A Polynomial Time Algorithm for the Detection of Axial
Symmetry in Directed Acyclic Graphs™

S. Bhowmick and P. Hovland

Mathematics and Computer Science Division, Argonne National Labgrato
9700 South Cass Avenue, Argonne, IL 60439-4844.
E-mail {bhowni ck, hovl and}@rcs. anl . gov

Abstract. Computation of Hessians in automatic differentiation can be done by
applying elimination techniques on a symmetric computational graph. Datectio
of symmetry in the graph, i.e. matching the vertices and edges with their cor
responding pairs can enable us to identify duplicate mirror operationsawe
exploit symmetry by performing only one of each of these duplicateatiprs

and thus greatly reduce the computation costs, by almost halving the nofmbe
operations. In this paper we present a polynomial time algorithm thatetsictd
symmetry in directed acyclic graphs. We prove the correctness of tbathlg

and demonstrate with an example how detection of symmetry lowers thefcost
computing Hessians.

1 Introduction

The Hessian of a functiorf(z) can be calculated from a symmetric directed acyclic
graph (DAG). This symmetric computational graph corresisao the gradient compu-
tation and can be generated from the function DAG using tmeincremental reverse
mode of automatic differentiation. Details of creating lswymmetric graphs can be
found in [2]. It has also been conjectured that maintainyrgreetry of the graph while
computing the Hessian might lead to near optimal number efains. The symmet-
ric structure of the graph can be exploited by storing only diathe graph and by not
recomputing mirror operations.

In order to obtain the benefits of working with a symmetricgrait is important
to determine the axis of symmetry. It has been proven thahtgesymmetry of a gen-
eral graph is a NP-complete problem [1, 5]. However when icensg computational
graphs arising in automatic differentiation, it is possitiy develop a polynomial time
algorithm. This is because we are working with a directeccieygraph which pro-
vides more information than an undirected one. Furthermerare looking for an axis
of symmetry perpendicular to the direction of flow. Additarinformation regarding
possible vertex and edge pairs can be obtained if the vertae be demarcated as the
ones corresponding with the variables in calculating tinetion and the ones generated
during gradient calculation.

* This work was supported by the Mathematical, Information, and Compo#i8ciences Divi-
sion subprogram of the Office of Advanced Scientific Computing Rebeét.S. Department
of Energy under Contract W-31-109-Eng-38.

The rest of the paper is arranged as follows. In Section 2 iealthe terms and
mathematical expressions that will be used subsequentiettion 3 we describe the
algorithm for detecting symmetry. Section 4 provides thalgsis of the algorithm and
investigates its correctness and runtime complexity.i&eé& deals with an interesting
class of DAGs which have more than one line of symmetry. 8eddi provides an
example from an optimization problem which shows that eitiplp symmetry does
indeed lower the computational costs. We conclude by dssegour future research
plans regarding symmetry and Hessian calculations.

2 Preliminary Definitions

In this section we define some terms used in graph theorysdmientioned otherwise,
the terms used here are as they are defined in [4].

A graphG = (V, E) is defined as a set of verticésand a set of edges. An edge
e € FE is associated with two vertices v which are called itendpoints|f a vertexv
is an endpoint of an edgg thene is incident orw. A vertexw is aneighborof v if they
are joined by an edge. The set of neighbors &f given by Neigh(v).

A directed edgés an edge: = (uv), one of whose endpoints,is designated as the
tail and whose other endpointjs designated dsead A directed edge is directed from
its tail to its head. I{u, v) is a directed edge, thenis thepredecessoof v andwv is the
successoof u. A directed graph(digraph) is a graph with directed edges. Theegree
of a vertexv in a digraph is the number of edges directed towaread is equal to the
set of predecessorByr-ed(v). Theoutdegreef a vertexv in a digraph is the number of
edges directed from and is equal to the set of successdtge(v).

A walkin a graph G is an alternating sequence of vertices and edges g, e; . . .,
en, Upn, such that forj = 1,...,n, the verticesy;_; andv; are the endpoints af;. A
walk is closed if the initial vertex is also the final vertext#uil is a walk such that no
edge occurs more than once.phth is a trail where no internal vertex is repeated. A
closed path is called @/cle A directed acyclic grapiDAG), is a directed graph with
no cycles.

