
Web Services Toolkit Interoperability

Ivan R. Judson,1,2 Eric Olson,1 Scott D. Price,2 Thomas D. Uram2

1Computation Institute,
University of Chicago / Argonne National Laboratory

2Mathematics and Computer Science Division,
 Argonne National Laboratory

{judson, eolson, price, turam}@mcs.anl.gov

Abstract

Web services, using WSDL and SOAP and following

the WS-I’s Basic Profile 1.0, have become the lingua
franca for building service-oriented systems. Until
recently, the development of tools for Web service took a
significant amount of time, hindering the deployment and
thus the adoption of Web services as a real technology.
With the advent of the Web Services Interoperability
Organization (WS-I) and the resulting Basic Profile
specifications, which provide guidelines for interoperable
Web services, toolkits can now adhere to a set of
conventions that can enable interoperability. We examine
five Web services toolkits and evaluate their
interoperability on simple test cases. Our goal is twofold:
to report on the effort needed to produce interoperable
services using these five toolkits, and to be sufficiently
rigorous in our method that others can replicate our
results.

1. Introduction

Web services are the current technological solution to
an old problem: remote access to data or programs.
Recently, the adapter pattern approach [1] has provided a
“wrapper interface” enabling previously disjoint network
data and applications to interact with each other. The
standards settled upon are XML Schemas [2, 3], SOAP,
WSDL, and the Basic Profile 1.0 [4].

1.1 Building Web services: An initial attempt

Since their introduction as official activities in the

W3C, SOAP [5] and WSDL [6] have become the
standards for building Web services. However, many
factors have caused Web services toolkits to remain
proprietary and noninteroperable. The first two toolkits
widely used, Microsoft’s .Net [7] and Apache’s Java-
based toolkit [8], were well built, with many useful tools
and utilities for Web services developers. However, they
included “value-added” features and benefits that were

implemented by using proprietary mechanisms, and often
these extensions were not clearly indicated. Casual
developers found themselves building Web services that
were usable only by clients built with the same Web
services toolkit. Worse, because features were added and
modified with every release, Web services built with new
versions of the same toolkit often did not work with new
toolkit releases.

1.2 Steps toward interoperability

By late 2003 enough Web services had been
deployed, regularly used, and relied upon that
interoperability became a serious issue. Around the same
time, IBM and Microsoft changed their strategy for their
Web services toolkits. Instead of racing ahead with
advanced features; they started developing their toolkits
to be solid, reliable tools for developing Web services for
users of any platform. The new strategy embraces
interoperability but exposes the advanced features of the
underlying environment in simple ways. This strategy,
they believe, will draw more developers to their
respective platforms.

During this transition, the Web Services
Interoperability Organization (WS-I) was formed to
facilitate interoperability work that would result in faster
standardization through organizations such as the Internet
Engineering Task Force (IETF), W3C, and OASIS. One
of the first deliverables of the WS-I was an
interoperability target called the Basic Profile 1.0 (BP-
1.0), which, if adhered to, can provide a reasonably high
degree of interoperability.

1.3 Evaluating Web services toolkits

Most current Web services toolkits claim to produce
BP-1.0-compliant Web services by default. We have
evaluated this assertion for the top five most commonly
used toolkits: Microsoft’s .NET, Apache’s Axis for Java,
SOAP::Lite for Perl [9], Zolera SOAP Infrastructure
(ZSI) for Python [10], and gSOAP for C/C++ [11]. To
test the interoperability of these toolkits, we implemented
two simple Web services, each described by a BP-1.0-

compliant WSDL file. We then used each toolkit to
generate server and client stubs. For each toolkit, we
wrote implementations of the server and client that
produced identical results. To measure interoperability,
we looked at either the success or failure of the actual
messaging between the clients and servers and also the
messages passed between client and server on the
network. Additionally, where interoperability was not
found, we modified the incorrect toolkits, thereby
enabling complete interoperability among all five toolkits.

The rest of this paper is organized as follows. In
Section 2 we describe the interoperability tests. In Section
3 we present and analyze our results for the five toolkits.
In Section 4 we discuss “best practices” for developing
Web services. In Section 5 we conclude with a brief
summary of how to build broadly interoperable Web
services.

