
Linearity Analysis for Automatic Differentiation?

Michelle Mills Strout1 and Paul Hovland2

1 Colorado State University, Fort Collins, CO 80523
2 Argonne National Laboratory, Argonne, IL 60439

Abstract. Linearity analysis determines which variables depend on which
other variables and whether the dependence is linear or nonlinear. One
of the many applications of this analysis is determining whether a loop
involves only linear loop-carried dependences and therefore the adjoint
of the loop may be reversed and fused with the computation of the orig-
inal function. This paper specifies the data-flow equations that compute
linearity analysis. In addition, the paper describes using linearity analy-
sis with array dependence analysis to determine whether a loop-carried
dependence is linear or nonlinear.

1 Introduction

Many automatic differentiation and optimization algorithms can benefit from
linearity analysis. Linearity analysis determines whether the dependence between
two variables is nonexistent, linear, or nonlinear. A variable is said to be linearly
dependent on another if all of the dependences along all of the dependence chains
are induced by linear or affine functions (addition, subtraction, or multiplication
by a constant). A variable is nonlinearly dependent on another if a nonlinear
operator (multiplication, division, transcendental functions, etc.) induces any of
the dependences along any of the dependence chains.

One application of linearity analysis is the optimization of derivative code
generated by automatic differentiation (AD) via the reverse mode. AD is a tech-
nique for transforming a subprogram that computes some function into one that
computes the function and its derivatives. AD works by combining rules for dif-
ferentiating the intrinsic functions and elementary operators of a given program-
ming language with the chain rule of differential calculus. One strategy, referred
to as the forward mode, is to compute partials as the intrinsic functions are
evaluated and to combine the partials as they are computed. For example, AD
via the forward mode transforms the loop in Figure 1 into the code in Figure 2.
This code would need to be executed N times, with appropriate initialization of
variable d x, to compute the derivatives of f with respect to all N elements of
array x. The reverse mode of AD results in less computation in the derivative
code when the number of input variables greatly exceeds the number of output
variables. Figure 3 shows the derivative code after applying the reverse mode.
? This work was supported by the Mathematical, Information, and Computational Sci-

ences Division subprogram of the Office of Advanced Scientific Computing Research,
U.S. Department of Energy under Contract W-31-109-Eng-38.

a = 0.0

f = 0.0

for i = 1, N

a += x[i]*x[i]

t = sin(a)

f += t

end

Fig. 1. Example loop.

a = 0.0

d_a = 0.0

f = 0.0

d_f = 0.0

for i = 1, N

a += x[i]*x[i]

d_a += 2*x[i]*d_x[i]

t = sin(a)

d_t = cos(a)*d_a

f += t

d_f += d_t

end

Fig. 2. Example loop after automatic differentia-
tion via the forward mode.

Hascoet et al.[6] observed that the forward computation and adjoint accu-
mulation can be fused if the original loop is parallelizable. In fact, a weaker
condition suffices: the two computations can be fused whenever there are no
loop-carried, nonlinear dependences. The example in Figure 1 includes only one
loop-carried dependence and the dependence is linear; therefore, the adjoint loop
may be reversed and fused with the original loop as shown in Figure 4.

Such transformations can result in significant performance improvements and
storage savings, by eliminating the need to store or recompute overwritten inter-
mediate quantities such as variable a. Data dependence analysis [2, 4, 17, 13] is
used to determine whether a loop is parallelizable. Precise dependence analysis
techniques can determine which variables are involved in a loop-carried depen-
dence. In the example of Figure 1, such techniques can determine that there is
a loop-carried dependence involving the variable f and itself. In this paper, we
present a technique for determining if the loop carried dependence is linear or
nonlinear.

We present a data-flow formulation for linearity analysis. Linearity analy-
sis determines which variables depend linearly or nonlinearly on which other
variables. The result of the analysis is a determination of the non-existence or
existence of a dependence between all pairs of variables in a program and the
nature of the dependences if it exists. Determining if a loop-carried dependence
is linear only requires checking whether the dependence between the variables
involved in the loop-carried dependence is linear. For the example in Figure 1,
the analysis summarizes the dependences between variables as shown in Table 1.

