
Planning Spatial Workflows to Optimize Grid Performance
Luiz Meyer

Federal University of Rio de Janeiro
COPPE - Computer Science

vivacqua@cos.ufrj.br

Marta Mattoso
Federal University of Rio de Janeiro

COPPE - Computer Science
marta@cos.ufrj.br

James Annis
Fermilab

Experimental Astrophysics
annis@fnal.gov

Mike Wilde
Argonne National Laboratory

MCS Division
wilde@mcs.anl.gov

Ian Foster

Argonne National Laboratory
MCS Division

foster@mcs.anl.gov

ABSTRACT
In many scientific workflows, particularly those that operate on
spatially oriented data, jobs that process adjacent regions of space
often reference large numbers of files in common. Such
workflows, when processed using workflow planning algorithms
that are unaware of the application’s file reference pattern, result
in a huge number of redundant file transfers between grid sites
and consequently perform poorly. This work presents a
generalized approach to planning spatial workflow schedules for
Grid execution based on the spatial proximity of files and the
spatial range of jobs. We evaluate our solution to this problem
using the file access pattern of an astronomy application that
performs co-addition of images from the Sloan Digital Sky
Survey. We show that, in initial tests on Grids of 5 to 25 sites, our
spatial clustering approach eliminates 50% to 90% of the file
transfers between Grid sites relative to the next-best planning
algorithms we tested that were not “spatially aware”. At moderate
levels of concurrent file transfer, this reduction of redundant
network I/O improves the application execution time by 30% to
70%, reduces Grid network and storage overhead and is broadly
applicable to a wide range of spatially-oriented problems.

Categories and Subject Descriptors
J.2 [Computer Applications]: Physical Sciences and Engineering
– astronomy

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Grid, Spatial Workflow, File Transfer, Performance.

1. INTRODUCTION
In many scientific domains, typified by astronomy, earth systems

science, and geographic information systems, datasets represent
the characteristics of some region of the sky, the atmosphere, or
the earth. Analogous spatial dataset representation is often found
in domains such as material science, computational chemistry,
and fluid dynamics, where the entities being modeled have spatial
characteristics. The datasets of these domains are indexed (and
often named and cataloged) by the spatial coordinates of the
region that the data pertains to. Spatial datasets are often
processed by “gridding” the problem space into uniformly-sized
partitions. Applications that process spatial data are frequently
partitioned into jobs that perform processing in manageable units
of resources such as file storage and CPU or RAM. Jobs are
typically sized to make them small enough (in memory and
duration) to be practical to run, yet large enough to reduce
scheduling overhead to acceptable levels. Frequently, these jobs
are chained, based on data or resource dependencies, into flow
graphs, to form complex scientific workflows. Running such
workflows in a Grid imposes many challenges due to the large
number of jobs, file transfers, and amount of disk space needed to
process them at distributed sites, and to the various tradeoffs in
the scheduling of Grid resources.
The thesis of this work is that spatial workflows can be best
planned for Grid execution using spatially-aware scheduling
algorithms; that such algorithms are simple to develop and
deploy; and that such scheduling algorithm has very general
applicability to this popular and important class of application
workflows. The opportunity to exploit knowledge of spatial
proximity to improve the performance of a Grid workflow is
manifest in many application codes used by the Sloan Digital Sky
Survey (SDSS) [11], an astronomical survey project, creating a
publicly accessible database of about one quarter of the sky, and
measuring the characteristics of over 100M celestial objects and
the distances to over one million galaxies and quasars. In such
spatial problems, we are typically constrained by the following
objectives. First, we want to leave files processed at sites at the
end of jobs, so that adjacent jobs can use these files. But, at the
same time, we want to remove files from sites as soon as they are
no longer needed, as the amount of space needed to hold the input
dataset poses a significant space pressure on the sites.
We describe here an algorithm to cluster jobs by their spatial
proximity and to schedule these clusters on Grid sites such that
the problem space is processed in an order that attempts to take
maximum advantage of files already present at each site. Our
results show that this algorithm, which we name SPCL (for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’06, April, 23-27, 2006, Dijon, France.
Copyright 2006 ACM 1-59593-108-2/06/0004…$5.00.

