
A Polynomial Time Algorithm for the Detection of Axial
Symmetry in Directed Acyclic Graphs ?

S. Bhowmick and P. Hovland

Mathematics and Computer Science Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, IL 60439-4844.

E-mail{bhowmick, hovland}@mcs.anl.gov

Abstract. Computation of Hessians in automatic differentiation can be done by
applying elimination techniques on a symmetric computational graph. Detection
of symmetry in the graph, i.e. matching the vertices and edges with their cor-
responding pairs can enable us to identify duplicate mirror operations. Wecan
exploit symmetry by performing only one of each of these duplicate operations
and thus greatly reduce the computation costs, by almost halving the number of
operations. In this paper we present a polynomial time algorithm that can detect
symmetry in directed acyclic graphs. We prove the correctness of the algorithm
and demonstrate with an example how detection of symmetry lowers the costof
computing Hessians.

1 Introduction

The Hessian of a functionf(x) can be calculated from a symmetric directed acyclic
graph (DAG). This symmetric computational graph corresponds to the gradient compu-
tation and can be generated from the function DAG using the non-incremental reverse
mode of automatic differentiation. Details of creating such symmetric graphs can be
found in [2]. It has also been conjectured that maintaining symmetry of the graph while
computing the Hessian might lead to near optimal number of operations. The symmet-
ric structure of the graph can be exploited by storing only half of the graph and by not
recomputing mirror operations.

In order to obtain the benefits of working with a symmetric graph, it is important
to determine the axis of symmetry. It has been proven that testing symmetry of a gen-
eral graph is a NP-complete problem [1, 5]. However when considering computational
graphs arising in automatic differentiation, it is possible to develop a polynomial time
algorithm. This is because we are working with a directed acyclic graph which pro-
vides more information than an undirected one. Furthermorewe are looking for an axis
of symmetry perpendicular to the direction of flow. Additional information regarding
possible vertex and edge pairs can be obtained if the vertices can be demarcated as the
ones corresponding with the variables in calculating the function and the ones generated
during gradient calculation.

? This work was supported by the Mathematical, Information, and Computational Sciences Divi-
sion subprogram of the Office of Advanced Scientific Computing Research, U.S. Department
of Energy under Contract W-31-109-Eng-38.



The rest of the paper is arranged as follows. In Section 2 we define the terms and
mathematical expressions that will be used subsequently. In Section 3 we describe the
algorithm for detecting symmetry. Section 4 provides the analysis of the algorithm and
investigates its correctness and runtime complexity. Section 5 deals with an interesting
class of DAGs which have more than one line of symmetry. Section 6 provides an
example from an optimization problem which shows that exploiting symmetry does
indeed lower the computational costs. We conclude by discussing our future research
plans regarding symmetry and Hessian calculations.

2 Preliminary Definitions

In this section we define some terms used in graph theory. Unless mentioned otherwise,
the terms used here are as they are defined in [4].

A graphG = (V,E) is defined as a set of verticesV and a set of edgesE. An edge
e ∈ E is associated with two verticesu, v which are called itsendpoints. If a vertexv
is an endpoint of an edgee, thene is incident onv. A vertexu is aneighborof v if they
are joined by an edge. The set of neighbors ofv is given byNeigh(v).

A directed edgeis an edgee = (uv), one of whose endpoints,u is designated as the
tail and whose other endpoint,v is designated ashead. A directed edge is directed from
its tail to its head. If(u, v) is a directed edge, thenu is thepredecessorof v andv is the
successorof u. A directed graph(digraph) is a graph with directed edges.Theindegree
of a vertexv in a digraph is the number of edges directed towardsv and is equal to the
set of predecessors,Pred(v). Theoutdegreeof a vertexv in a digraph is the number of
edges directed fromv and is equal to the set of successors,Suc(v).

A walk in a graph G is an alternating sequence of vertices and edges,W = v0, e1 . . . ,
en, vn, such that forj = 1, . . . , n, the verticesvj−1 andvj are the endpoints ofej . A
walk is closed if the initial vertex is also the final vertex. Atrail is a walk such that no
edge occurs more than once. Apath is a trail where no internal vertex is repeated. A
closed path is called acycle. A directed acyclic graph(DAG), is a directed graph with
no cycles.

