
Hybrid Static/Dynamic Activity Analysis?

Barbara Kreaseck1, Luis Ramos1, Scott Easterday1, Michelle Strout2, and Paul
Hovland3

1 La Sierra University, Riverside, CA
2 Colorado State University, Fort Collins

3 Argonne National Laboratory

Abstract. Automatic Differentiation is the process of translating one
program that computes a function f and generating a different program
that computes the derivative of that function, f ′. Activity analysis is
important for AD. Our results show that a dynamic activity analysis,
checking at run-time, incurs an average overhead of 55% when all inde-
pendent variable are active. When as few as half of the independent vari-
ables are active, dynamic activity analysis enables an average speedup
of 28%. We investigate static activity analysis combined with dynamic
activity analysis as a technique for reducing the overhead of dynamic
activity analysis.

1 Introduction

Automatic Differentiation (AD) is the process of translating one program that
computes a function f and generating a different program that computes the
derivative of that function, f ′. Activity analysis [5, 11, 9, 7] determines which
temporary variables lie along the dependence chains between inputs and outputs
of the function f . When only a subset of the inputs and outputs are being studied,
activity analysis can be used to identify an associated subset of local variables
that are defined and used along the dependence chains from the inputs of concern
to the final calculation of the outputs of concern.

Activity analysis has the potential to significantly reduce the number of cal-
culations needed to produce the outputs of concern from the inputs of concern.
Unfortunately, static activity analysis (done at compile time) may be too con-
verative in the presence of control flow and dynamic activity analysis (done at
runtime) may introduce a significant amount of overhead.

In this paper, we quantify the overhead of performing dynamic activity anal-
ysis on a number of benchmarks. Across a collection of Fortran benchmarks, our
results show that the average overhead of dynamic activity analysis when all of
the independent variables are active is 55%. Across a collection of C benchmarks,

? This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing Re-
search, U.S. Department of Energy under Contract W-31-109-Eng-38 and by the
National Science Foundation under Grant No. OCE-020559.



void f(double x, double &y,

double z)

{
double a, c;

a = z * z;

c = x * 9;

y = a * c;

}

Fig. 1. Function.

void fprime(double x, double dx,
double &y, double &dy,
double z, double dz)

{ /* dx = 1, dz = 0 */
double a, c, da, dc;

a = z * z;

da = dz*z + dz*z;

c = x * 9;

dc = 9 * dx;

y = a * c;

dy = da*c + dc*a;

} /* dy = ∂y/∂x */

Fig. 2. Derivatives.

our results show that when as few as half of the independent variables are active,
dynamic activity analysis enables an average speedup of 28%.

In Section 2 we provide the motivation for our studies. In Section 3 we
present currently available activity analysis and our extensions. Next, we present
our study of the overhead of dynamic activity analysis in Section4. In Section 5
we present our hybrid static/dynamic analysis. Finally, we discuss future work
and conclude in Section 6.

2 Motivation

We demonstrate the importance of activity analysis to AD with the following
examples. In Figure 1, we show an example function f with an input variables x
and z and an output variable y. AD would generate the derivative code shown
in Figure 2 to calculate the derivative of y with respect to x (where we represent
∂y/∂x as just the variable dy). Activity analysis is applied to the original pro-
gram and determines which temporary variables lie along the dependence chain
between independent variables (a subset of the inputs) and dependent variables
(a subset of the outputs). In the example, local variable c is active while local
variable a is not. Variable a is inactive because it does not depend upon the
value of x. Variable c is active because it depends upon the value of x and is
used to compute the value of y. Activity information enables an AD tool to avoid
generating the code that has been crossed out in Figure 2. In real applications,
one typically uses the vector mode of AD and the variables da, dc, and dy are
arrays. Furthermore, the update dy = a*dc + c*da; becomes

for(i=0;i<nindeps;i++)

dy[i] = a*dc[i] + c*da[i];

Thus, activity analysis offers the opportunity for substantial savings, especially
when the number of independent variables is large.

For simplicity, we restrict our discussion to the forward mode of AD. In the reverse
mode, activity analysis offers substantial savings opportunities through reduced stor-
age requirements.



int flag;
double g, z;
void f2(double x, double &y)
{

double a,b,c;

if (flag) {
a = g * z;

} else {
a = x * x;

}
c = x * 9;

y = a * c;
}

Fig. 3. Example function, f2, where the control-path is not deterministic. When flag is
true, local variable a will be inactive. When flag is false, local variable a will be active.