“spatial clustering”), reduces the number of file transfers between
grid sites and improve overall workflow execution time. Our
SPCL strategy takes advantage of data locality through the use of
dynamic replication and schedule jobs in a manner that reduces
the number of replicas created and the number of file transfers
performed when executing a workflow. We evaluated the
effectiveness of SPCL via simulation studies measuring the file
reference trace and performance of a complete run of the survey’s
southern hemisphere data, comprising 44,400 jobs with
approximately 5.4 million file references. The results show that
the SPCL planning algorithm, in initial simulations on Grids of 5
to 25 sites, and live tests on Grids of 4 and 10 sites, eliminates
50% to 90% of the file transfers between Grid sites relative to the
next-best planning algorithms we tested that were not “spatially
aware”. At moderate levels of concurrent file transfer, this
reduction of redundant network I/O improves the application
execution time by 30% to 70%, reduces Grid network and storage
overhead and is broadly applicable to a wide range of spatially-
oriented problems.
The rest of this work is organized as follows. Section 2 discusses
related work that deals with grid scheduling and data placement.
Section 3 describes the characteristics of the SDSSS/Coadd
workflow that we consider in our experiments, and the design of
our clustering by access affinity algorithm. Section 4 describes
the simulation framework adopted in the experiments, while in
Section 5 the experimental results are analyzed. Finally, Section 6
concludes this work and points to future directions.

2. RELATED WORK
Several works in the literature address the benefits of data
replication in data grid scenarios. Casanova et al. [1] propose an
adaptive scheduling algorithm for parameter sweep applications
where shared files are pre-staged strategically to improve reuse.
Ranganathan and Foster [9, 10] evaluate a set of scheduling and
replication algorithms and the impact of network bandwidth, user
access patterns and data placement in the performance of job
executions. The evaluation was done in a simulation environment
and the results showed that scheduling jobs to locations where the
input data already exists, and asynchronously replicating popular
data files across the Grid, provide good results. Cameron et al. [5,
6] also measure the effects of various job scheduling and data
replication strategies in a simulation environment. Their results
show benefits of scheduling taking into account the workload in
the computing resources. However, this work assumes that each
job requires a single input file. Also, the workload is generated
from different users spread over different sites. An integrated
replication and scheduling strategy is proposed and evaluated by
Chakrabarti et al. [2]. Like in the previous mentioned works, the
workload scenario consists of a set of independent jobs, submitted
from different sites at different times. Data replication is
performed asynchronously but jobs can access multiple files. The
effect of transferring input/output data on overall grid
performance is studied by Shan et al. [12]. However, the work
assumes that all input files are present at the host where the job is
submitted and files are not reused by different jobs. Mohamed and
Epema [8] propose an algorithm to place jobs on clusters close to
the site where the input files reside. The work assumes that the
jobs require the same single input file which can be replicated.
Singh et al. analyze how clustering jobs can improve workflow
execution [13]. In their work, the authors discuss different

configurations of the workflow engine and their impact on
performance results. Our work differs by implementing a
clustering approach with the goal to improve performance through
the reduction of redundant file transfers while scheduling work in
a manner that matches the sites storage capacity. Files are
accessed by jobs belonging to a single workflow. Thus, when
deciding to replicate files we do not take into account accesses by
other users. Files are temporarily replicated because they will be
used by other jobs in the context of the same workflow. Although
some files have more accesses than others, we do not proactively
replicate them. The selection of a site to run a job is done based
on an expectation that subsets of the required files will be in
place. These replicas may be deleted once they are no longer
required by a group of jobs. This deletion is done because it may
not be feasible to retain these replicas during the execution of the
whole workflow. We assume that we have advance knowledge of
the entire workflow for a large-scale operation such as the co-
addition of an entire sky region, and that we know the spatial
coordinates of every job as an n-tuple in the coordinate space of
the application. Further, unlike the approach taken in [10] we do
not assume that specific files will grow in average popularity over
the lifetime of the run, but rather that such bursts in file popularity
will be highly localized, transient, and due to file reference
overlaps.