2 Formulation of Linearity Analysis as a Data-flow
Analysis

Linearity analysis can be formulated as a forward data-flow analysis [10]. Data-
flow analysis involves representing the subroutine to be analyzed as a control flow
graph, such as the one shown in Figure 6 for the code in Figure 5. A control flow

a[0] = 0.0

f = 0.0

for i = 1, N

a[i] = a[i-1] + x[i]*x[i]

t = sin(a[i])

f += t

end

for i = N, 1, -1

a_t = a_f

a_a[i] = cos(a[i])*a_t

a_a[i-1] = a_a[i]

a_x[i] = 2*x[i]*a_a[i]

end

Fig. 3. Example loop after reverse mode
automatic differentiation. Notice that
the temporary variable a must be pro-
moted to an array to store results needed
in the reverse loop.

a[0] = 0.0

f = 0.0

for i = 1, N

a[i] = a[i-1] + x[i]*x[i]

t = sin(a[i])

f += t

end

for i = N, 1, -1

a_t = a_f

a_a[i] = cos(a[i])*a_t

a_a[i-1] = a_a[i]

a_x[i] = 2*x[i]*a_a[i]

end

Fig. 4. Adjoint code after reversing the
adjoint loop and fusing it with the orig-
inal computation.

Variable f t a x

f linear linear nonlinear nonlinear
t > > nonlinear nonlinear
a > > linear nonlinear
x > > > >

Table 1. The variables in the first column depend on the variables in the first row in
the specified way. > indicates no dependence.

graph contains directed edges between basic blocks indicating possible control
flow in the program. Each basic block b has a set of predecessors pred(b) and a
set of successors succ(b), and the graph contains unique entry and exit nodes.

Data-flow analysis propagates data-flow information over the control-flow
graph. For linearity analysis, the data-flow information

Τ ≡ no dependence

⊥ ≡ nonlinear

linear

Fig. 7. Lattice for
linearity analysis.

is which variables are dependent on which other vari-
ables and whether that dependence is linear or nonlinear,
which we refer to as the dependence class. The analysis
assigns each ordered pair of variables a value from the
lattice shown in Figure 7. For example, in the statement

x = 3*z + y**2 + w/(v*v),

x has an linear dependence on z (〈〈x, z〉, linear〉), a non-
linear dependence on y (〈〈x, y〉, nonlinear〉), a nonlinear
dependence on w (〈〈x,w〉, nonlinear〉), and a nonlinear
dependence on v (〈〈x, v〉, nonlinear〉).

int foo() {
if (flag) {

a = b;

d = sin(a);

u = x;

} else {
a = b+1;

for (i=0; i<10; i++) {
u = u*x;

}
}
f = u;

}

Fig. 5. Example code for control
flow graph.

Entry

a = b + c
d = sin(a)
u = x

if (flag)

a = b+1
i=0

f = u

Exit

u = u * x
i = i+1

if (i<10)

Fig. 6. Control Flow Graph

The set IN(b) includes the dependence class assignments for each ordered
variable pair that are valid at the entry of basic block b in the control-flow graph.
A transfer function fb(IN(b)) calculates the OUT (b) set, which includes the de-
pendence class assignments valid upon exiting the basic block b. The dependence
class for each variable pair 〈u, v〉 is initialized to > in IN(b) and OUT (b) for all
basic blocks in the control-flow graph.

Iterative data-flow analysis visits each node in the control-flow graph com-
puting the IN(b) and OUT (b) sets until the assignment of data dependence class
to each ordered variable pair converges. The set IN(b) is calculated by perform-
ing the pairwise meet over all the sets of data-flow facts valid upon exiting
predecessor basic blocks,

IN(b) = up∈preds(b)fp(IN(p)).

The meet operation u is performed on the lattice values assigned to each variable
pair. The semantics of the meet operation u is defined by the lattice. For example,
linear u > equals linear.

The set OUT (b) is computed by applying what is referred to as a transfer
function to the IN(b) set. The transfer function fb is first defined for each type
of statement assuming only one statement per basic block. If there are multiple
statements in block b then fb is the composition of all the transfer functions
for the statements. To define the transfer function fb for linearity analysis, we
define the set DEPS. DEPS(e) is a set containing a mapping of each variable
to a data dependence class. When variable v maps to dependence class class,
〈v, class〉, that indicates how an expression e depends upon that variable. The

transfer function fb for the assignment statement x = e is then defined as

fb(IN(b)) = {〈〈x, v〉, class, nd, dd〉|〈v, class, nd, dd〉 ∈ DEPS(e).

The DEPS set is defined in Table 2, where k represents an integer constant
value or variable, v and w represent variables in the set of all variables V , anyop
represents any operation, and power represents the power operation.

