fp(x

∗
p)

)
and z∗ :=

(
max
i6=1

f1(x
∗
i ), . . . , max

i6=p
fp(x

∗
i )

)
(1.2)

and note that the ideal values z∗ and the nadir values z∗ give the range of the objective
values.

Optimality conditions for MOOPs are given in [23], based on normal cones and Clarke’s
generalized gradients [4].

Definition 1.1 ([24]) Let x∗ ∈ F be a feasible point with corresponding criterion vector
z∗ = f(x∗).

1. (x∗, z∗) is globally Pareto optimal, if there exists no x ∈ F , x 6= x∗ with fk(x) ≤
fk(x

∗) for all q = 1, . . . , p and fr(x) < fr(x
∗) for at least one index 1 ≤ r ≤ p.

2. (x∗, z∗) is locally Pareto optimal if there exists a δ > 0 such that x∗ ∈ F is globally
Pareto optimal in F ∩B(x∗, δ), where B(x∗, δ) is a ball of radius δ around x∗.

3. We designate the set of all Pareto points as P := {z∗ : (x∗, z∗) is a Pareto point}.

4. MOOP is said to be convex if the functions f(x) and c(x) are convex.

The following result gives a necessary condition for local Pareto optimality.
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Theorem 1.2 ([24]) Let x∗ ∈ F be a feasible point at which Cottle’s constraint quali-
fication holds. A necessary condition for z∗ = f(x∗) to be locally Pareto optimal is that
there exist multipliers w ≥ 0, w 6= 0, and y ≥ 0 such that

0 =

p∑
k=1

wk∇fk(x
∗)−

m∑
j=1

yj∇cj(x
∗) (1.3)

and yjcj(x
∗) = 0 for all j = 1, . . . ,m. If MOOP is convex, then this condition is also

sufficient.

1.2 Solution Methods for MOOPs

Here, we briefly review two techniques for finding a single Pareto point. Both techniques
form the basis of our approach to finding multiple Pareto points. The first technique
forms a convex combination of the objective functions and solves the following NLP:

(SUM(w))

 minimize
x≥0

p∑
k=1

wkfk(x)

subject to c(x) ≥ 0,

where the weights wk ≥ 0, k = 1, . . . , p with
∑

wk = 1. By choosing different weights we
can identify different Pareto points.

The second technique is related to goal programming and classification techniques. It
minimizes one objective subject to achieving a given goal on all other objectives. Without
loss of generality, we let f1(x) be the objective that is minimized, and we denote the goals
by z ∈ IRp−1 and solve the following NLP:

(GOAL(z))


minimize

x≥0
f1(x)

subject to fk(x) ≤ zk , k = 2, . . . , p
c(x) ≥ 0 .

Clearly, the goals should be chosen to lie between the ideal and nadir vector, namely,
z∗ ≤ (f1(x), z) ≤ z∗, though not all choices of z give rise to a feasible problem GOAL(z).
We show in the next section that GOAL(z) gives rise to Pareto points.

1.3 Motivation of New Approach

One way in which we can obtain a discrete description of the Pareto set, P , is to solve
SUM(w) or GOAL(z) repeatedly for different weights or goals. However, choosing the
weights and goals is not straightforward. For example, Das and Dennis have observed
[6] that a uniform distribution of weights does not provide a uniform description of the
Pareto set. Figure 1 shows two discrete descriptions of the Pareto set of three objective
functions. The first description (green circles) was generated from a uniform distribution
of the goals, while the second description (red boxes) was generated by maximizing the
uniformity of the representation. Clearly, the optimized description provides a much
better description of the Pareto set.

We close this section by summarizing our main assumptions.
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Figure 1: Uniform Pareto set (green circles) and optimized Pareto set (red boxes)

Assumptions 1.3 Throughout we make the following assumptions:

A1 The problem functions f(x) and c(x) are twice continuously differentiable.

A2 The feasible set F := {x|x ≥ 0 and c(x) ≥ 0} is not empty and bounded.

A3 Any local solution to SUM(w) and GOAL(z) satisfies a linear independence constraint
qualification and a second-order sufficient condition.

A4 The functions f(x) and c(x) are convex.