3. CLUSTERING BY SPATIAL
PROXIMITY
Clustering of jobs and files can be computed in several ways.
Given a workflow definition, its set of jobs, and its files,
dependencies can be extracted and passed to a clustering
algorithm that can apply heuristics to produce the clustering
definition for jobs and files. In cases where the workflow is
formed by several pipelines this definition is simple and intuitive,
i.e. clustering together all jobs that are pipelined in the workflow.
If a job that reads a file is placed at the same site of the job that
produced the file, no file transfer is needed. In spatially-oriented
applications, the ability for a data-flow-driven algorithm to
automatically detect file-reference clusters is more challenging,
because it must discover how jobs are related to each other based
on their file access pattern. This process can be computationally
intensive, and does not take advantage of the easier-to-process
information present in the correlated coordinate systems of the
jobs and the members of the dataset. The main goal of the SPCL
clustering algorithm is to reduce the number of file transfers
between grid sites. The idea is to create clusters of jobs by spatial
proximity, assign each job to a cluster, each cluster to a grid site
and during the execution of the workflow, schedule all jobs
belonging to a cluster to the same site. The SDSS co-addition
workflow consists of 44,400 jobs that operate on 2.5 Terabytes of
input data stored in 544,500 distinct files, performing 5,419,370
file references. On average, each file is referenced by
approximately 10.1 different jobs. The portions of the SDSS
dataset processed by co-add consists of image data, and are
cataloged at a coordinate grid consisting of three dimensions:
right ascension (ra), declination (dec), and spectral filter. For
simplicity, we treat ra, dec, and filter as if they were coordinates
(X, Y, Z) in a three-dimensional space. Each job operates on a
region centered at a specific (ra,dec,filter) value, and processes
files related to adjacent (ra,dec) grid points. The SPCL algorithm
for clustering jobs and files together was trivial, performed by a

simple division of the overall three-space into approximately
uniformly sized partitions. The z or filter dimension was treated
as a dependent variable of the ra,dec: within each cluster, all the
filter values for jobs and data files at a given ra,dec coordinate
were placed in the same cluster. Most files are referenced by jobs
in three declination grid points and eight ra grid points. Thus we
generated clusters with these dimensions and assigned each job to
a cluster based on the value of both attributes. As result, 372
clusters were created: 368 cluster with 120 jobs each, and 4 with
60 jobs each. Since the number of generated clusters is greater
than the number of grid sites, jobs from different clusters have to
be assigned to run at the same site. To guarantee that files that are
shared by jobs belonging to the same cluster will be in cache, the
SPCL algorithm does not schedule jobs from different clusters to
run at same time at the same site. This is accomplished by
creating dependencies among jobs from different clusters. Figure
1 illustrates SPCL scheduling approach. Suppose that clusters i
and j are assigned to run at site k. In order to maximize file reuse
by jobs belonging to the same cluster, jobs from cluster i must be
scheduled before jobs from cluster j. This is achieved by creating
a "parent-child" relationship between the jobs of the workflow.

Figure 1. The SPCL scheduling approach.

4. THE SIMULATION FRAMEWORK
We model the Grid environment as a set of sites, each having a
fixed number of processors and a fixed amount of total disk
storage space. We assume that at each site all processors have the
same performance and have access to all disk files stored at that
site. At a separate submit host, external to the Grid, a workflow
manager controls the scheduling of the jobs to the sites. A replica
location service (RLS) keeps track of the location of file replicas
spread over the Grid.
Each file has a unique filename and is characterized by its size.
Each job is characterized by a unique job identifier and the list of
files it needs to process. In order to execute, a job needs the set of
input files to be available at the site that was selected for its
execution. In our studies up to this point, we disregard the transfer
back of output results, since in the specific application that
motivated this work the transfer of output data was a negligible
portion of the overall execution time and load on the Grid. As in
Condor/DAGman [4], a “prescript” and a “postscript” step is
associated with each workflow job. The prescript and postscript
steps are responsible for transferring input files and deleting
output files, respectively. The number of prescript that can be
started concurrently (across all jobs) by the submit host is
controlled by the DAGman parameter MAXPRE, which serves as
a convenient workflow-wide throttle on the data transfer load that
the workflow manager can impose on the Grid from the submit
host. Figure 2 depicts the Grid environment modeled by our
simulator.

