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ABSTRACT 
In many scientific workflows, particularly those that operate on 
spatially oriented data, jobs that process adjacent regions of space 
often reference large numbers of files in common. Such 
workflows, when processed using workflow planning algorithms 
that are unaware of the application’s file reference pattern, result 
in a huge number of redundant file transfers between grid sites 
and consequently perform poorly. This work presents a 
generalized approach to planning spatial workflow schedules for 
Grid execution based on the spatial proximity of files and the 
spatial range of jobs. We evaluate our solution to this problem 
using the file access pattern of an astronomy application that 
performs co-addition of images from the Sloan Digital Sky 
Survey. We show that, in initial tests on Grids of 5 to 25 sites, our 
spatial clustering approach eliminates 50% to 90% of the file 
transfers between Grid sites relative to the next-best planning 
algorithms we tested that were not “spatially aware”. At moderate 
levels of concurrent file transfer, this reduction of redundant 
network I/O improves the application execution time by 30% to 
70%, reduces Grid network and storage overhead and is broadly 
applicable to a wide range of spatially-oriented problems.   

Categories and Subject Descriptors 
J.2 [Computer Applications]: Physical Sciences and Engineering 
– astronomy 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Grid, Spatial Workflow, File Transfer, Performance. 

1. INTRODUCTION 
In many scientific domains, typified by astronomy, earth systems 

science, and geographic information systems, datasets represent 
the characteristics of some region of the sky, the atmosphere, or 
the earth. Analogous spatial dataset representation is often found 
in domains such as material science, computational chemistry, 
and fluid dynamics, where the entities being modeled have spatial 
characteristics. The datasets of these domains are indexed (and 
often named and cataloged) by the spatial coordinates of the 
region that the data pertains to. Spatial datasets are often 
processed by “gridding” the problem space into uniformly-sized 
partitions. Applications that process spatial data are frequently 
partitioned into jobs that perform processing in manageable units 
of resources such as file storage and CPU or RAM. Jobs are 
typically sized to make them small enough (in memory and 
duration) to be practical to run, yet large enough to reduce 
scheduling overhead to acceptable levels. Frequently, these jobs 
are chained, based on data or resource dependencies, into flow 
graphs, to form complex scientific workflows. Running such 
workflows in a Grid imposes many challenges due to the large 
number of jobs, file transfers, and amount of disk space needed to 
process them at distributed sites, and to the various tradeoffs in 
the scheduling of Grid resources. 
The thesis of this work is that spatial workflows can be best 
planned for Grid execution using spatially-aware scheduling 
algorithms; that such algorithms are simple to develop and 
deploy; and that such scheduling algorithm has very general 
applicability to this popular and important class of application 
workflows. The opportunity to exploit knowledge of spatial 
proximity to improve the performance of a Grid workflow is 
manifest in many application codes used by the Sloan Digital Sky 
Survey (SDSS) [11], an astronomical survey project, creating a 
publicly accessible database of about one quarter of the sky, and 
measuring the characteristics of over 100M celestial objects and 
the distances to over one million galaxies and quasars. In such 
spatial problems, we are typically constrained by the following 
objectives. First, we want to leave files processed at sites at the 
end of jobs, so that adjacent jobs can use these files. But, at the 
same time, we want to remove files from sites as soon as they are 
no longer needed, as the amount of space needed to hold the input 
dataset poses a significant space pressure on the sites. 
We describe here an algorithm to cluster jobs by their spatial 
proximity and to schedule these clusters on Grid sites such that 
the problem space is processed in an order that attempts to take 
maximum advantage of files already present at each site. Our 
results show that this algorithm, which we name SPCL (for 
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“spatial clustering”), reduces the number of file transfers between 
grid sites and improve overall workflow execution time. Our 
SPCL strategy takes advantage of data locality through the use of 
dynamic replication and schedule jobs in a manner that reduces 
the number of replicas created and the number of file transfers 
performed when executing a workflow. We evaluated the 
effectiveness of SPCL via simulation studies measuring the file 
reference trace and performance of a complete run of the survey’s 
southern hemisphere data, comprising 44,400 jobs with 
approximately 5.4 million file references. The results show that 
the SPCL planning algorithm, in initial simulations on Grids of 5 
to 25 sites, and live tests on Grids of 4 and 10 sites, eliminates 
50% to 90% of the file transfers between Grid sites relative to the 
next-best planning algorithms we tested that were not “spatially 
aware”. At moderate levels of concurrent file transfer, this 
reduction of redundant network I/O improves the application 
execution time by 30% to 70%, reduces Grid network and storage 
overhead and is broadly applicable to a wide range of spatially-
oriented problems. 
The rest of this work is organized as follows. Section 2 discusses 
related work that deals with grid scheduling and data placement. 
Section 3 describes the characteristics of the SDSSS/Coadd 
workflow that we consider in our experiments, and the design of 
our clustering by access affinity algorithm. Section 4 describes 
the simulation framework adopted in the experiments, while in 
Section 5 the experimental results are analyzed. Finally, Section 6 
concludes this work and points to future directions.  