An automorphisnil1] of an undirected graptir = (V, E) is a permutatiorr of V
andF, such that,

l.0(E)=F
2.0(V)=V
3. e€ Eisincidenttov € V <> o(e) is incident too (v)

The graphG is said to havexial symmetryf there exist an automorphisme Aut(G),
such that the subgraph 6éf induced by the fixed point set of is embeddable on a
line [1]

To define theaxial symmetryn a DAG, we modify the third property of automor-
phism as follows;

— Ifthe head of € FE isv € V and the tail isu € V, theno (u) is the head and (v)
is the tail ofo (e)

It should also be noted that in an axial symmetric DAG, alldip®ints ofc € Aut(G)

will be included inE. The vertices in/ can be divided into two groupg1 and V2,
such that for allv € V1 there existwr(v) € V2. We call such a set,o(v) as a
vertex — pair. Similarly the edges, except the fixed points,can be dividéal two
groupsE'1 andE2, such that fow, u € E1 there existg (v)o(u) € E2. We call such a
set of edges as afilge — pair. There may exist more than one permutation satisfying
the properties for axial symmetry. The sé&i$, andV'2, are determined based on a
particular permutation.

3 Symmetry Detection Algorithm

In this section we will describe an algorithm to determine tertex-pair and edge-
pair sets in a DAG for a particular permutatien We observe that the relation is
commutative, i.eu = o(v) andv = o(u), therefore for a particular permutation
vertex and edges pairs are uniquely determined. The condifor two vertices and
u to be pairs of each other are;

1. indegree(v) = outdegree(o(v)) andoutdegree(v) = indegree(o(v))
2. Yw € Neigh(v), o(w) € Neigh(u)

Our algorithm is based on finding vertex pairs that satiséyaghove conditions.

Symmetry Detection Algorithm
C:All groups have equal number of real and dual vertices enewmber of neutral
vertices
STEP 1: Divide the vertices into groups according to the firstondition
Create group¥;;, (i < j)
If i = j then;; contains an arrayeutral
If i # j then¥;; contains arrayseal anddual
For all vertexv
i = indegree(v) andj = outdegree(v)
If 4 < j thenv is added taZ;;.real
If 4 > j thenv is added taZ;;.dual
If + = j thenv is added taZ;;.neutral
if(C is TRUE for all ;)
Continue to STEP 2
else
Graph is nonsymmetric; break
STEP 2: Subdivide the groups according to the second conddn
Set number of groups to
while (n > 0)
Sort groupgl, to ¥, in increasing order of group-size
If ¥, contains real and dual arrays
Set V1,.real[0]
Set V22;.dual 0]

else
Set V1a,.neutral0)
Set V2al,.neutral[l]
Create new groups, corresponding to older groups, as follows;
For all neighbors: of V1
Removen from its original group?Z,
Add n to real array in¥,
For all neighbors: of V2
Removen from its original group?,,
Add n to dual array ing,
if(C is TRUE for all#,)
Add new groups, into set of existing groups
Remove groups with zero elements
Set n = number of groups
else
Graph is nonsymmetric; break

4 Algorithm Analysis

In this section we briefly describe how the algorithm worksd affer a proof of cor-
rectness. We then demonstrate that for most graphs, thelexitypf the algorithm is
o(V?).

4.1 Brief Description of Algorithm

In step 1, the vertices are divided into groups accordindhéir tdegrees. By the first
necessary condition, it is easy to see that if vettéx an element of groug, its pair
o(v) is also an element aF. If the graph is symmetric each grodpconsists of either
equal number of real and dual vertices, stored as arrays-efil and¥.dual or an even
number of neutral verticed.neutral. If this condition is not satisfied then the graph
is nonsymmetric, and we need not proceed further.

At the end of step 1 the vertices are divided into groups. Hewéhere may be
multiple vertex pairs in each group. In step 2 we further divthe groups based on
the second condition. At each iteration two vertié€sand 1’2 are removed from the
smallest group. I¥1 andV 2 form a vertex-pair, then each group contains a neighbor
of V1 or V2, is subdivided into, i) the origina¥,, contains vertices not neighbors of
V1 andV2 and ii) ¥,, containing vertices which are neighborslof or V2. Without
loss of generality we label neighbors ©fl as real and neighbors 6f2 as dual. If
condition C is satisfied at the end of the iteration, we carirOtherwise the graph is
nonsymmetric. The graph is symmetric if all vertices can aiegal intoV'1 or V2 i.e.