2. Interoperability tests

To test the interoperability of the Web services

toolkit, we followed the contract-first development model
[12], implementing two Web services: a SquareService
with simple data types and a DateService service with
complex data. The SquareService accepts a double value
and returns its mathematical square, also as a double. The
DateService provides two methods. The getCurrentTime
method returns the current time, while the getDate
method calculates a date. The getDate method accepts
two input parameters: someday, a complex object
representing an arbitrary date, and offset, a positive or
negative integer. Offset is added to someday, and the
resulting complex object is returned. The two services and
their operations were designed to completely encompass
the messages defined by BP-1.0.

Our test process involved the following steps:
1. Construct a BP-1.0-compliant service description

using WSDL.
2. Generate client and server stubs for each toolkit.
3. Write server-side implementations for each

toolkit.
4. Write client-side implementations for each

toolkit.
5. Execute all five clients against all five services.
6. Where interoperability was not found,

• examine SOAP messages,
• modify noncompliant toolkit, and
• repeat the interoperability test.

3. Interoperability Results

The results shown in Table 1 indicate that not all the

toolkits worked “out of the box.” The more mature Web
service toolkits—Microsoft’s .Net, Apache’s Axis, and
the gSOAP toolkit—produce interoperable, BP-1.0-

compliant servers and clients. But the other toolkits—ZSI
and SOAP::Lite—have incompatibilities that hinder
interoperability. What is interesting is that both ZSI and
SOAP::Lite are open source projects, while Axis is
supported by Apache, and gSOAP is funded by research
at a university. However, the similarities do not continue:
SOAP::Lite is developed by a single primary developer
with patches contributed by others, while ZSI has a group
of developers working to make it better.

Table 1: Summary of initial interoperability

 .Net Axis SOAP::Lite ZSI gSOAP

.Net

Axis

SOAP::Lite

ZSI
gSOAP

Four factors caused interoperability to fail: issues with

the SOAPAction header [13], SOAP message
serialization and deserialization, automatic code
generation, and WSDL support. These factors involve two
types of failings. First, where specifications leave room
for Web services toolkit developers to interpret the
meaning of the specifications or leave aspects of the
implementation undefined, the developers of the different
toolkits may interpret or decide to implement things
differently. Indeed, this was the case with the
SOAPAction header in the SOAP messages and with the
serialization and deserialization of the SOAP messages
between the client and server. Considering the flexibility
allowed by the SOAP specification, it is actually more
surprising that the differences were minor enough to be
corrected than that there were differences at all.

The second problem that hindered interoperability was
the general maturity of the toolkits tested. That automatic
code generation and WSDL support were not as advanced
in the open source toolkits can easily be explained by the
mismatch between the complexity of the Web services
software stack and the relatively hard-to-find, high-
quality, open source developer.

3.1. SOAP::Lite

The SOAP::Lite toolkit has been around for quite

some time and is fairly well supported. However, some of
the functionality and features of the commercially
supported toolkits have yet to appear in SOAP::Lite. In
particular, although SOAP::Lite does support the use of
WSDL service descriptions, it was not robust enough to

support our test services, so we generated all the
necessary code by hand. Despite this major shortcoming,
SOAP::Lite still provides a powerful toolkit that is easy to
work with.
 The SOAP::Lite documentation provides examples of
how to call a service in several simple lines of code.
Although that code works when both client and server are
using SOAP::Lite, in most cases it does not work with
other toolkits. With SOAP::Lite we encountered both
differences in how the SOAPAction header is handled and
serialization differences. These problems affected both
the creation of the clients and the servers using
SOAP::Lite. SOAP::Lite constructs the SOAPAction
header by concatenating the URI to the service, a pound
sign, and the method being called:

http://www.soaplite.com/Demo#hi

 Because the SOAPAction header is loosely defined in
the SOAP 1.1 protocol, there is a lot of variance among
the different toolkits and how they construct and parse the
value. Most of the other toolkits construct the value by
concatenating the URI, a colon, and the method name:

http://www.soaplite.com/Demo:hi

In order for SOAP::Lite to be interoperable, we used
on_action to change how SOAP::Lite created the
SOAPAction value.

 The second problem we encountered was how
SOAP::Lite serializes the data to be transmitted. The
default serializer adds additional XML tags that are
unnecessary and unspecified by the WSDL. For instance,
in the SOAP message shown in example 2, the c-gensym1
block labels are not necessary, and in fact they make
some other toolkits unable to parse this message.