2. RELATED WORK 
Several works in the literature address the benefits of data 
replication in data grid scenarios. Casanova et al. [1] propose an 
adaptive scheduling algorithm for parameter sweep applications 
where shared files are pre-staged strategically to improve reuse. 
Ranganathan and Foster [9, 10] evaluate a set of scheduling and 
replication algorithms and the impact of network bandwidth, user 
access patterns and data placement in the performance of job 
executions. The evaluation was done in a simulation environment 
and the results showed that scheduling jobs to locations where the 
input data already exists, and asynchronously replicating popular 
data files across the Grid, provide good results. Cameron et al. [5, 
6] also measure the effects of various job scheduling and data 
replication strategies in a simulation environment. Their results 
show benefits of scheduling taking into account the workload in 
the computing resources. However, this work assumes that each 
job requires a single input file. Also, the workload is generated 
from different users spread over different sites. An integrated 
replication and scheduling strategy is proposed and evaluated by 
Chakrabarti et al. [2]. Like in the previous mentioned works, the 
workload scenario consists of a set of independent jobs, submitted 
from different sites at different times. Data replication is 
performed asynchronously but jobs can access multiple files. The 
effect of transferring input/output data on overall grid 
performance is studied by Shan et al. [12]. However, the work 
assumes that all input files are present at the host where the job is 
submitted and files are not reused by different jobs. Mohamed and 
Epema [8] propose an algorithm to place jobs on clusters close to 
the site where the input files reside. The work assumes that the 
jobs require the same single input file which can be replicated. 
Singh et al. analyze how clustering jobs can improve workflow 
execution [13]. In their work, the authors discuss different 

configurations of the workflow engine and their impact on 
performance results. Our work differs by implementing a 
clustering approach with the goal to improve performance through 
the reduction of redundant file transfers while scheduling work in 
a manner that matches the sites storage capacity. Files are 
accessed by jobs belonging to a single workflow. Thus, when 
deciding to replicate files we do not take into account accesses by 
other users. Files are temporarily replicated because they will be 
used by other jobs in the context of the same workflow. Although 
some files have more accesses than others, we do not proactively 
replicate them. The selection of a site to run a job is done based 
on an expectation that subsets of the required files will be in 
place. These replicas may be deleted once they are no longer 
required by a group of jobs. This deletion is done because it may 
not be feasible to retain these replicas during the execution of the 
whole workflow. We assume that we have advance knowledge of 
the entire workflow for a large-scale operation such as the co-
addition of an entire sky region, and that we know the spatial 
coordinates of every job as an n-tuple in the coordinate space of 
the application. Further, unlike the approach taken in [10] we do 
not assume that specific files will grow in average popularity over 
the lifetime of the run, but rather that such bursts in file popularity 
will be highly localized, transient, and due to file reference 
overlaps.  

