
Division of Labor: Tools for Growth and Scalability of Grids

K. Keahey1,2, I. Foster1,2, T. Freeman1, A. Rana3, B. Sotomayor1, F. Würthwein3
1The University of Chicago, Chicago, IL

2Argonne National Laboratory, Argonne, IL
3University of California, San Diego, CA

{foster,freeman,keahey,borja}@mcs.anl.gov
{fkw,rana}@ucsd.edu

Abstract

To enable Grid scalability and growth, a usage
model has evolved where resource providers make
resources available not to individual users directly, but
rather to larger units, called virtual organizations
(VOs). This enables the resource provider to focus on
the dynamics of providing resources to the VOs while
VOs specialize to provide resources to their users.
Achieving such division of labor requires tools and
mechanisms that would allow a resource provider to
reliably delegate the usage of a specific resource
quantum in such a way that it is unimpacted by other
activities that the resource provider participates in. In
this paper, we argue that the virtual workspace
abstraction provides mechanisms needed to create and
manage such environments. Next, we present
extensions to the Workspace Service based on the
Globus Toolkit 4, and describe an implementation of
workspace enforcement using the Xen virtual machine
and Linux networking tools. Finally, we use this
implementation to demonstrate how workspaces can be
used by the resource provider to allocate resources to
VO-specific infrastructure services called Edge
Services.

1. Introduction

Over the last decade of successful Grid usage a
model has evolved where a number of resources
federated under a large resource provider such as
Grid3 [1], Open Science Grid (OSG) [2], or TeraGrid
[3] make resources available not to individual users
directly but rather to larger units, called virtual
organizations (VOs) [4]. The VO then enables its users
to use the resources according to VO-specific policies.
This interaction model allows Grids to scale – a
fundamental condition of growth -- since instead of

directly providing for the needs of each of many
thousands of users, a resource provider interacts with
only tens of VOs. To function correctly, this model
requires the development of tools that will ensure that
resources for each VO are provisioned in a controlled
manner and used fairly, that the work of different VOs
does not impact each other, and that each VO’s usage
is properly accounted for. Furthermore, it is frequently
necessary for the isolation of a VO from the resource
provider to extend to the software stack: a VO should
be able to carry out its work regardless of the software
supported by the resource provider (and vice versa) or
by other VOs. In short, the growth and scalability of
Grids requires the development of mechanisms that
would allow for a clear separation of concerns between
resource providers and virtual organizations, in other
words enable the division of labor [5].

We argue that in order to provide an effective
solution to the management issues that arise from this
“division of labor”, we need to develop abstractions
and tools that allow VOs to dynamically configure,
deploy, and manage the required environments, as well
as negotiate enforceable resource allocations for their
execution. We discuss the requirements and properties
of such tools in the context of Edge Services – VO-
specific infrastructure services particularly sensitive to
issues of resource sharing – to illustrate the different
aspects where a separation of concerns would be
useful.

In [6] we defined an abstraction that meets many of
our requirements: virtual workspaces. Workspaces can
be implemented by a variety of mechanisms, including
configuration of dedicated physical resources as well
as the use of virtual machines. In this paper, we refine
these abstractions to address the resource allocation
and fair-sharing issues as well as security processing
required to provide a tool satisfying the separation of
concerns and fair sharing requirements.

Furthermore, we demonstrate how the virtual
machine implementation of workspaces can provide a
useful solution to our requirements. We do this by
experimenting with their use in the Edge Service
Framework (ESF) [7], illustrating how it deals with the
challenging scenarios that occur in the context of
running Edge Services on a production testbed.

In summary, our contributions are as follows:
1) We extend the workspace service abstraction to

provide mechanisms for dynamically
negotiated resource usage.

2) We present an implementation approach using
Globus Toolkit 4 [8], the Workspace Service
based on the Xen virtual machine [9] and
Linux networking tools.

3) We describe the application of this architecture
and implementation in the use case of Edge
Services Framework.

4) We present an experimental evaluation of the
methods we developed and show how they can
be used to solve problems in the current Edge
Service deployments.