Strictly speaking, some toolkits will accept messages
with these additional tags; however, we attempted to
obtain message-level interoperability by making the
SOAP messages appear as close to identical as possible.
Through careful modification, nesting the various
properties of SOAP::Data objects within each other by

hand, we were able to produce and consume SOAP
messages with SOAP::Lite that were virtually identical to
the other toolkits.
<getSquare
xmlns:namesp1="http://www.mcs.anl.gov/WebServi
ces/SquareService">
 <c-gensym1>
 100
 </c-gensym1>
</getSquare>

 The modification of the SOAP::Lite serializer was
done in the envelope method; when the processing of the
message was completed, the resulting message data was
then returned to the default envelope. This inline
modification of the serializer makes it transparent to the
end-user or developer that any message massaging is
occurring.

<x
xmlns:namesp1="http://www.mcs.anl.gov/WebServi
ces/SquareService">100
</x>

 Similar overriding of the SOAP::Lite message
deserializer was necessary. In order for the default
deserializer to recognize the SOAP message, extraneous
blocks like those we removed when sending the message
needed to be inserted into received messages. Again, we
put our modification inside the SOAP::Lite toolkit,
transparent to users, by intercepting, modifying, and
returning a transformed message.

The two problems contributing to the incompatibility
with SOAP::Lite were the SOAPAction header and the
SOAP Message format. We successfully found
modifications to SOAP::Lite that allowed it to be
interoperable. However, the solution for dealing with the
SOAPAction header left the toolkit such that developers
who wanted to use it for interoperable services needed to
know how to use the on_action method. We decided to
make it easier for developers, so we modified the
SOAP::Lite toolkits HTTP.pm file, at line 205, to make
the colon-separated value the default format for the
SOAPAction header. This eliminates the need for any
SOAPAction header modification by service developers.

#!/usr/bin/perl
use SOAP::Lite;

$proxy =
'http://services.soaplite.com/hibye.cgi';

print SOAP::Lite
 -> uri('http://www.soaplite.com/Demo')
 -> on_action(sub {
 return 'http://www.soaplite.com/Demo:hi'})
 -> proxy($proxy)
 -> hi()
 -> result;

3.2. Zolera SOAP Infrastructure (ZSI)

The Zolera SOAP Infrastructure is a reasonably

mature toolkit, with an active development community.
We have been using the ZSI tools for quite some time in
the Access Grid project, primarily because they are
implemented in Python, which is what our project uses.
The ZSI toolkit does have some shortcomings, however,
so we have been aggressive in developing solutions and
making sure they get incorporated into the project.

ZSI comes with two tools that create code skeletons
for both clients and servers automatically from a WSDL

service description: wsdl2py and wsdl2dispatch. While
these tools are extremely helpful, they can have problems
parsing some service descriptions, resulting in the two
programs crashing or generating incomplete or incorrect
code. The service description for SquareService was
parsed without problems; however, the DateService
service description, despite being valid WSDL, caused
both programs to crash.

After revising the DateService service description
several times, we were able to get the two programs to
generate code. What we discovered was that the getDate
input parameter was not being handled correctly. We
wrote our service descriptions following the
“document/literal” style [14] so we created a complex
type, getDateRequestType, to store both of the input
parameters, someday and offset. The problem was that
someday was itself a complex type. Since the initial
generated code did not work, we had to modify several of
the generated files.

All of the modifications we made to ZSI involved an
aspect of Web services toolkits that deals with the
mapping of SOAP message types, like someday and
offset, to types in the programming language being used
by the developer. Type-mapping, as it is called, is a
difficult operation, but it is made even more difficult in
Python and other dynamically typed languages (e.g.,
perl). The two changes that corrected ZSI’s code
generators were to disambiguate array type objects and to
simplify the handling of simple types. We found that ZSI
was treating an object as an array, or an array as an object,
when it wasn’t. The problem with simple types was that
ZSI was overzealous—creating large, complex objects for
simple types such as strings. We also made some changes
to simplify the use of the generated code for the
developers, but these were merely aesthetic, not
functional, modifications of the toolkit.
 When the generated code from code generators is
correct, creating Python Web services clients and servers
is easy and can be accomplished in a few lines of code.
We used the EchoClient example provided by ZSI as a
model for our interoperability test.

4. Interoperability best practices

Developing Web services can be a daunting task for

even an experienced developer. Over the past few years,

however, the Web services community has evolved and
mostly agreed on some basic rules when developing web
services—rules that, if followed, will produce the most
interoperable Web services possible. These best practices
consist of three basic rules:

1. Use contract-first design principles.
2. Use the document/literal form of the Web Services

Description Language.
3. Follow the WS-I’s Basic Profile 1.0.