3. CLUSTERING BY SPATIAL 
PROXIMITY 
Clustering of jobs and files can be computed in several ways. 
Given a workflow definition, its set of jobs, and its files, 
dependencies can be extracted and passed to a clustering 
algorithm that can apply heuristics to produce the clustering 
definition for jobs and files. In cases where the workflow is 
formed by several pipelines this definition is simple and intuitive, 
i.e. clustering together all jobs that are pipelined in the workflow. 
If a job that reads a file is placed at the same site of the job that 
produced the file, no file transfer is needed. In spatially-oriented 
applications, the ability for a data-flow-driven algorithm to 
automatically detect file-reference clusters is more challenging, 
because it must discover how jobs are related to each other based 
on their file access pattern. This process can be computationally 
intensive, and does not take advantage of the easier-to-process 
information present in the correlated coordinate systems of the 
jobs and the members of the dataset. The main goal of the SPCL 
clustering algorithm is to reduce the number of file transfers 
between grid sites. The idea is to create clusters of jobs by spatial 
proximity, assign each job to a cluster, each cluster to a grid site 
and during the execution of the workflow, schedule all jobs 
belonging to a cluster to the same site. The SDSS co-addition 
workflow consists of 44,400 jobs that operate on 2.5 Terabytes of 
input data stored in 544,500 distinct files, performing 5,419,370 
file references. On average, each file is referenced by 
approximately 10.1 different jobs. The portions of the SDSS 
dataset processed by co-add consists of image data, and are 
cataloged at a coordinate grid consisting of three dimensions: 
right ascension (ra), declination (dec), and spectral filter.  For 
simplicity, we treat ra, dec, and filter as if they were coordinates 
(X, Y, Z) in a three-dimensional space. Each job operates on a 
region centered at a specific (ra,dec,filter) value,  and processes 
files related to adjacent (ra,dec) grid points. The SPCL algorithm 
for clustering jobs and files together was trivial, performed by a 



simple division of the overall three-space into approximately 
uniformly sized partitions.  The z or filter dimension was treated 
as a dependent variable of the ra,dec: within each cluster, all the 
filter values for jobs and data files at a given ra,dec coordinate 
were placed in the same cluster. Most files are referenced by jobs 
in three declination grid points and eight ra grid points. Thus we 
generated clusters with these dimensions and assigned each job to 
a cluster based on the value of both attributes. As result, 372 
clusters were created: 368 cluster with 120 jobs each, and 4 with 
60 jobs each. Since the number of generated clusters is greater 
than the number of grid sites, jobs from different clusters have to 
be assigned to run at the same site. To guarantee that files that are 
shared by jobs belonging to the same cluster will be in cache, the 
SPCL algorithm does not schedule jobs from different clusters to 
run at same time at the same site. This is accomplished by 
creating dependencies among jobs from different clusters. Figure 
1 illustrates SPCL scheduling approach. Suppose that clusters i 
and j are assigned to run at site k. In order to maximize file reuse 
by jobs belonging to the same cluster, jobs from cluster i must be 
scheduled before jobs from cluster j. This is achieved by creating 
a "parent-child" relationship between the jobs of the workflow. 
 
 
 
 
 

 
Figure 1. The SPCL scheduling approach. 

4. THE SIMULATION FRAMEWORK 
We model the Grid environment as a set of sites, each having a 
fixed number of processors and a fixed amount of total disk 
storage space. We assume that at each site all processors have the 
same performance and have access to all disk files stored at that 
site. At a separate submit host, external to the Grid, a workflow 
manager controls the scheduling of the jobs to the sites. A replica 
location service (RLS) keeps track of the location of file replicas 
spread over the Grid. 
Each file has a unique filename and is characterized by its size. 
Each job is characterized by a unique job identifier and the list of 
files it needs to process. In order to execute, a job needs the set of 
input files to be available at the site that was selected for its 
execution. In our studies up to this point, we disregard the transfer 
back of output results, since in the specific application that 
motivated this work the transfer of output data was a negligible 
portion of the overall execution time and load on the Grid. As in 
Condor/DAGman [4], a “prescript” and a “postscript” step is 
associated with each workflow job. The prescript and postscript 
steps are responsible for transferring input files and deleting 
output files, respectively. The number of prescript that can be 
started concurrently (across all jobs) by the submit host is 
controlled by the DAGman parameter MAXPRE, which serves as 
a convenient workflow-wide throttle on the data transfer load that 
the workflow manager can impose on the Grid from the submit 
host. Figure 2 depicts the Grid environment modeled by our 
simulator.  
 

 
 
 
 
 

 
Figure 2. Grid environment.         Figure 3. Submit host. 
We modeled the behavior of this Grid using discrete event 
simulation coded in Perl and tailored its algorithms and data 
structures to the needs of the Grid elements in our simulation 
domain. Figure 3 details the architecture of the submit host in the 
simulation environment. The execution of a job is simulated in the 
following stages, while a simulation clock keeps track of elapsed 
time and drives the event loop: First, the workflow manager takes 
the identification of the job and its list of required files and starts 
the input file transfer processing for that job. The prescript 
processing is responsible for two tasks: deciding where to run the 
job and transferring needed input files to that site. The decision on 
where to run a job is based on a selectable scheduling algorithm 
while the transfer task is performed based on the information from 
a replica location service (RLS). The job is then sent to a site, 
waits in a local scheduler queue for a free CPU, and then runs 
during a specified amount of time. After job execution, the 
workflow manager starts the postscript processing that is 
responsible for registering or deleting the new replicas in the 
RLS, depending on the replica policy being enforced. 