2. Related Work

The need for developing management tools
separating the resource provider’s enforcement from a
VO’s enforcement has been described in [10]. Here,
we argue for tools to manage a resource slot rather
than just computation, and develop methods to achieve
such separation in a particularly demanding case – the
Edge Services – which require addressing more than
one resource allocation aspects in conjunction. Further,
the management methods we propose are finer-grained
and open to negotiation by the client.

The concept of a resource allocation is similar to the
PlanetLab abstraction of a resource slice [11]. We
propose here methods for negotiating such slices
dynamically and evaluate a specific implementation of
the concept in the Grid context.

Many projects have used various implementations
of virtual machines (VMs) in Grid computing to
leverage their isolation properties [12-14]. Our
approach here is focused specifically on negotiating
and implementing fair share management between
VMs constraining resource usage for infrastructure
services administered by different VOs.

The Virtuoso Project also uses VMs for resource
management [15], however the interface they propose
focuses primarily on the CPU and, using a different
implementation, have developed different methods.
Work described in [16] focuses on evaluation of
enforcement capabilities of different VMs; our work is

different in that we develop methods using those
capabilities to enforce negotiated resource allocations.

Ideas of combining virtual machines and distributed
computing have also been proposed in the context of
the Xenoserver Project [17] but on a more coarse-
grained level.
Finally, the interfaces we propose are informed by the
standards work at the Global Grid Forum, specifically
the work on WS-Agreement [18] and the Job
Submission Definition Language (JSDL) [19]; our
effort is less broad in scope, focused on test-driving
practical applications and the implementation
implications of Grid abstractions.

3. Requirements and Focus

Our argument for enabling “division of labor”
between resource providers and VOs is driven by the
need to provide mechanisms for flexible and scalable
behavior in the Grid and thus provide a basis for its
growth. It is impossible for a resource provider to
provide every single bit of configuration for a VO,
much less to arbitrate between different VOs and their
users; they need to be able to focus on providing
resources and keeping them running. In general, we
want to enable a model where a provider (e.g., a
resource owner) can delegate the usage of a well-
constrained resource quantum to a consumer (e.g., a
VO) such that this consumer can turn around and
further distribute those resources among its customers
(e.g., VO users). As we explained in [6] this situation
can in general involve many different layers and
employ different workspace implementations to
achieve the desired fairness and granularity of sharing.

A compelling illustration of the issues that arise
where division of labor between resource providers
and VOs is not recognized is provided by Edge
Services. Edge Services are Grid middleware services
enabling access to site resources (the name derives
from the fact that they typically configured to execute
on the edge of private/site and public network).
Examples include infrastructure built around job
management services (such as GRAM or Condor),
storage brokers (such as SRM), and caching databases.
In addition to its primary function, the implementation
of an Edge Service often also includes multiple
privileged and unprivileged actions such as data
staging and registration, security processing,
monitoring, resource procurement, and others. Edge
Services are thus complex, and exercise many aspects
of sharing between a VO and a resource provider as
well as between multiple VOs sharing the same
resource provider.

Edge Services are often required to be VO-specific:
their configuration is determined by a VO to reflect the
needs of its users. Different VOs upgrade these
services on a different schedule and may use
conflicting versions of such services. Further, each VO
works with an often large and dynamically changing
pool of users and has to mold its policies not only in
response to its fluid membership, but also to
potentially changing objectives (e.g. research vs.
development). In addition, since all requests for site
use come through Edge Services, they easily become a
bottleneck as request rates increase. Because of their
variety and complexity (combination of differently
owned processes and threads, network and disk traffic,
and memory demands) it is hard for a resource
provider to track, account, and enforce resource usage
and thus ensure quality of service for any particular
VO. This leads to situations where some users cannot
use a site at all due to excessive traffic from others.
Last but not least, the relationship between an
organization and resource provider evolves constantly
reflecting the need for potentially frequent and
dynamic change in the configuration and policy
assigned to Edge Services.

Without a mechanism enabling a resource provider
to effectively delegate bulk resource usage to a VO,
the provider takes on too large a burden affecting its
ability to scale – and to prevent any one VO from
impacting another. Based on the previous discussion,
in a general case, such mechanism should provide
separation between the VO and the resource provider
along the following dimensions:

1) Environment and configuration: a VO should
be able to provide the configuration it needs
independently of the resource provider.