Assumptions A1 to A3 are relatively weak, and simply ensure that any single objective
NLP is tractable and can be solved by using standard NLP techniques. The most re-
strictive assumption is Assumption A4. The main reason for this assumption is that we
replace the NLPs SUM(w) and GOAL(z) by their respective first-order conditions, which
are necessary and sufficient, if the NLPs are convex.

2 Optimal Representation of the Pareto Surface

In this section we present a new approach to finding a discrete representation of the Pareto
set, P , that is optimal in a certain sense. We start by reviewing three quality measures
of a discrete representations of the Pareto set proposed by Sayin [29] and show that they
lead to a bilevel problem whose solution corresponds to an optimal representation of the
Pareto set. We also derive a complementarity constraint formulation by replacing the
lower level problems by their first-order conditions.
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2.1 Bilevel Formulation of MOOPs

Sayin [29] introduces three quality measures of a discrete representations of the Pareto set:
cardinality, coverage error, and uniformity of the representation. We assume here that
the cardinality is user defined and is fixed. One can show that the coverage error requires
explicit knowledge of the complete Pareto set and is therefore not a practical measure of
quality. Thus, the only practical way of measuring the quality of a representation of the
Pareto set is the uniformity of the representation, which is defined as the largest η such
that

η ≤ min
u,v∈D, u 6=v

‖u− v‖, (2.4)

where D ⊂ P is a discrete representation of the Pareto set P .

Next, we show that the problem of finding a maximal uniform representation of the
Pareto set P can be formulated as a bilevel programming problem. The key idea is to
take any single solution approaches SUM(w) or GOAL(z) and to let the weights or goals
be variables to be determined within a bilevel optimization problem. The upper level
aims to maximize the quality of the representation of the Pareto set, while the lower level
corresponds to (a finite number of) single solution NLPs.

Figure 2 provides a graphical illustration of our approach. There are two objective
functions, and the solid line shows the Pareto set. We are seeking a given number of
discrete points such that the pairwise distances between the Pareto points is maximized,
illustrated by the circles around each Pareto point. Here, we maximize η subject to the
constraints η ≤ ηlk, where ηlk = ‖f(xl) − f(xk)‖, and xl are Pareto points characterized
by solving SUM(w) or GOAL(z).

f
2

1
f

η
23

12
η

Figure 2: Maximizing distances between Pareto points

Formally, we consider the problem of finding a given number q of Pareto points that
maximize the uniformity of the discrete representation of the Pareto set. We start by
deriving a problem to find an optimal representation of the Pareto set based on the con-
vex combination problem SUM(w). Let w := (w1, . . . , wq)

T denote the weights to be
determined, and let x := (x1, . . . , xq)

T denote the corresponding Pareto points (one copy
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for each Pareto point). The problem of maximizing the uniformity of the discrete repre-
sentation of the Pareto set can then be formulated as the following bilevel optimization
problem: 

maximize
x,w,η

η

subject to η ≤ ‖f(xl)− f(xk)‖2
2 ∀ 1 ≤ k, l ≤ q, k 6= l

wk ≥ 0, and eT wk = 1, ∀ k = 1, . . . , q
xk solves SUM(wk).

(2.5)

The aim (2.5) is to find q ≥ 2 Pareto points such that the smallest distance between
any two function values fk is pushed as far apart as possible while remaining within the
Pareto set. As is customary in bilevel optimization, we refer to w and η as the control, or
upper-level, variables and to x as the state, or lower-level, variables. We note that even
though MOOP is convex, the bilevel problem is in general nonconvex, and the task of
finding a global solution is daunting. However, we will show in Section 3 that even local
solutions of (2.5) provide improved representations of the Pareto set.

One disadvantage of (2.5) is the lack of general-purpose solvers for bilevel optimization
problems. To develop a practical technique for solving (2.5), we therefore replace the
constraint “xk solves SUM(wk)” by its first-order conditions, and exploit recent advances
in the development of robust solvers for mathematical programs with complementarity
constraints.