Activity analysis can be performed within a data-flow analysis framework.
Unfortunately, inaccuracies in the analysis results may occur due to control-path
uncertainty. Consider the function f2 in Figure 3. The control-path through f2 is
not deterministic. Now, a will be active if the flag is false and it will be inactive if
the flag is true. Statically we can characterize a as active to be conservative but
this would result in more work than necessary. The amount of unnecessary work
depends upon the number of independent variables that were selected when the
derivative code was produced. Specifically, for f2, that would just be one (just
x). But for derivative code in general, that will probably not be the case.

We address the problem of activity analysis in the presence of control flow by
characterizing a as may active and augmenting the derivative code to check the
activity of a dynamically during run-time. This technique is called dynamic anal-

ysis or run-time analysis. Specifically we associate a boolean with each gradient
vector (e.g., da) to indicate whether it is active or not.

A naive approach is to just use dynamic activity analysis on all variables. This
involves the overhead of checking the active flag before every derivative compu-
tation. In the next section, we discuss current activity analysis implementations,
along with our extensions. In Section 4 we will see that the overhead of dynamic
activity analysis can be quite high. Thus, we describe a hybrid static/dynamic
approach to activity analysis in Section 5.

3 Dynamic Activity Analysis and AD

Our work with activity analysis is based upon two AD tools: ADIC [6, 3] for
C codes, and OpenAD [12] for Fortran codes. The following subsections discuss
activity analysis with each tool.

Dynamic Activity Analysis in ADIC ADIC 1.2 does not perform static
activity analysis. All floating-point variables are treated as active unless they
are specifically designated as inactive by the user. The generated derivative code
will include calls to axpy routines, which implement the process of combining
gradient vectors and local partial derivatives according to the chain rule of cal-
culus. The axpy routines are implemented as macros. ADIC 1.2 provides a set



Table 1. Characteristics of the Fortran benchmarks and dynamic overhead.

Benchmark Independent Depependent Size Source Overhead

bminsurf x f, fgrad n = 400 NEOS 1.51

daerfj x fvec, fjac n = 4 Minpack2 1.80

datrfj x fvec, fjac n = 3 Minpack2 2.18

dchqfj x fvec, fjac n = 11 Minpack2 2.17

dctsfj x fvec, fjac n = 134 Minpack2 1.00

dedffj x fvec, fjac n = 5 Minpack2 2.03

deptfg x,c f, fgrad n = 20x20 Minpack2 1.39

dficfj x,r fvec, fjac n = 160 Minpack2 1.06

dgdffj x fvec, fjac n = 11 Minpack2 1.63

dodcfg x,lambda f, fgrad n = 20x20 Minpack2 1.37

dsfdfj x,eps fvec, fjac n = 280 Minpack2 1.03

dsscfg x,lambda f, fgrad n = 20x20 Minpack2 1.48

of macros that implements dynamic activity checking. These macros augment
the gradient vectors with an activity flag and check (and set) the activity flags
during the axpy routines.

At runtime, initially the activity flags of all independent variables are set to
true and of all other inputs are set to false. The gradient accumulation macros
check the activity bit of each gradient vector prior to execution to affect the
following:

– When a rhs gradient vector is active, its values contribute to the calculation
of the lhs gradient vector and the activity flag of the lhs gradient vector is
set to active.

– When a rhs gradient vector is inactive, its values do not contribute to the
calculation of the lhs gradient vector.

– When all rhs gradient vectors are inactive, the activity flag of the lhs gradient
vector is set to inactive.

Static Activity Analysis in OpenAD OpenAD does not currently support
dynamic activity analysis. Instead, it uses a static may activity analysis. Given
user-identified independent and dependent variables, the may activity analysis
conservatively identifies local variables that may be active. The generated deriva-
tive code will include calls to sax subroutines, whose function is similar to the
axpy routines in ADIC. These sax routines will only be called using gradient
vectors of variables identified as may active. In Section 5, we define may activity
analysis more fully.

4 Overhead of Dynamic Activity Analysis

While dynamic activity analysis can reduce the number of gradient vector op-
erations within derivative code, it does introduce extra activity flag checking as
overhead. In this section, we quantify the impact of the overhead of dynamic
activity analysis.



Table 2. Characteristics of the C benchmarks.

Abr Benchmark Independent Dependent Size Source

C1 Ackley x f,g n = 20 see [1, 2]

C2 Boxbetts x ret n = 3 GlobOpt

C3 CamShape par, r obj n = 144 ADIC

C4 GenRosenBrock x ret n = 30 GlobOpt

C5 McCormic x ret n = 2 GlobOpt

C6 Paviani x ret n = 10 GlobOpt

C7 Plate2D x f, g mx = 12 TAO

C8 Polygon x obj n = 73 ADIC

4.1 Methodology

We investigated the overhead of dynamic activity analysis on two benchmark
testbeds. For C codes, we generated the derivative code using ADIC 1.2, which
provides two sets of axpy and related routines. The original set is a set of macros
which do not implement the activity bit and thus provide no activity checking.
The second set is a set of hand-coded macros that implement the activity bit
and perform dynamic activity checking.