2) Isolation: the provider needs to be able to
delegate resource usage to a VO in such a way
that the VO’s activities cannot impact the
resource provider -- and therefore don’t need
to be under its control.

3) Resource usage enforcement and accounting:
a provider needs to be able to grant, enforce,
and account for VO resource usage in a way
that is independent of how the resource is
consumed.

Addressing concerns (1) and (2) is the subject of
our future and ongoing research [6, 20]. In this paper
we want to focus on the third issue and propose
extensions to the virtual workspace abstraction that
provide mechanisms for the negotiation and
enforcement of resource usage.

4. Allocating Resources to Workspaces

Virtual Workspaces [20] allow an authorized Grid
client to dynamically deploy a customized and isolated
Grid execution environment. The environment is
deployed based on workspace meta-data, provided by
the client, which contains all the information necessary
for deployment (i.e., in the VM case, VM image and
configuration information). In addition, the client
provides a resource allocation request that describes
resources bound to the workspace at deployment time.
In addition to deployment capabilities, the workspace
service provides other management interfaces based on
the Web Services Resource Framework (WSRF) [21]
such as inspection and lifetime management.
Workspaces can be implemented through various
means, including using imaging software on physical
resources (similar as in [22]) as well as virtual
machines.

In this section, we explain how the workspace
service can be used to delegate resources to activities
contained in the workspace. Specifically, we define a
resource allocation element and discuss its
implementation. We emphasize that our current
interface enables the client to only negotiate resource
allocation policy for a specified workspace and
describe methods allowing a resource provider to
apply such policy. The policy is applied at the resource
provider’s discretion. We do not at present implement
methods that would enable the client to either enter
into incentive-based agreements [18] or implement the
monitoring systems and other infrastructure services
that such architectures imply.

4.1. Negotiating Resource Allocation Policy

The Workspace Service interface is based on
WSRF and thus includes operations supporting the
creation, monitoring and lifetime management
methods. Building on this model we added methods
allowing a VO to dynamically determine, inspect, as
well as renegotiate, resource assignment policy
relevant to a specific workspace.

Shaping resource assignment policy for a specific
workspace has four stages: (1) a client defines a
requested resource allocation, (2) the resource
allocation is negotiated, resulting in an assigned
resource allocation, (3) the assigned resource
allocation is published, and (4) the resource allocation
is potentially renegotiated.

Our current implementation uses a simple all-or-
nothing negotiation strategy; requested resource
allocation is sent as part of the Workspace Service's

create operation and is either accepted or rejected
based on resource availability. If accepted, the
assigned resource allocation (which concretizes the
requested resource allocation values as -- see below) is
published as a WSRF resource property. Renegotiation
is achieved by updating the resource property values.
This can be done either by sending a complete new
resource property description or by requesting the
adjustment of a specific value (e.g., CPU percentage) –
in the latter case, the request is interpreted as if the
existing resource allocation with adjusted CPU value
was sent. As with workspace creation, the result of this
operation is subject to the same all-or-nothing strategy.
If the request cannot be satisfied the workspace
deployment is not disrupted – if it can, new resources
are assigned to the workspace.

The assigned resource allocation is depicted in
Figure 1. Time is specified as start time (only current
time is accepted at present) and duration of
deployment. Memory size is also specified as single
value. The CPU is specified as a list of
architecture/percentage pairs to accommodate
workspaces with multiple CPUs. Similarly disk and
networking are also specified as potentially multiple
resource slots with salient characteristics; for example,
in the Edge Services example the two networking slots
are used for private and public connection respectively.
The values of some of the qualities in the picture,
including duration, CPU percentage, size, read/write
speed and bandwidth can be specified with an “at
least” option which is interpreted to mean “the
assigned value or more” (given our assumptions, we
did not find the “at most” option to be practical).

Figure 1: Assigned Resource Allocation

The requested resource allocation differs from the
assigned resource allocation in two major respects.
First, the disk, CPU and networking elements allow for
the description of choices (e.g., a list of acceptable
CPU architectures to choose from) and second, the

requested values are specified in terms of ranges (e.g.,
50-60% of CPU).