Under Assumptions A1–A4, it follows that the first-order conditions for SUM(wk) are
necessary and sufficient, and we can therefore equivalently replace (2.5) by the following
mathematical program with complementarity constraints (MPCC):



maximize
x,y,w≥0,η

η

subject to η ≤ ‖f(xk)− f(xl)‖2
2 ∀ 0 ≤ k, l ≤ q , k 6= l

eT wl = 1 ∀ l = 1, . . . , q
0 ≤ xl ⊥ ∇

(
wT

l f(xl)
)
−∇c(xl)yl ≥ 0 ∀ l = 1, . . . , q

0 ≤ yl ⊥ c(xl) ≥ 0 ∀ l = 1, . . . , q,

(2.6)

where ⊥ is the usual MPCC complementarity condition and means that yT
l c(xl) ≤ 0.

We note that the dimension of (2.6) is roughly q times the dimension of SUM(wl), as
every Pareto point requires a new copy of the primal and dual variables x and y. We
can remove one component of each wl and the constraints eT wl = 1 if we replace the
first-order condition by

0 ≤ xl ⊥ ∇
(
(1, ŵl)

T f(xl)
)
−∇c(xl)yl ≥ 0 ∀l = 1, . . . , q, (2.7)

where ŵl ∈ IRp−1 are the weights on the remaining objectives. This formulation has the
advantage that it removes one bilinearity from the first-order condition.

An alternative MPCC is obtained by using the first-order conditions of GOAL(z). In
this case, we are looking for goals z = (z1, . . . , zq) and corresponding multipliers u =
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(u1, . . . , uq) that solve

maximize
x,y,z,u,η

η

subject to η ≤ ‖f(xk)− f(xl)‖2
2 ∀ 0 ≤ k, l ≤ q , k 6= l

0 ≤ xl ⊥ ∇
(
(1, ul)

T f(xl)
)
−∇c(xl)yl ≥ 0 ∀ l = 1, . . . , q

0 ≤ yl ⊥ c(xl) ≥ 0 ∀ l = 1, . . . , q

0 ≤ ul ⊥ f̂(xl) ≤ zl,
(2.8)

where f̂(xl) = (f2(xl), . . . , fp(xl)). We note that even if the MOOP is linear, the MPCCs
(2.6) and (2.8) are nonconvex optimization problems, because of the presence of the
complementarity constraints and the upper bound on η ≤ ‖f(xk) − f(xl)‖2

2. Thus, in
practice we can at best hope to find a local solution.

Numerical experience has shown that it can be advantageous to work with a compo-
nentwise definition of η. Thus, the goal programming version becomes

maximize
x,y,z,u,η

p∑
i=1

ηi

subject to ηi ≤ |fi(xk)− fi(xl)|2 ∀ 0 ≤ k, l ≤ q , k 6= l
and ∀i = 1, . . . , p

0 ≤ xl ⊥ ∇
(
(1, ul)

T f(xl)
)
−∇c(xl)yl ≥ 0 ∀ l = 1, . . . , q

0 ≤ yl ⊥ c(xl) ≥ 0 ∀ l = 1, . . . , q

0 ≤ ul ⊥ f̂(xl) ≤ zl.
(2.9)

Similarly we can define componentwise versions with the first-order conditions of SUM(wk).
This new MPCC approach can be generalized easily by using other single objective char-
acterizations of Pareto points. Many algorithmic choices and variants are possible and
can be used to tackle multiobjective optimization problems within the framework of equi-
librium constraints.

2.2 Theoretical Foundation of New Approach

We start by recalling that under Assumptions A1–A4, the first-order conditions of
SUM(w) and GOAL(z) characterize a Pareto point. This result is a direct corollary
of Theorem 1.2.

Corollary 2.1 Let Assumption A1–A4 hold. Then it follows that (x∗, y∗) is a Pareto
point if

1. (x∗, y∗) solve the first-order conditions of SUM(w) for some weights w ≥ 0 with
eT w = 1, or if

2. (x∗, y∗, u∗) solve the first-order conditions of GOAL(z) for some goals z.

Next, we show that the solution of the bilevel program (2.5) gives rise to a set of
Pareto points.

Proposition 2.2 Let the Assumption A1–A4 hold. Then it follows that
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1. if (x∗k, y
∗
k, w

∗
k, η

∗) solves problem (2.6), then (x∗k, f
∗
k ) are Pareto points of MOOP;

2. if (x∗k, y
∗
k, u

∗
k, z

∗
k, η

∗) solves problem (2.8), then (x∗k, f
∗
k ) are Pareto points of MOOP.