Expression e DEPS(e)

k {〈v,>〉| v ∈ V }
k anyop k
k power k

v {〈v, linear〉}
∪ {〈w, class〉| 〈〈v, w〉, class〉 ∈ IN(b)}

e1 ± e2 {〈v1, (class1 u class2)〉
| v1 = v2 and 〈v1, class1〉 ∈ DEPS(e1)

and 〈v2, class2〉 ∈ DEPS(e2)}
∪ {〈v, class〉

| 〈v, class〉 ∈ DEPS(e1) and v /∈ DEPS(e2)}
∪ {〈v, class〉

| 〈v, class〉 ∈ DEPS(e2) and v /∈ DEPS(e1)}
e1 ∗ e2 {〈v1, (nonlinear u class1 u class2)〉
e1/e2 | v1 = v2 and 〈v1, class1〉 ∈ DEPS(e1)

and 〈v2, class2〉 ∈ DEPS(e2)}
∪ {〈v, nonlinear)〉

| 〈v, class〉 ∈ DEPS(e1) and v /∈ DEPS(e2) }
∪ {〈v, nonlinear)〉

| 〈v, class〉 ∈ DEPS(e2) and v /∈ DEPS(e1) }
e1 power 1 {〈v, (linear u class)〉|〈v, class〉 ∈ DEPS(e1)
e1 power k {〈v, (nonlinear u class1)〉

|〈v, class〉 ∈ DEPS(e1)}

Table 2. Definition of the DEPS set for each expression.

The worst-case complexity of linearity analysis is O(N4(E + V)), where N
is the number of variables, E is the number of edges in the control-flow graph,
and V is the number of nodes in the control flow graph. Each pair of variables
has a lattice value associated with it, and there are N2 pairs. Each lattice value
may be lowered at most twice; therefore, the graph may be visited 2 ∗N2 times.
The size of the graph is E +V . When each node is visited, the computation may
apply meet and transfer operations to each variable pair, O(N2).

2.1 Detecting Nonlinear Loop Carried Dependences

Data dependence analysis provides information about which variable references
are involved in loop-carried dependences. If a particular variable is involved in

for i = 1 to N

b[i] = 3 * x[i]

c[i] = b[i-1] + b[i] *x[i]

Fig. 8. Example where the current for-
mulation of linearity analysis combined
with data dependence analysis is overly
conservative.

a = 0.0

for i = 1, N

a += x[i]*x[i]

a_t = a_f

a_a = cos(a)*a_t

a_x[i] = 2*x[i]*a_a

end

Fig. 9. Reverse mode AD, computing only
derivatives via predictive slicing.

a loop-carried dependence, and the variable depends on itself nonlinearly based
on the results of linearity analysis, then the loop may involve a nonlinear loop
carried dependence.

2.2 Limitations

As formulated, linearity analysis is incapable of determining that the loop shown
in Figure 8 has no loop-carried, nonlinear dependences. Specifically, there is a
loop-carried dependence between b and c due to c[i] = b[i-1], and there is
a nonlinear dependence between b and c due to c[i] = b[i]*x[i]. However,
the nonlinear dependence is not loop carried.

One can prove that there are no nonlinear, loop-carried dependences if the
data-flow analysis is done on a use-by-use basis. This approach could be much
more expensive than basic linearity analysis. In order to achieve higher precision
at a reasonable cost, while reusing as much analysis as possible, a closer coupling
between linearity analysis and data-dependence analysis may be required.

3 Other Applications

Linearity analysis is also useful for a sort of “predictive slicing.” In a so-called
“pure” derivative computation [8], one wants to compute only the derivatives of a
function and not the function itself. However, by default AD produces code that
computes both the function and its derivatives. A primary reason is that many of
the intermediate function values are required to compute derivatives. However,
when it can be determined that the dependent variables depend only linearly
on an intermediate function value, then that intermediate value is not needed
in the derivative computation. Therefore, the generated derivative code may
omit the computation of these intermediates. This is equivalent to generating
the derivative code, then performing a backward slice [16] from the derivative
variables. Figure 9 illustrates the use of predictive slicing on the example of
Figure 1. The dependent variables f and g depend nonlinearly only on a and
x; therefore, b, c, f, and g don’t need to be computed and even the value of
independent variable y is not needed.

Linearity analysis can be combined with array data flow analysis to iden-
tify functions f(x) : Rn 7→ R that can be decomposed into the form: f(x) =

∑m
i=1 Fi(x) where each Fi is a function of only a few elements of the vector x.

Such a function is said to be partially separable. The Jacobian of F (x) : Rn 7→
Rm is sparse and this sparsity can be exploited using compression techniques [1].
The gradient of f is the sum of the rows of this Jacobian. Thus, gradients of
partially separable functions can be computed efficiently using the forward mode.

Linearity analysis is also directly useful in numerical optimization. Optimiza-
tion algorithms distinguish between linear and nonlinear constraints in order to
reduce the cost of derivative evaluations (the derivatives of linear constraints
are constant), to reduce the problem size via preprocessing, and to improve the
performance of the optimization algorithm. Experimental results from Gould
and Toint [5] indicate that preprocessing of the linear and bound constraints
reduces the number of constraints by 19% and the total time to solution by 11%
on average. Combined with the added savings from fewer constraint evaluations,
derivative evaluations, and faster convergence, the savings can be substantial.
Preliminary experiments indicate that when all constraints can be identified as
linear, savings of 50% or more are possible.