A client may be interested in only specific aspects
of resource allocation; for example, it may specify only
memory and CPU. In such cases, default values will be
assigned by the workspace service. We extended the
Workspace service Factory resource properties to
publish the default policy on such cases; while the
current implementation provides only the “best effort”
policy we are experimenting with more controllable
defaults, e.g. preventing service starvation through
overbooking of memory or other qualities.

4.2. Enforcing the Resource Allocation

In its VM-based implementation, the Workspace
Service interacts with the Xen hypervisor [9] to
provide secure VM deployment and management for
Grid clients. Hypervisor interaction takes place in Xen
“domain 0” which, in addition to being a standard
Xen virtual machine, allows a client to create and
manage other virtual machines (called “user domains”
in Xen). In this section, we describe how we use a
variety of tools, including some Xen-supported
features, in order to implement fine-grain resource
usage enforcement.

To enforce the CPU allocation we used the Xen
Simple-Earliest Deadline First (SEDF) [23] scheduler
which provides weighted (i.e., percentage based) CPU
sharing between different domains over a set period of
time. If an attempt is made to claim more CPU than is
available such request will be declined by the
scheduler. An extra_time flag tells the scheduler it can
give a domain extra CPU cycles during the scheduling
period if they are available (i.e., not used by another
domain); if this flag is set to false the domains get only
their assigned CPU shares whether additional
resources are available or not. Both this policy and the
assigned CPU share can be changed on the fly;
different domains can take advantage of the extra_time
scheduling policy independently of each other.

All domains are treated equally – there are no
special priorities assigned to any domains. This raises
the question of how many resources need to be
assigned to domain 0 in order to ensure timely
processing of I/O; more domain 0 CPU% does not
necessarily mean faster throughput. In our
implementation, we found that an assignment of 10%
plus extra time for domain 0 gave a good balance for
the workloads in our set of use cases (see [24] for a
discussion of assignment trade-offs).

The physical memory size allocated to a Xen
domain is specified when the domain is created. It is a
hard limit: if the requested memory size goes beyond

the available physical memory size the startup
operation will fail and the hypervisor will report a
memory allocation error. A domain can adjust its
memory size after the startup using the balloon driver
included in Xen. The balloon driver is a mechanism in
a guest OS that can allocate “fake” memory in an
attempt to flush invalid or cached memory pages out of
physical memory that the hypervisor can then give to
other VMs.

There are two flavors of disk allocation that are
needed: obtaining storage for disk partitions that form
a part of a VM image, and providing extra writing
space for the VM. The former is addressed by
mounting VM partition as a loopback device (a
physical partition on the local disk could also be
mounted but those are already allocated), the latter by
allocating space from network filesystems or by
creating new, blank loopback images. For best access
and write times, both read and write partitions should
be mounted from whichever site disk can offer the best
performance within the requested allocation. In order
to accomplish this, the workspace service keeps track
of available local disk space on various resources and
uses the “size” element in partition meta-data to
schedule workspace deployment. Further, since VMs
can share readonly partitions, this aspect could be
taken care of in scheduling. Disk allocations cannot be
managed on the fly.

Xen by itself does not implement controlled
bandwidth sharing so we rely on Linux network
shaping tools [25] in order to implement it. We take
advantage of the fact that the network interface of each
domain is connected to a virtual network interface in
domain 0 by a point to point link and the traffic on
these virtual interfaces is handled in domain 0 using
standard Linux mechanisms for bridging, routing and
rate limiting. To implement bandwidth sharing (for
both incoming and outgoing bandwidth) we limit the
rate of network traffic going to and from the respective
domains (the to and from bandwidth can be different)
using the Hierarchical Token Bucket queuing
discipline [26]. To achieve this we needed to recompile
the domain 0 kernel, and developed an API to the
Linux tools that allows us to set the bandwidth rates
for created domains. Bandwidth shaping is currently
the only

5. Case Study: Edge Services Framework

The Edge Services Framework (ESF) is being
developed for the OSG in order to decouple the
process of configuring and managing service nodes for
VOs from providing resources, thus allowing for

division of labor between a VO administrator and site
administrator. To do this, ESF leverages the
abstraction of workspaces to allow VO administrator
to configure a deployment-ready Edge Service and
deploy them based on need and resource availability.