5. EXPERIMENTS 
We modeled our entire test Grid on a large subset (25) of the 30+ 
sites of Grid3 [7], using the site parameters listed on table 1.  The 
column S indicates the identification of the site, and the columns 
P and D show the number of processors and disk available at each 
site. We assume that we have a target of obtaining 10% of the 
resources in each site to define our Grid simulation environment. 
For CPU allocation, we assume an approach where fixed-size 
pools of CPUs are held dedicated at each site for the duration of 
the workflow, in a manner similar to that implemented by the 
Condor “Glide-In” [3] facility. Each simulated test Grid of size N 
(N=5, 10, 15, 20, 25) consisted of the first N sites listed on this 
table. Each input file is approximately 5 Megabytes in size, is 
initially located at one site (as in practice) and takes five seconds 
to be transferred. Each job runs for 15 minutes. The workflow 
manager starts the prescript process for each job with an interval 
of one second. When the number of prescripts running reaches the 
maximum number of prescripts allowed, the workflow manager 
has to wait for the end of the first prescript already running in 
order to start a new prescript. In the same way, when a job is 
submitted, if there are no available processors at the execution site 
then the job has to wait in the remote queue. The total time to run 
a job is computed by summing the time in the queue at the submit 
host, the time to transfer the necessary input files, the time in a 
queue at the execution site, and the time to run the job. We 
analyze, in our experiments, both (i) the total number of file 
transfers and (ii) the total workflow execution time. The number 
of file transfers is important from the perspective of overall 
resource use and also for its impact in performance. The overall 
completion time is important for users that want to run their 
workloads in a short period of time.  



Table 1. Simulation parameters for the Grid sites 
S Grid Sim S Grid Sim 

- P D P D - P D P D 

1 720 958 72 95 14 76 1190 8 119 

2 516 865 51 86 15 64 1723 7 172 

3 400 200 40 20 16 60 569 6 57 

4 350 2170 35 217 17 55 1190 6 119 

5 312 1627 31 162 18 42 243 4 24 

6 296 1130 29 113 19 42 1712 4 172 

7 272 647 27 65 20 40 109 4 11 

8 158 1365 16 139 21 40 53 4 6 

9 136 591 13 59 22 32 976 3 98 

10 100 976 10 97 23 20 1311 2 131 

11 82 1712 8 171 24 19 55 2 5 

12 80 2172 8 217 25 12 1294 2 130 

13 80 879 8 88      

 

5.1 Execution Strategies 
We compare the results according to two external scheduling 
algorithms combined with two replication policies. We assume 
that at each site there is a local scheduling policy which in our 
study is set to FIFO (first in first out), and a file deletion policy 
which is set to LRU. Thus, the workflow can be executed based 
on one of the four execution/replication strategies: 
Random. The execution site is selected randomly. Input files are 
replicated at the execution site but do not become available to 
other jobs. Once a job finishes, the transferred input files are 
deleted.  
Clustered. The execution site is selected based on the job 
identification. Each job is assigned to a cluster as a consequence 
of the cluster design and each cluster is assigned to a site. The 
number of clusters per site is acquired by dividing the number of 
clusters by the number of sites. Input files are replicated at the 
execution site.  
RandomCaching. The execution site is selected randomly. Input 
files are replicated at the execution site and become available for 
other jobs.  
DataPresent. Jobs are sent to a site with the most files that they 
need. If more than one site qualifies then a random one is chosen.  

5.2 Results 
As can be observed in figure 4, executing the Coadd workflow 
according to strategies 1 and 3 is extremely expensive in terms of 
file transfers, requiring almost 5.5 million transfers. The reuse of 
input files with RandomCaching results in only a minor reduction 
in the number of transfers. The clustering approach can reduce the 
number of file transfers to approximately 550,000 when running 
with the first five and ten sites.  
The assignment of clusters to sites did not take into account the 
resources available per site. Thus, when we ran the workflow with 
15, 20 and 25 sites, sites with minimal storage availability were 
added to the pool of running sites causing the number of file 
deletions to increase and consequently increasing the number of 

transfers.  The DataPresent strategy also caches data and takes 
advantage of the total amount of storage available, showing 
significant reduction on the number of file transfers when running 
with more sites in the pool.  
 