C' is satisfied for all iterations. If the graph is symmetriceribstep 2 converges in at
mostV/2 iterations.

4.2 Correctness of the Algorithm

Theorem 1. The graphG is symmetric if and only if conditio@’ is satisfied at Step 1
and for all iterations of Step 2

Proof. If C is satisfied at the end of Step 1, the vertices have been diuite potential
vertex-pairs. We note that if a group contains only two eletsiethen the elements are
vertex-pairs. At each iteration we select two vertiées and V2. SinceV'1 and V2
are in the same group, they satisfy the first condition. ¥ragubdivision the new set
of groups satisfy conditiod’, then each of their neighbors satisfy the first condition.
If C is satisfied for all subsequent iterations, repeated sidddiivof the groups will
ultimately result in groups with only two elements. Since ¢noups have been formed
by satisfying the first condition clearly these two elemearts vertex-pairs. If for two
vertices all their neighbors end up being mutually vertaitgy then the second condi-
tion is satisfied and’1 andV'2 are vertex pairs. Thus {f' is satisfied at all iterations,
then all vertices can be paired.

If the graph is symmetric the@ must be satisfied at end of Step 1. If the number
of elements inZ, is two thenV'1 and V2 selected at the beginning of each iteration
are vertex-pairs. If the number of elements is higher thémast been observed that an
arbitrary selection of’1 andV2 from the appropriate sets satisfy the vertex-pair condi-
tions. Therefore, their neighbors would satisfy the neagssonditions and subdivide
accordingly into equal number of real and dual pairs @would be satisfied at each
iteration.

4.3 Algorithm Complexity

Step 1 takes time proportional to the number of vertices.ckihg conditionC' takes
time proportional to the total number of elements in all theups, i.e. the number of
vertices. Each iteration of Step 2 requires,

1. Sorting the groups; time @(n log n)

2. Subdividing the neighbors; time is proportional to thgrée of any vertex in the
vertex-pair

3. Adding new groups; time is constant

4. Checking conditiort”; time isO(V)

At the end of Step 2 all edges are traversed and the step gasvar at most//2 =
O(V) iterations. Therefore the running time of the algorithr®id”) + O(Vnlogn) +
O(E)+O(V?). For most graphs is much smaller thal. Therefore the running time
can be concisely expressed@§/2).

5 Multiple Symmetric Permutations

There may exist DAGs for which symmetry can be obtained byenttzein one permuta-
tion. Figure 1 shows a graph where symmetry is obtained frartiphe permutations.
When the algorithm is applied on graphs with this propertjeast in one iteration the

!
|

x 1 ! 4)y
i
Do

z:/‘

i

S : @R
i

Permutation 1a | Permutation 1b
P(1)=5; P(3)=6; P(2)=4 P(1)=4; P(3)=6; P(2)=5

@/@_@i

Permutation 2
P(1)=3; P(4)=2; P(6)=5

Fig. 1. Graph exhibiting more than one line of symmetry

initial group¥, has more than two elements. An arbitrary selectiol bandV'2 from
the appropriate sets give the vertex-pairs correspondingée of the permutations.

While we can obtain one line of symmetry by using the algoritimtertain cases,
for example when determining the symmetry of a computatigreph, this might not
be the one required. An exhaustive search for all symmegtimptations can be up to
the order ofV/!. A better strategy is for the user to add extra informatiaarding the
vertices and edges in the graph. For example the graph imeé-igis the computational
graph for the following function and its gradient calcuthte reverse mode;