ESF consists of a workspace image library, image
transport and storage mechanisms, and the workspace
service. The image library contains base images
(intended to provide base configurations) and wafer
images (with fully configured Edge Services). The
base images represent a basic OS configuration and
include at present Scientific Linux 3/4, CentOS 3/4,
and Fedora Core 4. The Wafer images currently
include the ATLAS DASH service [27] and CMS
FroNtier [28]. Since wafers can be large in size (5 to
~10 GB) ESF uses compression and fast transport
mechanisms (GridFTP [29]) as well as high-end
Storage Elements (SEs) such as dCache [30].

The role of a VO administrator is to prepare,
configure, and test an ES wafer. The image can then be
shared within the VO, transported to deployment sites,
and stored within the local site SE where it can be
retrieved for deployment by any of the VO
administrators. In the current deployment, images
stored on a site are further configured with required IP
addresses, and a pre-generated credential; we are
working towards automating this process as part of
workspace deployment [20].

The role of a site administrator is to provision
hardware resources that can be used for Edge Services,
ensure their proper configuration, and maintain them.
In our current deployment this includes configuring
them with Xen, and providing one deployment of GT4
and the Workspace Service per site. A Site
administrator also provisions storage space in a local
Storage Element for storage and retrieval of ES wafer
images.

During site operation, Edge Service workspaces are
dynamically retrieved, provisioned, and deployed by a
VO administrator authorized using his or her VOMS
credentials [31]. For example, when working with
ATLAS analysis jobs requiring a database cache of a
specific type, an ATLAS administrator deploys the
DASH Edge Service. On deployment, the cache
initializes using remote data repositories over its public
network connection and is then available on the private
network to the jobs submitted by ATLAS users to the
site.

Current ESF deployment spans both integration-
level testbed sites and production-level sites on OSG.
The integration-level sites include ANL, FNAL,
University of Chicago and UCSD. The production-
level deployment is at the DISUN [32] at SDSC.

Our ESF deployment experiences to date are
encouraging. Advantages for VOs include portability
of Edge Services distributions, guaranteed use of
dedicated resources at sites based on timed leases, ease
of hosting various OS solutions to cater to specific
sub-community needs, and an increased control to
customize services configuration. Advantages for sites
manifest themselves as flexibility in hardware
provisioning (resources can be freed on expiration of
Edge Services leases or reallocated dynamically),
freedom from deployment of diverse sets of services
resulting in an ability to support more VOs with less
effort, and a relief from providing direct configuration
support to VO-specific services that can be more
efficiently handled by VOs themselves.

A potential disadvantage for sites is decreased
control over services and interfaces exposed on the
local infrastructure and consequent concern about their
soundness and security. In our current infrastructure
this is addressed by vetting workspace images by site
personnel. We are working on reducing the impact of
such procedures by fragmentation as well as on
managing trust using digitally signed images [20].

6. Experimental Evaluation

We evaluated our abstraction and implementation in
the context of an Edge Service known as Compute
Element (CE) configured to enable job submission to a
site. A common problem with CEs is that it is very
hard to guarantee the quality of service they provide:
submissions from all VOs suffer equally at times when
a CE is subjected to heavy load independently of
whether they significantly contribute to this load or
not.

In order to evaluate the validity of our approach we
recreated this situation on a service node recreated on
an AMD Athlon(tm) MP 2200+ machine (dual
processor, configured to work with one) with 2GB
memory, configured with Linux 2.6.12. For the VM-
based experiments we used Xen 3.0, with domain 0
always given 10% of CPU and 256 MB of memory.
For this experiment, our simplified implementation of
an OSG CE was configured with GT4 GRAM.

We considered two different scenarios in which two
VOs: VO1 and VO2, share a service node. In the first
scenario (physical machine scenario) the CE is
deployed directly on the physical machine and no
mechanisms controlling sharing between VOs are in
place (reflecting the situation in most current
deployments). In the second scenario (workspace
scenario) each VO deploys the CE in a workspace,
implemented as a Xen VM, and negotiates a resource

allocation for this workspace. In our experiments, each
VO requests at least 45% of the CPU (45% CPU with
extra time available if unused by other activity on the
node) and 896 MB of memory respectively.

