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Abstract 
During the past decade, the scientific community has 

witnessed the rapid accumulation of gene sequence data 
and data related to physiology and biochemistry of 
organisms. Bioinformatics tools used for efficient, 
computationally intensive analysis of genetic sequences 
require large-scale computational resources to 
accommodate the growing data. Grid computational 
resources such as the Open Science Grid and TeraGrid 
have proved useful for scientific discovery. GADU is a 
high-throughput computational system developed to 
automate the steps involved in accessing the Grid 
resources for running bioinformatics applications. This 
paper describes the requirements for building an 
automated scalable system such as GADU that can run a 
job simultaneously on different Grids. The paper 
describes the resource-independent configuration of 
GADU using the Pegasus-based Virtual Data System that 
helps in using heterogeneous Grid resources. The paper 
also highlights the features implemented to make GADU 
a gateway to computationally intensive bioinformatics 
applications on the Grid. 

 

1. Introduction 
Bioinformatics is a “science of big numbers.” It 

utilizes high-throughput computational analysis of 
genomic sequences for discovering evolutionary patterns 
underlying complex biological processes that produced 
the diversity of life on this planet. Essential for this 
approach is comparative and evolutionary analysis of a 
wide spectrum of phylogenetically diverse organisms, in 
order to that provide understanding of the adaptive 
mechanisms that led to diversification of biological 
systems on all levels of their organization: genomic, 
metabolic, and phenotypic.  

When properly understood, these variations can 
present the answers to the following questions: How do 
differences observed on the genomic level affect the 
function of biological systems? What allows thermophilic 
organisms to sustain life at the temperatures above 100 
degrees C? What differences on the genomic level lead to 
emergence of genetic diseases? Answering such questions 
is fundamentally important for further progress in  
biotechnology, medicine and bioremediation. 

There has been an unprecedented accumulation of 
gene sequence data and data related to the physiology and 
biochemistry of organisms during the past decade. To 

date, 343 genomes have been sequenced, and genomes of 
more than 1500 organisms are at various levels of 
completion [1]. This wealth of genomic information will 
dramatically accelerate progress toward a comprehensive 
understanding of the genetic mechanisms involved in 
diverse biochemical processes pertinent to 
bioremediation, medicine, biotechnology and agriculture. 

Efficiency and accuracy of genetic sequence analysis 
are achieved by the use of diverse CPU-intensive 
bioinformatics tools and algorithms (e.g., analysis of 
global similarities [3] [4] [5], domain and motif analysis 
[6] [7] [8], analysis of the relevant structural [9] [10], and 
functional data). Running these tools on the rapidly 
growing data is a time-consuming process and needs 
high-throughput computations to get results in a timely 
fashion. The aggregated and distributed computational 
and storage infrastructure of the Grids such as the Open 
Science Grid (OSG) [2] and TeraGrid [11] offers an ideal 
platform for mining biological information at this large 
scale. 

We have developed a system called GADU [12], 
which has access to the OSG, TeraGrid and DOE Science 
Grid [13] resources. The opportunistic availability and the 
different architectures and environments of these 
resources make it extremely difficult to use them 
simultaneously through a single common system. GADU 
addresses these issues by providing a resource-
independent system that can execute the bioinformatics 
applications as workflows simultaneously on these 
heterogeneous Grid resources. GADU is easily scalable to 
add new Grid resources or individual clusters into its pool 
of resources, thus providing more high-throughput 
computational power to its scientific applications.  

 

2. GADU, the Genome Analysis Server 
The Genome Analysis and Database Update system, 

GADU, is an automated, scalable, high-throughput 
computational workflow engine that executes 
computationally intensive workflows for the analysis of 
sequence data on the Grid and performs updates to the 
integrated database. The integrated database [12] 
warehouses sequence data and annotations from the 
monitored public databases as well as the results of data 
analyses using GADU. 

The interpretation of every newly sequenced genome 
involves the analysis of sequence data by a variety of 
computationally intensive bioinformatics tools, the 



execution of result and annotation parsers, and other 
intermediate data-transforming scripts. GADU acts as a 
gateway to the Grid, handling all the high-throughput 
computations. GADU is implemented in two modules, 
analysis server and an update server. The analysis server 
automatically creates workflows in the abstract Virtual 
Data Language, based on predefined templates that it 
executes on distributed Grid resources. The update server 
updates the integrated database with recently changed 
data from a set of monitored public databases (currently 
including NCBI RefSeq [14], PIR [15], InterPro [6], and 
KEGG [16]). 

GADU has successfully used Grid resources with 
different architectures and software environments like the 
64-bit processors in TeraGrid and 32-bit processors in the 
Open Science Grid or DOE Science Grid. GADU 
executes its parallel jobs simultaneously on these 
different Grid resources. It expresses the workflows in the 
form of a directed acyclic graph (DAG) and executes it 
on a specified Grid site using Condor-G [17]. GADU uses 
the GriPhyN Virtual Data System [18] to express, 
execute, and track the results of the workflows that helps 
in using the grid resources.  
 