Moreover, in each case, if η∗ is the global maximizer, then η∗ maximizes the uniformity
of the discrete representation of the Pareto set.

What makes this new approach practical is the fact that the MPCCs can be solved
reliably and efficiently as nonlinear programs (NLPs) [1, 11]. For example, a suitable NLP
formulation of the MPCC (2.6) is given by

maximize
x,y,w,s,t≥0,η

η

subject to η ≤ ‖f(xk)− f(xl)‖2
2 ∀0 ≤ k, l ≤ q , k 6= l

eT wl = 1 ∀l = 1, . . . , q
sl = ∇

(
wT

l f(xl)
)
−∇c(xl)yl ∀l = 1, . . . , q

xl ≥ 0, sl ≥ 0, xT
l sl ≤ 0 ∀l = 1, . . . , q

tl = c(xl) ∀l = 1, . . . , q
yl ≥ 0, tl ≥ 0, yT

l tl ≤ 0 ∀l = 1, . . . , q,

(2.10)

where we have introduced slacks to obtain a numerically favorable formulation. It is well
known that (2.10) violates the Mangasarian-Fromowitz constraint qualification at any
feasible point [3] because of the presence of the bilinear terms xT

l sl ≤ 0 and yT
l tl ≤ 0.

Recently, however, it has been shown [11] that any stationary point of the NLP (2.10) is
a strongly stationary point [30] of the MPCC (2.6) and vice versa. This fact has been
used to show that standard NLP solvers can tackle MPCCs reliably and efficiently [1, 2,
11, 10, 18, 19, 21, 27]. We note that similar results hold for other nonlinear formulations
of the complementarity conditions [17].

One limitation of our approach is the fact that even linear MOOPs such as
maximize

x
CT x

subject to AT x ≥ b
x ≥ 0

lead to nonconvex NLP formulations. The reason for the nonconvexity of (2.6) is the
presence of the constraints η ≤ ‖CT xk−CT xl‖2

2 and the presence of the complementarity
constraints. Thus, in general we cannot expect to find the global minimum of (2.6).
However, numerical experience presented in the next section shows that our approach is
promising.

Another limitation of our approach is the requirement that the MOOP must be convex
(Assumption A4). Consider the following MOOP:

minimize
x

[
(x2 − 1)2 , (x2 − 4)2

]
. (2.11)

It follows that f1(x) has two minimizers at x = ±1 and a maximum at x = 0. Likewise,
f2(x) has two minimizers at x = ±2 and a maximum at x = 0. However, the MPCC (2.6)
cannot distinguish between minima and maxima. Thus, one solution is x1 = 1 and x2 = 0
at which η = 81 is maximized. Clearly, x = 0 is not a Pareto point, but the objective in
MPCC (2.6) is maximized if one of the two “Pareto points” found by (2.6) is a maximizer
and the other is a minimizer. Note that we could still use the bilevel formulation (2.5),
but that would rule out the use of standard NLP solvers.
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3 Numerical Experience

This section presents our numerical results. To test our approach, we have collected test
problems from the literature and generated random quadratic MOOPs. All test problems
and the random generator are available at www.mcs.anl.gov/~leyffer/MOOP/.

3.1 Obtaining Good Starting Points

Early numerical experience showed that the NLP solvers may fail to find a feasible point
to the MPCC formulations (2.6) or (2.8). Hence we have adopted the following strategy
for finding initial feasible points. We first fix the weights, or goals and solve the resulting
NCP using PATH. This is a standard strategy for solving complex MPCCs and is readily
implemented in AMPL by ng the named model facility.

Another difficulty that arose for some problems is that different weights can give rise
to the same Pareto point. Unfortunately, this corresponds to a stationary point of the
MPCC (2.6) and (2.8) with η∗ = 0. Thus we ran the NCP solver for different choices of
weights until we found a set of Pareto points with η 6= 0. This initial NCP solution also
provides an initial guess at the maximum uniformity.

3.2 Description of Test Problems and Solvers

Table 1 shows the name of the test problem, the number of variables, n, the number of
constraints m, the number of objectives p, and the source and describes the nonlinearity
of the problem. We note that our collection also contains nonconvex problems, namely,
ABC-comp, ex002, and ex004.