To simulate heavy request load coming from VO1
we used a load client that submitted a request to the CE
every 10 seconds (to further simulate the
computational load for processing a complex request,
the submitted job performed 2 million square root
operations). In both the physical and workspace
scenario we measured the end-to-end job throughput of
two clients, VO1 client and VO2 client, submitting a
non-staging GRAM job (/bin/date). Each job
submission consisted of create+subscribe, state
notifications, and a destroy exchange. The job
submission throughput was calculated over a period
starting after the CE was saturated with the load
(starting 150 seconds into the experiment) to a period
when VO2 client stopped submitting (450 seconds into
the experiment). The results shown below are an
average of 5 trials (all values were roughly within 10%
of the average):

PHYSICAL SCENARIO:
VO1client: 7.82 jobs/minute
VO2client: 8.00 jobs/minute

WORKSPACE SCENARIO:
VO1client: 4.18 jobs/minute
VO2client: 22.36 jobs/minute

We observe that in the physical scenario each client
has roughly the same (low) request throughput: both
VOs are equally impacted by the pre-existing request
load coming from VO1. In the workspace scenario on
the other hand, all of the VO1 request load is confined
to VM1. This results in a significantly worse
throughput for VM1 which is roughly halved as all the
load generated by VO1 is now allocated half the
resources. The request throughput for VO2 client on
the other hand shot up substantially since none of the
VO1 traffic is now directed to VM2 resources.

To closer observe the behavior of the CEs overtime
we summed the number of completed request for VO1
and VO2 clients respectively during regular intervals
(every 30 seconds) and plotted this number against
time. The graph in Figure 2 shows the comparison:
VO2 client has consistently high throughput. VO1
client has low throughput up until the point when VO2
client stops sending requests and causing VM2 to
temporarily stop consuming resources. VO1 is then
able to take advantage of the “extra_time” policy
(specified by requesting “at least” 45% of CPU) and
obtain more processing power. At about 600 seconds

the load client ceases to submit resulting in
dramatically better throuput rate for VO1.

Comparison of Request Throughput over Time

0

5

10

15

20

25

30

30 90 150 210 270 330 390 450 510 570 630 690 750 810
Time (in 30 second buckets)

VO1Client VO2Client

Figure 2: Request throughput for VO1 and VO2
clients; completed requests are totalled every 30
seconds

Varying the load coming from the load client (by
doubling or tripling its operations) shows the same
pattern for VO2 request throughput: the job throughput
stays at the same level independently of the load which
shows that VM2 is unimpacted by the varying load
conditions in VM1 (Figure 3).

VO2 (under changing VO1 load conditions

0

2

4

6

8

10

12

14

16

30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480

Time (in 30 second buckets)

1mill-VO2 2mill-VO2 3mill-VO2

Figure 3: VO2 request throughput under increasing
load conditions from VO1

The job throughput numbers suggest that due to the
heavy load experienced by VO1 a resource allocation
favoring VO1 might be more appropriate as long as
that outcome would also be acceptable to VO2. We
repeated the experiment with a 60% CPU assignment
to VO1 and a 30% assignment to VO2 and saw a

significant improvement in request throughput for
VO1 accompanied by a drop in VO2 throughput
(Figure 4).

Renegotiating Resource Allocation @ 300 seconds

0

5

10

15

20

25

30

30 90 150 210 270 330 390 450 510 570 630 690 750 810

Time (in 30 second buckets)

VO1Client-2M VO2Client-2M

Figure 4: Request througput for VO1 and VO2:
VO1 and VO2 start with 60% and 30% of CPU
allocation respectively; at 300% the VO's 45%/45%
share is renegotiated.

However, if VO2 is committed to providing a
specific job request rate to its users this assignment
may not be acceptable. In this case, VO2 may use the
workspace service interact to renegotiate the
allocation. Figure 4 shows this renegotiation
happening at 300 seconds. As a result, VO1 and VO2
throughput quickly goes back to previous levels.

Our results demonstrate that using workspaces
gives the resource provider a helpful tool allowing him
or her to isolate and enforce resource usage between
different communities independently of what methods
are used by a community to consume resources. It also
isolates the resource provider from negative effects of
dealing with communities that are not able or willing
to properly regulate their traffic – if one community
should create unreasonable load, others are protected
and can still support the negotiated quality of service.
The benefits are similar from the perspective of
communities, with the important addition that in case
of service degradation a community has the option of
negotiating a better resource assignment in discrete
terms. Finally, these benefits come at a reasonable
price; as demonstrated in [9] (and confirmed by our
experiences on this project) using Xen results in only
minimal performance degradation.