Figure 2. Grid environment. Figure 3. Submit host.
We modeled the behavior of this Grid using discrete event
simulation coded in Perl and tailored its algorithms and data
structures to the needs of the Grid elements in our simulation
domain. Figure 3 details the architecture of the submit host in the
simulation environment. The execution of a job is simulated in the
following stages, while a simulation clock keeps track of elapsed
time and drives the event loop: First, the workflow manager takes
the identification of the job and its list of required files and starts
the input file transfer processing for that job. The prescript
processing is responsible for two tasks: deciding where to run the
job and transferring needed input files to that site. The decision on
where to run a job is based on a selectable scheduling algorithm
while the transfer task is performed based on the information from
a replica location service (RLS). The job is then sent to a site,
waits in a local scheduler queue for a free CPU, and then runs
during a specified amount of time. After job execution, the
workflow manager starts the postscript processing that is
responsible for registering or deleting the new replicas in the
RLS, depending on the replica policy being enforced.

5. EXPERIMENTS
We modeled our entire test Grid on a large subset (25) of the 30+
sites of Grid3 [7], using the site parameters listed on table 1. The
column S indicates the identification of the site, and the columns
P and D show the number of processors and disk available at each
site. We assume that we have a target of obtaining 10% of the
resources in each site to define our Grid simulation environment.
For CPU allocation, we assume an approach where fixed-size
pools of CPUs are held dedicated at each site for the duration of
the workflow, in a manner similar to that implemented by the
Condor “Glide-In” [3] facility. Each simulated test Grid of size N
(N=5, 10, 15, 20, 25) consisted of the first N sites listed on this
table. Each input file is approximately 5 Megabytes in size, is
initially located at one site (as in practice) and takes five seconds
to be transferred. Each job runs for 15 minutes. The workflow
manager starts the prescript process for each job with an interval
of one second. When the number of prescripts running reaches the
maximum number of prescripts allowed, the workflow manager
has to wait for the end of the first prescript already running in
order to start a new prescript. In the same way, when a job is
submitted, if there are no available processors at the execution site
then the job has to wait in the remote queue. The total time to run
a job is computed by summing the time in the queue at the submit
host, the time to transfer the necessary input files, the time in a
queue at the execution site, and the time to run the job. We
analyze, in our experiments, both (i) the total number of file
transfers and (ii) the total workflow execution time. The number
of file transfers is important from the perspective of overall
resource use and also for its impact in performance. The overall
completion time is important for users that want to run their
workloads in a short period of time.

Table 1. Simulation parameters for the Grid sites
S Grid Sim S Grid Sim

- P D P D - P D P D

1 720 958 72 95 14 76 1190 8 119

2 516 865 51 86 15 64 1723 7 172

3 400 200 40 20 16 60 569 6 57

4 350 2170 35 217 17 55 1190 6 119

5 312 1627 31 162 18 42 243 4 24

6 296 1130 29 113 19 42 1712 4 172

7 272 647 27 65 20 40 109 4 11

8 158 1365 16 139 21 40 53 4 6

9 136 591 13 59 22 32 976 3 98

10 100 976 10 97 23 20 1311 2 131

11 82 1712 8 171 24 19 55 2 5

12 80 2172 8 217 25 12 1294 2 130

13 80 879 8 88

5.1 Execution Strategies
We compare the results according to two external scheduling
algorithms combined with two replication policies. We assume
that at each site there is a local scheduling policy which in our
study is set to FIFO (first in first out), and a file deletion policy
which is set to LRU. Thus, the workflow can be executed based
on one of the four execution/replication strategies:
Random. The execution site is selected randomly. Input files are
replicated at the execution site but do not become available to
other jobs. Once a job finishes, the transferred input files are
deleted.
Clustered. The execution site is selected based on the job
identification. Each job is assigned to a cluster as a consequence
of the cluster design and each cluster is assigned to a site. The
number of clusters per site is acquired by dividing the number of
clusters by the number of sites. Input files are replicated at the
execution site.
RandomCaching. The execution site is selected randomly. Input
files are replicated at the execution site and become available for
other jobs.
DataPresent. Jobs are sent to a site with the most files that they
need. If more than one site qualifies then a random one is chosen.