Table 1: Multiobjective Optimization Problem Characteristics

Name n m p Source Problem Type
ABC-comp 2 3 2 [16] quadratic objective & bilinear constraints
ex001 5 3 2 [5] quadratic objective & constraints
ex002 5 2 2 [34] quadratic objective & nonlinear constraints
ex003 2 2 2 [33] quadratic objective & nonlinear constraints
ex004 2 3 2 [26] nonlinear objective & linear constraints
ex005 2 0 2 [16] nonlinear objective & bounds
hs05x 5 3 3 [15] [own] quadratic objective & linear constraints
liswetm 7 5 2 [20] [own] quadratic objective & linear constraints
MOLPg-1 8 8 3 [32] linear objective and constraints
MOLPg-2 12 16 3 [32] linear objective and constraints
MOLPg-3 10 14 3 [32] linear objective and constraints
MOQP[01-03] 20 10 3 [own] quadratic objective & linear constraints

Problems hs05x and liswetm are constructed from several academic NLP test problems
that have the same constraints and different objective functions. We have also written a
random MOOP generator that generates multiobjective quadratic programs with linear
constraints. The generator is written in matlab and can generate large sparse problems.
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The Hessian matrix is forced to be positive definite by adding a suitably large multiple
of the identity to the diagonal. This ensures that the resulting MOOPs are convex.

Table 2 shows the size of the NCP and the various MPCC formulations for q =
10 Pareto points. Here, n, m, and r refer to the number of variables, the number of
constraints, and the number of complementarity conditions, respectively. As expected,
the growth in terms of the number of variables compared to the NCP formulation is
modest, while the increase in the number of constraints corresponds to the addition of
the constraints η ≤ . . ., which is of order q2. We also note that formulation (2.8) gives
rise to the largest MPCCs because we have added multipliers of the goal constraints.

Table 2: Characteristics of NCP, and MPCC Formulations

NCP (2.6) (2.7) (2.8)
name n m r n m r n m r n m r
ABC-comp 51 51 50 71 105 50 61 95 50 71 150 60
ex001 80 80 10 101 135 10 91 125 10 101 180 20
ex002 70 70 50 91 134 50 81 115 50 91 170 60
ex003 40 40 40 61 104 40 51 94 40 61 140 50
ex004 40 40 40 61 104 40 51 94 40 51 130 40
ex005 20 20 20 41 84 20 31 74 20 41 120 30
hs05x 80 80 50 111 135 50 101 170 50 121 190 70
liswetm 121 121 50 141 184 50 131 174 50 141 220 60
MOLPg-1 160 160 160 191 260 160 181 250 160 201 290 160
MOLPg-2 291 291 280 321 390 280 311 380 280 331 420 280
MOLPg-3 261 261 240 291 360 240 281 350 240 301 390 240
MOQP[01-03] 311 311 300 341 410 300 331 400 300 351 420 320

The problems are formulated in AMPL [13], and the initial NCPs are solved by us-
ing PATH [7, 8]. PATH implements a generalized Newton method that solves a linear
complementarity problem to compute the search direction. The MPCCs are solved by
using filterSQP [9, 10] which automatically reformulates the complementarity constraints
as nonlinear equations. This solver implements a sequential quadratic programming al-
gorithm with a filter to promote global convergence [12].

3.3 Detailed Numerical Results

Table 3 summarizes our numerical experience. The table shows the number of major
(Newton) iterations and the final value of η, which can be taken as an indication of the
quality of the computed representation of the Pareto set. We provide results only for the
NCP version of SUM(w); results for the other formulations are similar, and we merely
mention the NCP run to illustrate the start-up cost and the improvement in uniformity
that can be achieved. The iteration limit for all solvers is 1,000 major iterations.