When developing Web services, one should start with

a WSDL (Web Services Description Language) file.
Although WSDL files are simply XML, the WSDL 1.1
specification defines what valid XML can make up a
service description. Much of a WSDL file is boilerplate,
redundant code, which makes it tedious to write by hand.
The five major components of the WSDL file are
namespace declarations, types, messages, ports, and
bindings.

Of the major components of the service description the
types usually take the most work. It is here that the data
types need to be defined so that Web services servers and
clients can agree on what data is being used. Since the
types element consists of just an XML schema definition,
however, XSD editors can be used to create the necessary
element definitions. Microsoft’s Visual Studio.NET has
an XSD editor that allows the user to toggle between a
graphical designer and a text editor that features
IntelliSense. Altova’s XMLSpy is another good editor for
type elements and provides validation for all sorts of
XML files, ensuring no errors are accidentally introduced.
Using such an editor is highly recommended because it
allows the developer to create and modify XSD files
quickly and easily.

The open source toolkits include no WSDL
generators; each service description must be done by hand
in a text editor. Here, then, the commercial tools really
shine, because once the schemas are defined for the
service types, creating the WSDL file is as trivial as using
a typical Windows wizard. Thinktecture’s
WsContractFirst tool for designing types, services, and
methods, now known as WSCF, is an integral part of the
Microsoft Visual Studio Environment. If the VS.NET
Add-In is installed, right-clicking on XSD files in the
solution explorer will allow the user to select “Create
WSDL Interface Description.” Clicking this will launch
the wizard. The user will first be prompted for the service
name, XML namespace, and optional documentation. The
user can then specify all his services and indicate whether
they are Request/Response or One-Way (One-Way is
defined as the client sending a request with out waiting
for a response.) The next step lets the user associate a type
with the in-and-out methods of the operations just
defined. The last step allows the user to specify another

#!/usr/bin/python

from DateService_client import
DateServiceBindingSOAP

ws =
DateServiceBindingSOAP("http://localhost:1235/D
ateServer")

date = ws.getCurrentDate("thisdoesntmatter")

XSD location, if desired. The WSDL will then be
generated automatically.

What distinguishes thinktectures’s tools from
Microsoft’s own Web services tools is the methodology.
Thinktecture follows the contract-first methodology,
enabling easier development of interoperable Web
services. The Microsoft default toolset follows a more
tradition object modeling methodology..

The WSDL file will consist of the four elements
mentioned earlier: types, message, portType, and binding.
However, one more element is needed to make it
complete: service. If with the user develops the service in
VS.NET, the service element will automatically be added
to the WSDL. However, it can just as easily be added by
hand. It should look something like this:

The other tactic to ensure that Web services are as
interoperable as possible is to follow the Basic Profile 1.0.
The Basic Profile 1.0 strongly suggests the use of the
“document/literal” form of service descriptions. We take
that one step further and claim that the use of
“document/literal” is necessary, but not sufficient, to
ensure interoperability.

We suggest that developers remain relatively
conservative in their inclusion of proposed standards,
toolkits, and other extraneous solutions. Most, if not all,
extensions are prototypes of new functionality that is
desired in future Web services; and unless the services
being developed require that functionality, it is much
safer to avoid prototype tools and libraries.

5. Conclusions

We have presented a simple survey of the
interoperability of the five most popular Web services
toolkits. We purposefully did not test any tools that don’t
provide both client and server support, because we have
focused on the tools that developers will use to build Web
services infrastructure—and building server-side services
is critical to that effort.

Our findings indicate that the best way to develop
broadly interoperable Web services is to follow a
contract-first design, with one of the commercially
supported toolkits—Apache Axis or Microsoft’s .Net—at
least for now. The Web services world is moving fast,
producing new specifications all the time, and there are at
least two challenges and pitfalls when using the
commercially supported toolkits.

First, the toolkits allow users to program an
application and then “publish a Web service interface” by
annotating the program; but because this is not contract-
first design, it often causes problems, since the vendors
assume the application will work with their client
application. The toolkits, based on this assumption, take
shortcuts and produce noninteroperable code.

Second, many of the emerging Web services standards
appear in multiple forms, with different names, before
they are approved by the appropriate standards bodies.
Avoiding the use of prestandard specifications will help
avoid interoperability problems in a heterogeneous Web
services environment.