5.2 Results
As can be observed in figure 4, executing the Coadd workflow
according to strategies 1 and 3 is extremely expensive in terms of
file transfers, requiring almost 5.5 million transfers. The reuse of
input files with RandomCaching results in only a minor reduction
in the number of transfers. The clustering approach can reduce the
number of file transfers to approximately 550,000 when running
with the first five and ten sites.
The assignment of clusters to sites did not take into account the
resources available per site. Thus, when we ran the workflow with
15, 20 and 25 sites, sites with minimal storage availability were
added to the pool of running sites causing the number of file
deletions to increase and consequently increasing the number of

transfers. The DataPresent strategy also caches data and takes
advantage of the total amount of storage available, showing
significant reduction on the number of file transfers when running
with more sites in the pool.

Figure 4. Total number of file transfers by strategy

Figure 5. Execution time for MAXPRE=20

Figure 6. Execution time for MAXPRE=40

Figure 7. Execution time for MAXPRE=60
Figures 5, 6 and 7 show the performance of the four strategies
when running the simulator with 20, 40 and 60 prescript jobs
respectively. The figures show similar results for the Clustering
strategy with 20, 40 and 60 prescript jobs. Clustering allows file
reuse, reduces the number of file transfers and consequently the
time to run the prescript job. Transferring fewer files for a job can
bring performance benefits if, by the time the transfers end, there
are available processors to run the job. Increasing the number of
prescripts in this strategy causes more jobs to be ready to run, but
they have to wait for free processors because the time to run the
job is higher than the time to perform the few file transfers. Also,
it can be observed that the performance decreases for the
Clustering strategy when the number of sites grows. This result is
a consequence of adding sites with less number of processors in
the execution pool. Since clusters are assigned to sites not
considering the resources available, sites with few processors
receive the same load as sites with more resources causing jobs to
wait for free processors. Increasing the number of prescript jobs

Execution time - Hour

0

100

200

300

400

5 10 15 20 25 Number of sites

Random
Cluster
RandomCaching
DataPresent

Execution Time - hour

0
100
200
300
400
500

5 10 15 20 25 Number of sites

Random

Clust er

RandomCaching

Dat aPresent

Execution Time - Hour

0

100

200

300

400

5 10 15 20 25 Number of sites

Random

Clust er

RandomCaching

Dat aPresent

File Transfers

0
1000000
2000000
3000000
4000000
5000000
6000000

5 10 15 20 25
Number of sites

Random
Cluster
RandomCaching
DataPresent

enhances the performance for Random and RandomCaching. For
these two strategies, the cost to transfer more files is reflected in
the performance when the number of prescript is 20. When more
file transfers are performed in parallel, the execution time for both
strategies improves. However, having a high number of prescript
jobs running may not be feasible if jobs perform large number of
file transfers. The simultaneous number of hits over the gridftp
server can cause problems to this service. Increasing the number
of sites in the pool does not show better execution times for
neither strategy. With MAXPRE set to 20, the Datapresent
strategy presents improvements until the number of sites reaches
15. After this point, the inclusion of sites does not bring benefits
for any number prescripts. Increasing the number of prescripts to
60 only achieves improvement when the number of sites is five.
Finally, we have just begun the validation of these simulation
results on live Grid3 resources, modeling a run-time simulation of
glide-in execution by simply running a “mock” job on the submit
host, with accurately simulated queuing. Thus, the live-Grid runs
represent actual data transfer, and a closely-simulated run time for
glide-in CPU allocation, but without consuming actual CPU
resources from the production Grid. Two live comparison runs
have been completed. In the first, a 5% sample of the full 44K
job coadd workflow was run on 4 Grid sites, using full file sizes
and job durations. This run was performed for two of the four
algorithms, SPCL and Random. Simulation results show run
completion time of 22.83 hours for the Random algorithm and
18.80 hours for SPCL; measured results were about 15% longer.
In a second test, we compared two smaller runs across a larger
Grid of 10 sites. This scaled-down test used 1000 jobs of 3
minutes each, and a data file size of 1MB. Simulation results
yielded 78 minutes for the Random algorithm and 37 minutes for
SPCL; measured results were 1.3 times longer. While highly
preliminary, these initial live Grid tests offer encouraging
indications that SPCL holds promising potential for speedup of
spatial data processing.