Failures of the solvers are indicated by the following code: [S] indicates termination
with segmentation fault; [I] means that the solver failed to find a feasible point. Unfortu-
nately, this latter outcome is difficult to avoid because the MPCC are nonconvex. In our
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Table 3: Numerical Results for NCP and MPCC Formulations

NCP (2.6) (2.7) (2.8)
name iter η∗ iter η∗ iter η∗ iter η∗

ABC-comp 5 1.154 44 28.43 11 28.43 36 [I]
ex001 4 1.210E-2 28 1.648 14 1.648 4 1.648
ex002 22 4.723E-7 21 3.245E-6 78 2.107 [L] 45 3.206 [L]
ex003 23 1.944E-6 22 2.912E-4 11 4.478E-1 1 8.449E-2
ex004 6 3.577E-2 14 6.441E-1 49 6.441E-1 13 8.150E-1 [L]
ex005 2 8.702E-5 405 1.656E-2 1000 1.540E-2 9 1.496E-1
hs05x 1 1.615E-1 237 323.2 374 323.3 193 316.5
listwetm 0 1.847E-2 48 2.830E-1 217 2.830E-1 62 2.210E-4
MOLPg-1 7 0 1 0 1 0 10 52.11
MOLPg-2 5 0 4 0 6 0 18 3.623
MOLPg-3 7 0 5 0 7 0 24 15.74
MOQP-01 6 243.3 296 5466 897 5622 452 3117
MOQP-02 [S] 262 4046 1000 [I] 707 5235
MOQP-03 9 69.66 1000 [I] 1000 [I] 488 1160

experience, warm-starting the MPCCs from a solution of the initial NCP greatly improves
the likelihood of finding a feasible MPCC solution. Runs for which the solver failed to
converge within the limit of 1,000 iterations are identified by 1,000 in the iter column.
We note that for only two problems does the solver fail in this way, namely, ex005 and
MOQP-3.

The results for the nonconvex MOOPs are interesting. As indicated earlier (see (2.11)),
nonconvex MOOPs can have the undesirable effect of increasing η by placing points xk

at local maxima. This failure, indicated by [L], occurs on the two nonconvex examples
(ex002 and ex004). Figure 3 shows the computed Pareto set for ex004. Despite the fact
that we identify some spurious Pareto points, the figure still provides useful information
on the Pareto set. Moreover, for the nonconvex example ABC-comp, we are able to find
valid approximations of the Pareto set.

The results in Table 3 show that the MPCC formulation based on goal programming,
(2.8), is clearly superior to the other two formulations: the formulation based on goal
programming is the only formulation that achieves positive separation between all Pareto
points for the MOLPg problems. In addition, it is up to an order of magnitude faster than
the formulations based on the convex sum. We believe that in general, goal programming
is a better way to generate a uniform set of Pareto points because the control on the
objective is more direct through the goal constraints.

4 Conclusions and Outlook

We have presented a new approach to solving multiobjective optimization problems that
finds a maximally uniform representation of the Pareto set. We show how this problem
can be formulated as a mathematical program with complementarity constraints, and we
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Figure 3: Pareto set with spurious points for ex004

present three different formulations based on convex sum and goal-programming single ob-
jective formulations of MOOP. Preliminary numerical results are encouraging, especially
for the approach based on goal programming.

Our new MPCC approach can be generalized easily by using other single objective
characterizations of Pareto points. Many algorithmic choices and variants are possible
and can be used to tackle multiobjective optimization problems within the framework of
equilibrium constraints. More numerical experience is needed to decide which of these
schemes works best under which circumstances.

Important open questions do remain, however. For example, the reformulation requires
the user to form the first-order conditions of a single-objective formulation of MOOP, a
process that (from our experience) is prone to error. In addition, the first-order conditions
are necessary and sufficient only if the MOOP is convex. We have observed examples
where a lack of convexity results in spurious Pareto points being found by our approach.

Some of these limitations can be overcome by better MPCC solvers that preserve
local minima. However, such an approach would make it harder to exploit the available
NLP solver technology. The requirement that the user form first-order conditions can
be overcome by developing extensions to AMPL that allow bilevel optimization models.
However, this is a nontrivial task because AMPL would then have to provide derivatives
up to third order for the Hessian matrices used in the NLP solvers.

Ultimately, we believe that our technique can be incorporated into interactive MOOP
solution approaches such as www-nimbus [25]. The advantage of our approach is that it
provides a broader picture of the Pareto set. By allowing the user to interact with this
representation, we believe that our approach can be made more robust and less susceptible
to problems caused by nonconvexities.
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