In practice, the principal cost of using workspaces
comes from their memory demands. Each VM may
have significant memory requirements (an typical ESF

VM is configured with about 1GB of memory) which
certainly limit their usage on a per-user basis and
sometimes even per-community basis. Also, much of
the separation between VOs, both in our experiments
and deployment was achieved effectively by
replicating services (i.e., effectively using twice as
many resources). While these concerns determine the
level of granularity at which workspaces may be used
in their current implementation, it is also probable that
they may be alleviated in the future by copy on write
memory sharing techniques used in other virtualization
platforms. Finally, while we believe that the
abstraction of a workspace is needed to provide
division of labor in the general case, we also
acknowledge that special cases exist where less formal
enforcement methods and more casual sharing
relationships are sufficient and less expensive.

7. Conclusions and Future Work

Our experimental as well as deployment
experiences lead us to conclude that the workspaces
constitute a promising “division of labor” tool for
providers and consumers. This is especially true in
situations, such as load management on OSG service
nodes, where understanding the interdependency of
various factors causing load is complex. The ability to
negotiate and renegotiate resource allocations is
particularly important, both to the client and the
provider: it allows them to react to changing load
conditions and optimize their provisioning to satisfy
the targets.

Our future work in this area focuses on refining our
workspace management methods and fine-tuning the
enforcement implementation to better capture the
interrelated resource management aspects. Once
understood in the atomic case, we plan to extend them
to use with aggregate workspaces. Also, while we
believe that using workspaces will help Grid
computing scale, it is likely that incentive-based
models may be needed to further fuel its growth. For
that, we will also need the invisible hand.

9. Acknowledgments

This work was supported in part by the NSF CSR
program and by the Mathematical, Information, and
Computational Sciences Division subprogram of the
Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy under
Contract W-31-109-ENG-38.

10. References

1. Foster, I. and others. The Grid2003
Production Grid: Principles and Practice. in IEEE
International Symposium on High Performance
Distributed Computing. 2004: IEEE Computer Science
Press.
2. Open Science Grid (OSG). 2004:
www.opensciencegrid.org.
3. The TeraGrid Project.
4. Foster, I., C. Kesselman, and S. Tuecke, The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of Supercomputer
Applications, 2001. 15(3): p. 200-222.
5. Smith, A., The Wealth of Nations.
6. Keahey, K., I. Foster, T. Freeman, and X.
Zhang, Virtual Workspaces: Achieving Quality of
Service and Quality of Life in the Grid. accepted for
publication in the Scientific Progamming Journal,
2005.
7. Edge Services Framework (ESF):
http://osg.ivdgl.org/twiki/bin/view/EdgeServices/Web
Home.
8. Foster, I., Globus Toolkit version 4: Software
for Service-Oriented Systems. IFIP International
Conference on Network and Parallel Computing, 2005.
9. Barham, P., B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebar, I. Pratt, and A.
Warfield. Xen and the Art of Virtualization. in ACM
Symposium on Operating Systems Principles (SOSP).
10. Foster, I., K. Keahey, C. Kesselman, E.
Laure, M. Livny, S. Martin, M. Rynge, and G. Singh,
Embedding Community-Specific Resource Managers
in General-Purpose Grid Infrastructure. White Paper,
2005.
11. Bavier, A., M. Bowman, B. Chun, D. Culler,
S. Karlin, S. Muir, L. Peterson, T. Roscoe, T. Spalink,
and M. Wawrzoniak. Operating System Support for
Planetary-Scale Services. in 1st Symposium on
Network Systems Design and Implementation. 2004.
12. Figueiredo, R., P. Dinda, and J. Fortes. A
Case for Grid Computing on Virtual Machines. in 23rd
International Conference on Distributed Computing
Systems. 2003.
13. Adabala, S., V. Chadha, P. Chawla, R.
Figueiredo, J. Fortes, I. Krsul, A. Matsunaga, M.
Tsugawa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu,
From Virtualized Resources to Virtual Computing
Grids: The In-VIGO System. Future Generation
Computer Systems, 2004.
14. Xu, M., Z. Hu, W. Long, and W. Liu, Service
Virtualization: Infrastructure and Applications, in The