4 Related Work

Karr [9] and Cousot [3] determine linear equalities and linear inequalities be-
tween variables. The focus for such techniques is to find program invariants for
use with automated reasoning tools. More recent research [12, 14] discovers a sub-
set of nonlinear relationships, polynomial relationships of bounded degree. None
of these techniques distinguishes between a nonlinear dependence and a lack of
dependence. Therefore, they are not suitable for the types of program optimiza-
tion we have described. To-be-recorded (TBR) analysis [7] identifies the set of
variables that are needed for derivative computation and thus must be recorded
if overwritten. This analysis is similar to linearity analysis, but includes index
variables, excludes variables that are never overwritten, and does not identify
pairwise dependence. Linearity analysis can be readily extended to polynomial
degree analysis. We have also extended polynomial degree analysis to a restricted
form of rationality analysis. Polynomial degree analysis and rationality analysis
have applications in code validation [11].

5 Conclusions and Future Work

We have presented a formal data-flow formulation for linearity analysis. Linear-
ity analysis has several applications in automatic differentiation and numerical
optimization. In addition to the applications already discussed, linearity and
polynomial degree analysis have applications in code derivative-free optimiza-
tion, nonlinear partial differential equations, and uncertainty quantification. We
are implementing linearity and polynomial degree analysis in the OpenAnalysis
framework [15] to provide compiler infrastructure-independent analysis. We are
investigating ways to tightly couple linearity analysis with dependence analysis
to address the limitations discussed in Section 2.2.

References

1. B. M. Averick, J. J. Moré, C. H. Bischof, A. Carle, and A. Griewank. Comput-
ing large sparse Jacobian matrices using automatic differentiation. SIAM J. Sci.
Comput., 15(2):285–294, 1994.

2. U. Banerjee. Dependence analysis for supercomputing. The Kluwer international
series in engineering and computer science. Parallel processing and fifth generation
computing. Kluwer Academic, Boston, MA, USA, 1988.

3. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL ’78: Proceedings of the 5th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, pages 84–96, New
York, NY, USA, 1978. ACM Press.

4. P. Feautrier. Dataflow analysis of array and scalar references. International Journal
of Parallel Programming, 20(1), February 1991.

5. N. Gould and P. L. Toint. Preprocessing for quadratic programming. Math. Pro-
gramming, 100(1):95–132, 2004.

6. L. Hascoët, S. Fidanova, and C. Held. Adjoining independent computations. In
G. Corliss, C. Faure, A. Griewank, L. Hascoët, and U. Naumann, editors, Automatic
Differentiation of Algorithms: From Simulation to Optimization, Computer and
Information Science, chapter 35, pages 299–304. Springer, New York, NY, 2001.

7. L. Hascoët, U. Naumann, and V. Pascual. “To be recorded” analysis in reverse-
mode automatic differentiation. Future Generation Computer Systems, 21(8), 2005.

8. T. Kaminski, R. Giering, and M. Voßbeck. Efficient sensitivities for the spin-
up phase. In H. M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris,
editors, Automatic Differentiation: Applications, Theory, and Tools, Lecture Notes
in Computational Science and Engineering. Springer, 2005.

9. M. Karr. Affine relationships among variables of a proram. Acta Informatica,
6(2):133–151, 1976.

10. G. A. Kildall. A unified approach to global program optimization. In ACM Sym-
posium on Principles of Programming Languages, pages 194–206. ACM, ACM,
October 1973.

11. R. Kirby and R. Scott. Personal communication, 2004.
12. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-

bra. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 330–341, New York, NY, USA, 2004.
ACM Press.

13. W. Pugh. Omega test: A practical algorithm for exact array dependency analysis.
Comm. of the ACM, 35(8):102, 1992.

14. E. Rodriguez-Carbonell and D. Kapur. Automatic generation of polynomial loop
invariants: Algebraic foundations. In ISSAC ’04: Proceedings of the 2004 inter-
national symposium on Symbolic and algebraic computation, pages 266–273, New
York, NY, USA, 2004. ACM Press.

15. M. M. Strout, J. Mellor-Crummey, and P. Hovland. Representation-independent
program analysis. In Proceedings of the Sixth ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineering, 2005.

16. M. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357, 1984.
17. M. Wolfe and C. W. Tseng. The power test for data dependence. IEEE Trans.

Parallel Distrib. Syst., 3(5):591–601, 1992.

The submitted manuscript has been created by
the University of Chicago as Operator of Argonne
National Laboratory (”Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department
of Energy. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up, nonex-
clusive, irrevocable worldwide license in said ar-
ticle to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