An automorphism[1] of an undirected graphG = (V,E) is a permutationσ of V
andE, such that,

1. σ(E) = E

2. σ(V ) = V

3. e ∈ E is incident tov ∈ V ⇐⇒ σ(e) is incident toσ(v)

The graphG is said to haveaxial symmetryif there exist an automorphismσ ∈ Aut(G),
such that the subgraph ofG induced by the fixed point set ofσ is embeddable on a
line [1]

To define theaxial symmetryin a DAG, we modify the third property of automor-
phism as follows;

– If the head ofe ∈ E is v ∈ V and the tail isu ∈ V , thenσ(u) is the head andσ(v)
is the tail ofσ(e)



It should also be noted that in an axial symmetric DAG, all fixed points ofσ ∈ Aut(G)
will be included inE. The vertices inV can be divided into two groupsV 1 andV 2,
such that for allv ∈ V 1 there existsσ(v) ∈ V 2. We call such a setv, σ(v) as a
vertex − pair. Similarly the edges, except the fixed points,can be dividedinto two
groupsE1 andE2, such that forv, u ∈ E1 there existsσ(v)σ(u) ∈ E2. We call such a
set of edges as anedge − pair. There may exist more than one permutation satisfying
the properties for axial symmetry. The setsV 1σ andV 2σ are determined based on a
particular permutationσ.

3 Symmetry Detection Algorithm

In this section we will describe an algorithm to determine the vertex-pair and edge-
pair sets in a DAG for a particular permutationσ. We observe that the relationσ is
commutative, i.e.u = σ(v) andv = σ(u), therefore for a particular permutationσ,
vertex and edges pairs are uniquely determined. The conditions for two verticesv and
u to be pairs of each other are;

1. indegree(v) = outdegree(σ(v)) andoutdegree(v) = indegree(σ(v))
2. ∀w ∈ Neigh(v), σ(w) ∈ Neigh(u)

Our algorithm is based on finding vertex pairs that satisfy the above conditions.

Symmetry Detection Algorithm
C:All groups have equal number of real and dual vertices or even number of neutral

vertices
STEP 1: Divide the vertices into groups according to the firstcondition

Create groupsΨij , (i ≤ j)
If i = j thenΨij contains an arrayneutral
If i 6= j thenΨij contains arraysreal anddual
For all vertexv

i = indegree(v) andj = outdegree(v)
If i < j thenv is added toΨij .real
If i > j thenv is added toΨij .dual
If i = j thenv is added toΨij .neutral

if(C is TRUE for allΨij)
Continue to STEP 2

else
Graph is nonsymmetric; break

STEP 2: Subdivide the groups according to the second condition
Set number of groups ton
while (n > 0)

Sort groupsΨ0 to Ψn in increasing order of group-size
If Ψ0 contains real and dual arrays

Set V1=Ψ0.real[0]
Set V2=Ψ0.dual[0]



else
Set V1=Ψ0.neutral[0]
Set V2=Ψ0.neutral[1]

Create new groups̄Ψa corresponding to older groupsΨa as follows;
For all neighborsn of V 1

Removen from its original groupΨa

Add n to real array inΨ̄a

For all neighborsn of V 2

Removen from its original groupΨa

Add n to dual array inΨ̄a

if(C is TRUE for all Ψ̄a)
Add new groups̄Ψa into set of existing groups
Remove groups with zero elements
Set n = number of groups

else
Graph is nonsymmetric; break

4 Algorithm Analysis

In this section we briefly describe how the algorithm works and offer a proof of cor-
rectness. We then demonstrate that for most graphs, the complexity of the algorithm is
O(V 2).

4.1 Brief Description of Algorithm

In step 1, the vertices are divided into groups according to their degrees. By the first
necessary condition, it is easy to see that if vertexv is an element of groupΨ , its pair
σ(v) is also an element ofΨ . If the graph is symmetric each groupΨ consists of either
equal number of real and dual vertices, stored as arrays ofΨ.real andΨ.dual or an even
number of neutral vertices,Ψ.neutral. If this condition is not satisfied then the graph
is nonsymmetric, and we need not proceed further.