6. CONCLUSION AND FUTURE WORK
We presented a job and file clustering approach to execute
workflows in Grid environments. We evaluated the proposed
solution with a real file access pattern in a simulation
environment. The results show that clustering jobs by affinity of
files reduces total number of file transfers. This reduction benefits
the Grid as a whole by reducing traffic between the sites. It also
benefits the application by improving its performance. We believe
that the same approach can be adopted by other scientific
applications that present the same characteristics of spatial
processing. The good results encourage us to plan the validation
of the clustering approach in a real Grid. We also intend to
integrate this approach with other site selections algorithms that
take into account the resources availabilities in the sites in order
to schedule jobs. Furthermore, we plan to apply job clustering
techniques in other workflows patterns. For example, a pattern
that is frequently observed in scientific workflows is the presence
of several independent pipelines where jobs communicate with
the preceding and succeeding jobs via data files. We intend to

exploit the idea of clustering using DAG transformation by
grouping together the jobs that are part of the pipeline portions of
the workflow. Such transformation can reduce the number of file
transfers and also the total number of job submissions.

7. ACKNOWLEDGEMENTS
Our thanks to CAPES and CNPq Brazilian funding agencies.

8. REFERENCES
[1] Casanova, H., Obertelli, G., Berman, F., Wolski, R., The

AppLeS Parameter Sweep Template: User-Level
Middleware for the Grid, in SC’2000, Denver, USA, 2000.

[2] Chakrabarti, A., Dheepak, R.A., Sengupta, S., Integration of
Scheduling and Replication in Data Grids, Proceedings of
11th International Conference on High Performance
Computing, Bangalore, India, December 2004.

[3] Condor Project, http://www.cs.wisc.edu/condor
[4] DagMan, http://www.cs.wisc.edu/condor/dagman/
[5] Cameron, R. Carvajal-Schiaffino, A.P.Millar, Nicholson C.,

Stockinger K., Zini, F., Evaluating Scheduling and Replica
Optimization Strategies in OptorSim, in Proc. of 4th
International Workshop on Grid Computing (Grid2003).
Phoenix, USA, November 2003.

[6] Cameron, R. Carvajal-Schiaffino, A.P.Millar, Nicholson C.,
Stockinger K., Zini, F., Evaluation of an Economic-Based
File Replication Strategy for a Data Grid, in Int. Workshop
on Agent Based Cluster and Grid Computing, CCGrid2003,
Tokyo, Japan, May 2003.

[7] Foster, I. et. al., The Grid2003 Production Grid: Principles
and Practice, HPDC 2004, Honolulu, USA, June 2004.

[8] Mohamed, H.H., Epema, D.H.J., An Evaluation of the Close-
to-Files Processor and Data Co-Allocation Policy in
Multiclusters, IEEE International Conference on Cluster
Computing, San Diego, USA, September 2004.

[9] Ranganathan, K., Foster, I., Simulation Studies of
Computation and Data Scheduling Algorithms for Data
Grids, in Journal of Grid Computing, V1(1) 2003.

[10] Ranganathan,K., Foster, I., Computation Scheduling and
Data Replication Algorithms for Data Grids, 'Grid Resource
Management: State of the Art and Future Trends', J.
Nabrzyski, J. Schopf, and J. Weglarz, eds. Kluwer Academic
Publishers, 2003.

[11] SDSS Project, https://www.darkenergysurvey.org.
[12] Shan, H., Oliker, L., Smith, W., Biswas, R., Scheduling in

Heterogeneous Grid Environments: The Effects of Data
Migration, International Conference on Advanced
Computing and Communication, Gujarat, India, 2004.

[13] Singh, G., Kesselman, C., Deelman, E., Optimizing Grid-
Based Workflow Execution, work submitted to 14th IEEE
International Symposium on High Performance Distributing
Computing, July 2005.