We also created a scripting tool that auto-generates sets of axpy and related
routines to implement dynamic activity checking. We created one set of macros
for a direct comparison with the hand-generated macros. We also created a set
of functions for comparison with macros. By including each different set with the
derivative code, we created four execution units, which in our results we label as
“NoActiveCheck”, “HandCoded”, “AutoMacro”, and “AutoProc” respectively.
By normalizing our results to the NoActiveCheck, we can quantify the overhead
of dynamic activity analysis.

For Fortran codes, we generated the derivative code using OpenAD, which
had no prior support for dynamic activity analysis. We created a tool to auto-
generate sax subroutines that implement dynamic activity checking. Thus we
created two execution units per benchmark: “Static” uses the OpenAD default
routines that do not perform dynamic activity checking, while “Dynamic” uses
our auto-generated routines that do. We normalize our Dynamic results to our
Static results to quantify the overhead of dynamic activity analysis.

4.2 Results

Table 1 summarizes the Fortran benchmarks used in our experiments. All are
from the Minpack2 benchmark suite [10] except the bminsurf, an example prob-
lem from the TAO Toolkit [4]. The column labeled “Overhead” shows the average
of four Dynamic execution times normalized against the Static execution time.
Our runs represent the maximum possible overhead in that we set all inputs as
independent, and all outputs as dependent prior to derivative code generation.
The benchmarks display a broad range of overhead averaging 55%.

Table 2 summarizes the C benchmarks used in our experiments. Most of
the problems were derived from a c++ testsuite for global optimization [8]; the



C1 C2 C3 C4 C5 C6 C7 C8
0

0.5

1

1.5

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

NoActiveCheck
HandCoded
AutoProc
AutoMacro

Fig. 4. Overhead of Dynamic Activity Analysis using C benchmarks. See Table 2 for
benchmark descriptions.

others are part of the ADIC testsuite or TAO examples. Figure 4 displays the
overhead of dynamic activity analysis for each of the C benchmarks. When all
input variables are treated as independent variables (and are therefore active),
all variables are active and therefore the cost of dynamic activity checking is
pure overhead. In the more realistic situation where only 50% of the inputs are
active, dynamic analysis pays dividends, reducing the execution time by about
50% on average and up to 70% in the case of camshape.

5 Static/Dynamic Analysis

As we saw in Section 4, dynamic activity analysis provides full accuracy at the
price of non-insignificant overhead. OpenAD uses a static may analysis which
may incur less overhead by statically determining which local variables are prov-
ably inactive. Because this analysis cannot determine the activeness of all vari-
ables for all data inputs, the analysis results may be sub-optimal. We propose a
hybrid static/dynamic activity analysis that uses a static forward-direction must
analysis.

5.1 Must-May Static Activity Analysis

Static activity analysis is based upon the following definitions. A variable, v, is
may-vary when there is at least one control path to a define of v where the value
of v depends directly or transitively upon an independent variable. A variable,
v, is must-vary at a point in the function when all control-flow paths to that
point cause the value of v to depend directly or transitively upon the value of
an independent variable. A variable, v, is may-useful when there is at least one
control path from the define of v to the define of a dependent variable where the
value of a dependent variable depends directly or transitively upon v.

In may activity analysis, a variable, v, is classified may-active when there
is at least one point in the function where v is both may-vary and may-useful.
OpenAD uses the OpenAnalysis [13] toolkit to implement its data-flow analysis.
OpenAnalysis provides a may activity analysis. Partial deriatives for non-may-
active variables never have to be calculated.



DEPT100
DODC100

DSSC100
DEPT400

DODC400
DSSC400

DODC500
DSSC500

0

0.2

0.4

0.6

0.8

1

1.2
N

or
m

al
iz

ed
 E

xe
cu

tio
n 

T
im

e

STATIC
DYNAMIC
HYBRID

Fig. 5. Hybrid results versus Static and Dynamic with a single active boundary along
the main independent 2D vector. Execution times have been normalized by the Static
time. Here the 100, 400,or 500 within the benchmark name indicates that these runs
were using a 2D vector of size 100x100, 400x400, and 500x500, respectively.

In must-may activity analysis, a variable, v, is must-may-active at a point in
the function when v is both must-vary and may-useful. Should the actual execu-
tion path arrive at this point, v will be dynamically active since it is must-vary.
For each memory reference that can be determined must-may-active, we can
remove the activity check of dynamic activity checking. Thus, for some bench-
mark/independent/dependent trios that exhibit must-may-activity, our hybrid
static/dynamic activity analysis may reduce the overhead of dynamic activity
checking.