At the end of step 1 the vertices are divided into groups. However there may be
multiple vertex pairs in each group. In step 2 we further divide the groups based on
the second condition. At each iteration two verticesV 1 andV 2 are removed from the
smallest group. IfV 1 andV 2 form a vertex-pair, then each groupΨa contains a neighbor
of V 1 or V 2, is subdivided into, i) the originalΨa, contains vertices not neighbors of
V 1 andV 2 and ii) Ψ̄a, containing vertices which are neighbors ofV 1 or V 2. Without
loss of generality we label neighbors ofV 1 as real and neighbors ofV 2 as dual. If
condition C is satisfied at the end of the iteration, we continue. Otherwise the graph is
nonsymmetric. The graph is symmetric if all vertices can be paired intoV 1 or V 2 i.e.
C is satisfied for all iterations. If the graph is symmetric, then step 2 converges in at
mostV/2 iterations.



4.2 Correctness of the Algorithm

Theorem 1. The graphG is symmetric if and only if conditionC is satisfied at Step 1
and for all iterations of Step 2

Proof. If C is satisfied at the end of Step 1, the vertices have been divided into potential
vertex-pairs. We note that if a group contains only two elements, then the elements are
vertex-pairs. At each iteration we select two verticesV 1 andV 2. SinceV 1 andV 2
are in the same group, they satisfy the first condition. If after subdivision the new set
of groups satisfy conditionC, then each of their neighbors satisfy the first condition.
If C is satisfied for all subsequent iterations, repeated subdivision of the groups will
ultimately result in groups with only two elements. Since the groups have been formed
by satisfying the first condition clearly these two elementsare vertex-pairs. If for two
vertices all their neighbors end up being mutually vertex-pairs, then the second condi-
tion is satisfied andV 1 andV 2 are vertex pairs. Thus ifC is satisfied at all iterations,
then all vertices can be paired.

If the graph is symmetric thenC must be satisfied at end of Step 1. If the number
of elements inΨ0 is two thenV 1 andV 2 selected at the beginning of each iteration
are vertex-pairs. If the number of elements is higher then ithas been observed that an
arbitrary selection ofV 1 andV 2 from the appropriate sets satisfy the vertex-pair condi-
tions. Therefore, their neighbors would satisfy the necessary conditions and subdivide
accordingly into equal number of real and dual pairs andC would be satisfied at each
iteration.

4.3 Algorithm Complexity

Step 1 takes time proportional to the number of vertices. Checking conditionC takes
time proportional to the total number of elements in all the groups, i.e. the number of
vertices. Each iteration of Step 2 requires,

1. Sorting the groups; time isO(n log n)
2. Subdividing the neighbors; time is proportional to the degree of any vertex in the

vertex-pair
3. Adding new groups; time is constant
4. Checking conditionC; time isO(V )

At the end of Step 2 all edges are traversed and the step converges in at mostV/2 =
O(V ) iterations. Therefore the running time of the algorithm isO(V )+O(V n log n)+
O(E)+O(V 2). For most graphsn is much smaller thanV . Therefore the running time
can be concisely expressed asO(V 2).

5 Multiple Symmetric Permutations

There may exist DAGs for which symmetry can be obtained by more than one permuta-
tion. Figure 1 shows a graph where symmetry is obtained from multiple permutations.
When the algorithm is applied on graphs with this property, atleast in one iteration the



1

2

3

4

5

6

1
3

4
2

5
6

Permutation 2
P(1)=3; P(4)=2; P(6)=5

X

Y

X

Z

Y

X

_

Z

_

Y

_

Y

_

−
Z

Z

−
X

Permutation 1bPermutation 1a

P(1)=5; P(3)=6; P(2)=4 P(1)=4; P(3)=6; P(2)=5

Fig. 1. Graph exhibiting more than one line of symmetry

initial groupΨ0 has more than two elements. An arbitrary selection ofV 1 andV 2 from
the appropriate sets give the vertex-pairs corresponding to one of the permutations.

While we can obtain one line of symmetry by using the algorithm, in certain cases,
for example when determining the symmetry of a computational graph, this might not
be the one required. An exhaustive search for all symmetric permutations can be up to
the order ofV !. A better strategy is for the user to add extra information regarding the
vertices and edges in the graph. For example the graph in Figure 1 is the computational
graph for the following function and its gradient calculated in reverse mode;