- Z=XxY
- X=7ZxY
- Y =7ZxX

Permutationla pairs the variablest,Y and Z with their corresponding reverse
X,Y and Z. Permutationld pairs X with Y, Y with X and Z with Z. Since both
the operations are multiplications, this pairing can bkzetil to exploit the symmetric
calculation of the Hessian. However, if this was not the casel the pairing of the
variables with their corresponding reverses was necedseny the vertex information
should also include the type of the operation executed antbde. An even more con-
voluted pairing is given in permutation 2 wheke is paired withZ. Such pairing of
inputs with outputs can be avoided, if the vertices are difidated by the ones used
in the calculation of the function and the ones used in catmn of the gradient. In
short the algorithm finds only one line of symmetry, if therusguires the vertex-pairs
to follow some additional properties then this informat&hould be included as a nec-
essary condition. The division of vertices in step 1 willongorate all the necessary
conditions with more stringent definitions of reals and du@he subdivision in step 2
will remain unchanged. Since step 2 is the most expensiveopdne process, adding
extra information does not significantly increase the rogriime of the algorithm.

6 Application of Symmetry Detection

We have implemented the symmetry detection algorithm witte OpenAD [3] frame-
work, and have successfully detected symmetry for sevesalgraphs, including ones
with multiple lines of symmetry.

We have also applied the algorithm on an optimization codedhecks the quality
of a mesh based on the inverse-mean ratio shape qualitycnj@lriwe considered a
two-dimensional meshing code that compares the elemetitsawiequilateral triangle.
The original hand-coded Hessian required 138 flops. Theigmadvaluation needed
46 and the function required 26 flops. We created a symmatrigpatational graph,
based on the objective function and its gradient. The symyrddtection code was
successful in determining the vertex-pairs. A cross cqundrtex elimination based
on the computational graph required an additional 54 midéfions and 10 additions.
Exploiting symmetry in the calculation of the Hessian restlithe cost to 52 additional
multiplications and 2 additions, for a total number of opierss of 118. This is an
improvement of 10 flops over non-symmetric crosscountmniglation and 20 flops
over the hand-coded Hessian. The time taken to build thehgsap.42380 seconds and
time to detect symmetry is .02512 seconds, for a total of924%&conds.

The current implementation of the algorithm is still at itelpmninary stage and
several code optimizations can be added to lower the exectithe. For example, we
plan use the graph generated during the calculation of tuigmt and not build it again
for symmetry detection. It should also be observed thatithe tepends not only on
the number of vertices and edges but also how they are cathect

7 Conclusions and Future Work

Detection of mirror operations in a symmetric graph can étllower the number of
operations required for Hessian computation. Currenthlyoode is only able to detect
vertex-pairs. In order to exploit symmetry of operationsals need to store the op-
erations associated with each vertex-pair. We will be ekitenour code to incorporate
this property. There are also possibilities of modificatiorthe algorithm. Instead of
subdividing the neighbors of the current vertex pair, we lsarmore specific and put
the predecessors and successors in two groups. This witldee the number of groups
and make the convergence faster. Another modification isldopaeconditions to step
1, enabling the user to add extra conditions that are speoifiés needs. Incorporat-
ing the symmetry detection mechanism in AD tools will lowse tomputational costs.
Even for a moderately large function the decrease of timedgsian computation will
be much larger than the extra time required for detectingnsgtry

References

1. Hubert De Fraysseix. An heuristic for graph symmetry detectiesture Notes in Computer
Science, Proceedings of the 7th International Symposium on GraphiByal731:276-285,
1999.

N

. A. Griewank.Evaluating Derivatives: Principles and Techniques of Algorithmic Differentia
tion. SIAM, 2000.

. J.Utke. OpenAD: Algrithm implemnetation user guide. Technical RepNL/MCS-TM—
274, Argonne National Laboratory, IL, 2004.

. J. L.Gross and J. Yelletdandbook of Graph Theory and ApplicatiorSRC Press, 2004.

. J. Manning. Geometric symmetry in graphs, 1990. Ph.D. ThesisuBwWniversity, New
York.

. T. S. Munson. Mesh shape-quality optimization using the inverse ma@mmmetric. Preprint
ANL/MCS-P1136-0304, Argonne National Laboratory, Argonne, dlig) 2004.

The submitted manuscript has been created by the University
of Chicago as Operator of Argonne National Laboratory ("Ar-
gonne”) under Contract No. W-31-109-ENG-38 with the U.S.
Department of Energy. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up, nonexclusive, jrre-
vocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Govern-
ment.