Using OpenAnalysis, we implemented the must-may activity analysis. We
designed a new set of sax routines that would skip the check of the activity
flag on the known must-may-active gradients. To avoid any extra checking in
this regard, we re-order the arguments to the sax calls to identify by position
the gradients that need to be dynamically checked and those that do not. We
manually adjusted the sax calls in each benchmark’s derivative code to comply
with the new interface. Then we used the must-may activity results to re-order
the arguments. We anticipate that this must-may activity analysis will become
an option in OpenAD, generating calls under the new interface and automatically
re-arranging the arguments.

5.2 Results

In Figure 5 we display the results of our hybrid static/dynamic activity analy-
sis. We consider several problem sizes for the dept, dodc, and dssc benchmarks.
We see that for several problem instances, the hybrid technique does reduce the
cost relative to conservative static activity analysis. Unfortunately, due to im-
plementation overhead in the hybrid accumulation routines, the performance of
the hybrid strategy rarely exceeds that of dynamic analysis for all may-active
variables. Currently, the hybrid accumulation routines involve multiple subrou-
tine calls. Furthermore, since the must-may-active variables are a subset of the
may-active variables, there may be no change between the may activity analysis
and the must-may activity analysis, especially for these small test problems. We
anticipate that as we reduce the implementation overhead of the hybrid accu-



mulation routines and examine complex applications where more variables can
be statically identified as must-active, the benefits of the hybrid strategy will
become more apparent.

6 Conclusion

We have implemented a hybrid static/dynamic strategy for activity analysis.
This approach offers the opportunity to use runtime information to avoid un-
necessary derivative accumulation operations, as may occur with conservative
static analysis, while avoiding the overhead of unneeded runtime tests, as may
occur with dynamic analysis. By restricting runtime tests to variables statically
identified as may active and eliminating tests for variables statically identified
as must-may active, we reduce the number of runtime checks. Our experimental
results indicate that this hybrid strategy can sometimes pay dividends, offering
improved performance over both a conservative static strategy and a dynamic
strategy. We anticipate that as we examine more complex applications and elim-
inate some of the implementation overhead of the hybrid strategy, the benefits
of the hybrid static/dynamic strategy will be even more pronounced.

References

1. D. H. Ackley. A connectionist machine for hillclimbing. Kluwer Academic Pub-
lishers, Boston, 1987.

2. B. Addis and S. Leyffer. A trust-region algorithm for global optimization. Technical
Report ANL/MCS-P1190-0804, Argonne National Laboratory, August 2004.

3. ADIC Webpage. http://www-fp.mcs.anl.gov/adic/.
4. S. J. Benson, L. C. McInnes, J. Moré, and J. Sarich. TAO user manual (revision

1.8). Technical Report ANL/MCS-TM-242, Mathematics and Computer Science
Division, Argonne National Laboratory, 2005. http://www.mcs.anl.gov/tao.

5. C. Bischof, P. Khademi, A. Mauer, and A. Carle. Adifor 2.0: Automatic differen-
tiation of fortran 77 programs. IEEE Comput. Sci. Eng., 3(3):18–32, 1996.

6. C. Bischof, L. Roh, and A. J. Mauer-Oats. ADIC: An extemsible automatic differ-
entiation tool for ANSI-C. Software: Practice and Experience, 27(12):1427–1456,
December 1997.

7. C. H. Bischof, P. D. Hovland, and B. Norris. On the implementation of automatic
differentiation tools. Higher-Order and Symbolic Computation, 2004.

8. Global Optimization Functions. http://www2.imm.dtu.dk/~km/GlobOpt/testex/.
9. L. Hascoet, U. Naumann, and V. Pascual. ”to be recorded” analysis in reverse-

mode automatic differentiation. Future Generation Computer Systems, 2004.
10. MINPACK-2 webpage. http://www-fp.mcs.anl.gov/otc/minpack/

sectionstar3_1.html.
11. U. Naumann. Reducing the memory requirement in reverse mode automatic dif-

ferentiation by solving tbr flow equations. In International Conference on Compu-

tational Science, pages 1039–1048. Springer, April 2002.
12. OpenAD Webpage. http://www-unix.mcs.anl.gov/openad/.
13. OpenAnalysis Webpage. http://www-unix.mcs.anl.gov/OpenAnalysisWiki/

moin.cgi.



The submitted manuscript has been created by
the University of Chicago as Operator of Argonne
National Laboratory (”Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department
of Energy. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up, nonex-
clusive, irrevocable worldwide license in said ar-
ticle to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.