Grid: Blueprint for a New Computing Infrastructure.
2004, Morgan Kaufmann.
15. Lin, B. and P. Dinda, VSched: Mixing Batch
And Interactive Machines Using Periodic Real-time
Scheduling. Proceeings of the ACM/IEEE conference
on Supercomputing, 2005.
16. Quetier, B., V. Neri, and F. Cappello,
Scalability Comparison of 4 Host Virtualization Tools.
White Paper, 2005.
17. Reed, D., I. Pratt, P. Menage, S. Early, and N.
Stratford. Xenoservers: Accountable Execution of
Untrusted Programs. in 7th Workshop on Hot Topics
in Operating Systems. 1999. Rio Rico, AZ: IEEE
Computer Society Press.
18. Andrieux, A., K. Czajkowski, A. Dan, K.
Keahey, H. Ludwig, J. Pruyne, J. Rofrano, S. Tuecke,
and M. Xu, Web Services Agreement Specification
(WS-Agreement) Draft 20. 2004:
https://forge.gridforum.org/projects/graap-wg/.
19. Andrieux, A., K. Czajkowski, J. Lam, C.
Smith, and M. Xu, Standard Terms for Specifying
Computational Jobs.
http://www.epcc.ed.ac.uk/%7Eali/WORK/GGF/JSDL-
WG/DOCS/WS-
Agreement_job_terms_for_JSDL_print.pdf, 2003.
20. Lu, W., K. Keahey, T. Freeman, and F.
Siebenlist, Making your workspace secure:
establishing trust with VMs in the Grid. SC05 Poster
Presentation, 2005.
21. Czajkowski, K., D. Ferguson, I. Foster, J.
Frey, S. Graham, I. Sedukhin, D. Snelling, S. Tuecke,
and W. Vambenepe, The WS-Resource Framework.
2004: www.globus.org/wsrf.
22. Chase, J., L. Grit, D. Irwin, J. Moore, and S.
Sprenkle, Dynamic Virtual Clusters in a Grid Site
Manager. accepted to the 12th International
Symposium on High Performance Distributed
Computing (HPDC-12), 2003.
23. Xen Scheduling:
http://wiki.xensource.com/xenwiki/Scheduling.
24. Gupta, D., R. Gardner, and L. Cherkasova,
XenMon: QoS Monitoring and Performance Profiling
Tool. Tech Report: HPL-2005-187, 2005.
25. Linux Advanced Routing and Traffic Control:
http://lartc.org.
26. Devera, M., Hierarchical Token Bucket
Queuing. 2005: http://luxik.cdi.cz/~devik/qos/htb/.
27. Vaniachine, A., DASH: Database Access for
Secure Hyperinfrastructure: OSG document 307.
http://osg-docdb.opensciencegrid.org/cgi-
bin/ShowDocument?docid=307.
28. Lueking, L., FroNtier project:
http://lynx.fnal.gov/ntier-wiki.

29. Allcock, W., J. Bester, J. Bresnahan, A.L.
Chervenak, I. Foster, C. Kesselman, S. Meder, V.
Nefedova, D. Quesnel, and S. Tuecke. Secure,
Efficient Data Transport and Replica Management for
High-Performance Data-Intensive Computing. in Mass
Storage Conference. 2001.
30. The dCache Project: http://www.dcache.org.
31. The Virtual Organization Management
System: http://infnforge.cnaf.infn.it/projects/voms.
32. Data Intensive Sciences University Network:
http://disun.org.

The submitted manuscript has been created by the University of
Chicago as Operator of Argonne National Laboratory ("Argonne")
under Contract No. W-31-109-ENG-38 with the U.S. Department of
Energy. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

	1. Introduction
	2. Related Work
	3. Requirements and Focus
	4. Allocating Resources to Workspaces
	4.1. Negotiating Resource Allocation Policy
	4.2. Enforcing the Resource Allocation

	5. Case Study: Edge Services Framework
	6. Experimental Evaluation
	7. Conclusions and Future Work
	9. Acknowledgments
	10. References