Acknowledgments

We acknowledge the Access Grid Project and the
Python Web Services project for inspiring this survey and
contributing to the development of a more interoperable
Python Web services toolkit. We also acknowledge
Microsoft Research’s ConferenceXP project which has
provided excellent feedback and resources on web
services and interoperability. This material is based upon
work in part supported by the National Science
Foundation under Grant No. ANI-0222509, and by the
U.S. Department of Energy under Contract W-31-109-
Eng-38.

References

[1] “Adapter pattern,”
http://en.wikipedia.org/wiki/Adapter_pattern, 24 Jan.
2006.

[2] XML Schema Part 1.
http://www.w3.org/TR/xmlschema-1/, 2004.

[3] XML Schema Part 2.
http://www.w3.org/TR/xmlschema-2/, 2004.

[4] Basic Profile 1.0 (BP-1.0). http://www.ws-
i.org/Profiles/BasicProfile-1.0-2004-04-16.html, 2004.

[5] Simple Object Access Protocol (SOAP).
http://www.w3.org/TR/SOAP/, 2003.

[6] Web Services Description Language (WSDL).
http://www.w3.org/TR/wsdl, 2001.

[7] Microsoft Visual Studio.NET, 2006.
http://msdn.microsoft.com/vstudio/

[8] Web Services – Axis. Web Services Project. 2005.
http://ws.apache.org/axis/
http://www.cmswatch.com/Feature/68

<service name="yourServiceNameImplementation">
 <port
name="yourServiceName"binding="tns:bindingName"
>
 <soap:address

location="http://www.yourServiceLocation.com/"
/>
 </port>
</service>

http://en.wikipedia.org/wiki/Adapter_pattern
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://msdn.microsoft.com/vstudio/
http://ws.apache.org/axis/
http://www.cmswatch.com/Feature/68

http://www.onjava.com/pub/a/onjava/2002/06/05/axis.ht
ml?page=1

[9] SOAP::Lite. 2005.
http://soaplite.com/
http://groups.yahoo.com/group/soaplite/
http://www.majordojo.com/soaplite/

[10] Python Web Services: Software - Zolera SOAP
Infrastructure. 2005.
http://pywebsvcs.sourceforge.net/
http://sourceforge.net/mailarchive/forum.php?forum_id=1
729

[11] gSOAP: C++ Web Services and Clients. 2005.
http://www.cs.fsu.edu/~engelen/soap.html
http://groups.yahoo.com/group/gsoap/

[12] Eric Cherng, James Duff, and Dino Chiesa.
“Contract First Web Services Interoperability between
Microsoft .NET and IBM WebSphere”, Microsoft Visual
Studio Development Center, October 28, 2004.
http://msdn.microsoft.com/vstudio/java/interop/webspher
einterop/default.aspx.

[13] SoapACTION
http://www.oreillynet.com/pub/wlg/2331?wlg=yes

[14] Russell Butek, “Which Style of WSDL Should I
Use?” 2005. http://www-
128.ibm.com/developerworks/webservices/library/ws-
whichwsdl/

The submitted manuscript has been created by the
University of Chicago as Operator of Argonne National
Laboratory ("Argonne") under Contract No. W-31-109-
ENG-38 with the U.S. Department of Energy. The U.S.
Government retains for itself, and others acting on its
behalf, a paid-up, nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the
Government. This government license should not be
published with the paper.

http://www.onjava.com/pub/a/onjava/2002/06/05/axis.html?page=1
http://www.onjava.com/pub/a/onjava/2002/06/05/axis.html?page=1
http://soaplite.com/
http://groups.yahoo.com/group/soaplite/
http://www.majordojo.com/soaplite/
http://pywebsvcs.sourceforge.net/
http://sourceforge.net/mailarchive/forum.php?forum_id=1729
http://sourceforge.net/mailarchive/forum.php?forum_id=1729
http://www.cs.fsu.edu/%7Eengelen/soap.html
http://groups.yahoo.com/group/gsoap/
http://msdn.microsoft.com/vstudio/java/interop/websphereinterop/default.aspx
http://msdn.microsoft.com/vstudio/java/interop/websphereinterop/default.aspx
http://www.oreillynet.com/pub/wlg/2331?wlg=yes
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

	Abstract
	3.1. SOAP::Lite
	3.2. Zolera SOAP Infrastructure (ZSI)