– Z = X ∗ Y

– X̄ = Z̄ ∗ Y

– Ȳ = Z̄ ∗ X

Permutation1a pairs the variablesX,Y andZ with their corresponding reverse
X̄, Ȳ and Z̄. Permutation1b pairsX with Ȳ , Y with X̄ andZ with Z̄. Since both
the operations are multiplications, this pairing can be utilized to exploit the symmetric
calculation of the Hessian. However, if this was not the case, and the pairing of the
variables with their corresponding reverses was necessary, then the vertex information
should also include the type of the operation executed at that node. An even more con-
voluted pairing is given in permutation 2 whereX is paired withZ. Such pairing of
inputs with outputs can be avoided, if the vertices are differentiated by the ones used
in the calculation of the function and the ones used in calculation of the gradient. In
short the algorithm finds only one line of symmetry, if the user requires the vertex-pairs
to follow some additional properties then this informationshould be included as a nec-
essary condition. The division of vertices in step 1 will incorporate all the necessary
conditions with more stringent definitions of reals and duals. The subdivision in step 2
will remain unchanged. Since step 2 is the most expensive part of the process, adding
extra information does not significantly increase the running time of the algorithm.



6 Application of Symmetry Detection

We have implemented the symmetry detection algorithm within the OpenAD [3] frame-
work, and have successfully detected symmetry for several test graphs, including ones
with multiple lines of symmetry.

We have also applied the algorithm on an optimization code that checks the quality
of a mesh based on the inverse-mean ratio shape quality metric [6]. We considered a
two-dimensional meshing code that compares the elements with an equilateral triangle.
The original hand-coded Hessian required 138 flops. The gradient evaluation needed
46 and the function required 26 flops. We created a symmetric computational graph,
based on the objective function and its gradient. The symmetry detection code was
successful in determining the vertex-pairs. A cross country vertex elimination based
on the computational graph required an additional 54 multiplications and 10 additions.
Exploiting symmetry in the calculation of the Hessian reduced the cost to 52 additional
multiplications and 2 additions, for a total number of operations of 118. This is an
improvement of 10 flops over non-symmetric crosscountry elimination and 20 flops
over the hand-coded Hessian. The time taken to build the graph is 0.42380 seconds and
time to detect symmetry is .02512 seconds, for a total of .44892 seconds.

The current implementation of the algorithm is still at its preliminary stage and
several code optimizations can be added to lower the execution time. For example, we
plan use the graph generated during the calculation of the gradient and not build it again
for symmetry detection. It should also be observed that the time depends not only on
the number of vertices and edges but also how they are connected.

7 Conclusions and Future Work

Detection of mirror operations in a symmetric graph can indeed lower the number of
operations required for Hessian computation. Currently our code is only able to detect
vertex-pairs. In order to exploit symmetry of operations wealso need to store the op-
erations associated with each vertex-pair. We will be extending our code to incorporate
this property. There are also possibilities of modificationto the algorithm. Instead of
subdividing the neighbors of the current vertex pair, we canbe more specific and put
the predecessors and successors in two groups. This will increase the number of groups
and make the convergence faster. Another modification is to add preconditions to step
1, enabling the user to add extra conditions that are specificto his needs. Incorporat-
ing the symmetry detection mechanism in AD tools will lower the computational costs.
Even for a moderately large function the decrease of time in Hessian computation will
be much larger than the extra time required for detecting symmetry

References

1. Hubert De Fraysseix. An heuristic for graph symmetry detection.Lecture Notes in Computer
Science, Proceedings of the 7th International Symposium on Graph Drawing, 1731:276–285,
1999.



2. A. Griewank.Evaluating Derivatives: Principles and Techniques of Algorithmic Differentia-
tion. SIAM, 2000.

3. J.Utke. OpenAD: Algrithm implemnetation user guide. Technical Report ANL/MCS–TM–
274, Argonne National Laboratory, IL, 2004.

4. J. L.Gross and J. Yellen.Handbook of Graph Theory and Applications. CRC Press, 2004.
5. J. Manning. Geometric symmetry in graphs, 1990. Ph.D. Thesis, Purdue University, New

York.
6. T. S. Munson. Mesh shape-quality optimization using the inverse mean-ratio metric. Preprint

ANL/MCS-P1136-0304, Argonne National Laboratory, Argonne, Illinois, 2004.



The submitted manuscript has been created by the University
of Chicago as Operator of Argonne National Laboratory (”Ar-
gonne”) under Contract No. W-31-109-ENG-38 with the U.S.
Department of Energy. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up, nonexclusive, irre-
vocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Govern-
ment.