 
 
 
 

 
Figure 4. Total number of file transfers by strategy 

 
 
 
 
 
 

Figure 5. Execution time for MAXPRE=20 

 
 
 
 

 

Figure 6. Execution time for MAXPRE=40 
 
 

 
 
 

Figure 7. Execution time for MAXPRE=60 
Figures 5, 6 and 7 show the performance of the four strategies 
when running the simulator with 20, 40 and 60 prescript jobs 
respectively. The figures show similar results for the Clustering 
strategy with 20, 40 and 60 prescript jobs. Clustering allows file 
reuse, reduces the number of file transfers and consequently the 
time to run the prescript job. Transferring fewer files for a job can 
bring performance benefits if, by the time the transfers end, there 
are available processors to run the job. Increasing the number of 
prescripts in this strategy causes more jobs to be ready to run, but 
they have to wait for free processors because the time to run the 
job is higher than the time to perform the few file transfers. Also, 
it can be observed that the performance decreases for the 
Clustering strategy when the number of sites grows. This result is 
a consequence of adding sites with less number of processors in 
the execution pool. Since clusters are assigned to sites not 
considering the resources available, sites with few processors 
receive the same load as sites with more resources causing jobs to 
wait for free processors. Increasing the number of prescript jobs 
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enhances the performance for Random and RandomCaching. For 
these two strategies, the cost to transfer more files is reflected in 
the performance when the number of prescript is 20. When more 
file transfers are performed in parallel, the execution time for both 
strategies improves. However, having a high number of prescript 
jobs running may not be feasible if jobs perform large number of 
file transfers. The simultaneous number of hits over the gridftp 
server can cause problems to this service. Increasing the number 
of sites in the pool does not show better execution times for 
neither strategy. With MAXPRE set to 20, the Datapresent 
strategy presents improvements until the number of sites reaches 
15. After this point, the inclusion of sites does not bring benefits 
for any number prescripts. Increasing the number of prescripts to 
60 only achieves improvement when the number of sites is five. 
Finally, we have just begun the validation of these simulation 
results on live Grid3 resources, modeling a run-time simulation of 
glide-in execution by simply running a “mock” job on the submit 
host, with accurately simulated queuing. Thus, the live-Grid runs 
represent actual data transfer, and a closely-simulated run time for 
glide-in CPU allocation, but without consuming actual CPU 
resources from the production Grid. Two live comparison runs 
have been completed.  In the first, a 5% sample of the full 44K 
job coadd workflow was run on 4 Grid sites, using full file sizes 
and job durations. This run was performed for two of the four 
algorithms, SPCL and Random. Simulation results show run 
completion time of 22.83 hours for the Random algorithm and 
18.80 hours for SPCL; measured results were about 15% longer. 
In a second test, we compared two smaller runs across a larger 
Grid of 10 sites.  This scaled-down test used 1000 jobs of 3 
minutes each, and a data file size of 1MB. Simulation results 
yielded 78 minutes for the Random algorithm and 37 minutes for 
SPCL; measured results were 1.3 times longer. While highly 
preliminary, these initial live Grid tests offer encouraging 
indications that SPCL holds promising potential for speedup of 
spatial data processing. 

6. CONCLUSION AND FUTURE WORK 
We presented a job and file clustering approach to execute 
workflows in Grid environments. We evaluated the proposed 
solution with a real file access pattern in a simulation 
environment. The results show that clustering jobs by affinity of 
files reduces total number of file transfers. This reduction benefits 
the Grid as a whole by reducing traffic between the sites. It also 
benefits the application by improving its performance. We believe 
that the same approach can be adopted by other scientific 
applications that present the same characteristics of spatial 
processing. The good results encourage us to plan the validation 
of the clustering approach in a real Grid. We also intend to 
integrate this approach with other site selections algorithms that 
take into account the resources availabilities in the sites in order 
to schedule jobs. Furthermore, we plan to apply job clustering 
techniques in other workflows patterns. For example, a pattern 
that is frequently observed in scientific workflows is the presence 
of several independent pipelines where jobs communicate with 
the preceding and succeeding jobs via data files. We intend to 

exploit the idea of clustering using DAG transformation by 
grouping together the jobs that are part of the pipeline portions of 
the workflow. Such transformation can reduce the number of file 
transfers and also the total number of job submissions. 
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