3. Use of the Virtual Data System in GADU 
In this section we introduce the use of the Virtual 

Data System (VDS) [18] to generate, execute, and control 
the workflows in Grid environments . We look at the 
features of VDS that make GADU a resource-
independent system that can use multiple Grids of 
different architectures and environments. 

VDS provides tools to express, execute, and track the 
workflows that consist of application invocations. The 
workflows are expressed in a location-independent, high-
level abstract language called Virtual Data Language 
(VDL). VDL frees the workflow from specifying details 
of the location of files and programs in a distributed 
environment. 

VDS uses Pegasus [19] as a planner component to 
generate executable forms of the workflow expressed 
using VDL. Pegasus maps an abstract workflow 
expressed in VDL to a specified Grid resource. It 
generates a concrete workflow or a fully planned Condor 
DAG from the initial abstract workflow. These concrete 
workflows generated using VDS can be executed in a 
variety of environments ranging from the desktop to 
Grids such as the Open Science Grid and TeraGrid or any 
individual computing cluster. 
 
3.1. Representing Transformations and 
Resources 

The Virtual Data Language expresses an abstract 
workflow as transformations and derivations.  

Transformations are general descriptions of each 
executable and provide information about the input and 
output parameters required for each executable.  The 
transformation does not provide the physical locations of 
the input and output files or the actual parameters going 
into the executable. Rather, it provides a template to the 
derivations that provides the physical locations and 
parameters of the applications. 

In VDS, each transformation or executable of a 
workflow installed on a high-throughput computing 
resource and its path on the remote resource is listed in a 
Transformation Catalog (TC) file as shown in the Figure 
1. The TC file contains transformation information for 
each grid location, including the Grid site name, 
transformation name, and physical location on the Grid. 
Each site name is mapped into the Site Catalog (SC) file 
containing information about the gatekeeper, job 
manager, and remote working directory, as shown in 
Figure 2. These two files together provide all the required 
information for a planner software to create the workflow.  

 

 

Figure 1: Sample Transformation Catalog on 
Jazz Cluster 

#SITE            Transformation       PFN  TYPE 
ANL_Jazz        BLAST       /soft/apps/BLAST/bin/blastall null 
ANL_Jazz        Blocks       /soft/apps/run-Blocks.pl null 
ANL_Jazz        Chisel       /soft/apps/chisel/runChisel.pl null 
ANL_Jazz        IPRSCAN  /soft/apps/iprscan_wrapper.pl null 
ANL_Jazz        globus-url-copy /soft/apps/packages/globus-
2.2.4/bin/globus-url-copy 
GLOBUS_LOCATION=/soft/apps/packages/globus-2 
.2.4/;LD_LIBRARY_PATH=/soft/apps/packages/globus-
2.2.4/lib;PATH=/soft/apps/packages/globus-2.2.4/bin 

pool ANL_Jazz { 
 
  lrc "rls://gnare.mcs.anl.gov" 
  gridftp "gsiftp:// jmayor1.lcrc.anl.gov:2812/soft/apps/gadu" 
  gridlaunch "/soft/apps/gadu/bin/kickstart" 
  workdir "/soft/apps/gadu/vdldata" 
  universe vanilla "jmayor1.lcrc.anl.gov:2121/jobmanager-pbs" 
  universe globus "jmayor1.lcrc.anl.gov:2121/jobmanager-pbs"  
  universe transfer " jmayor1.lcrc.anl.gov:2812/jobmanager-fork" 
} 
…. 
 

Figure 2: Sample Site Catalog on Jazz Cluster 
 

Figures 1 and 2 provide a sample of the TC and SC 
files respectively showing information for the Jazz cluster 
at Argonne National Laboratory.  

  
3.2. Executing the Workflows 

The Pegasus planner in VDS maps the 
transformations of an abstract workflow to an execution 
resource based on the information derived from TC and 
SC files.  Pegasus uses dynamic sources such as 
Monitoring and Discovery Service (MDS) [20] and 



Replica Location Service (RLS) [21] to map the data files 
used by the transformations during execution. If the 
transformations of a workflow are mapped on different 
resources and don’t share the data, Pegasus adds new 
nodes in the workflow to transfer the data between the 
tasks. The resulting output in the form of a Condor DAG 
is submitted to a remote computing resource using the 
Condor-G’s DAGMan. Condor-G and DAGMan form a 
powerful combination to execute a workflow on any Grid 
resource that provides a Globus Grid Resource Allocation 
and Management (GRAM) interface. 

 
3.3. Using GADU on the Jazz Cluster 

The GADU analysis server has automated all the 
steps involved in expressing and executing the 
bioinformatics application workflows using VDS as 
explained in the previous sections.  GADU used VDS to 
execute the workflows involving bioinformatic 
applications such as Blast, Blocks, Pfam, Chisel, and 
InterPro for the first time on Jazz, a 350-node computing 
cluster that is part of the DOE Science Grid resources. 
The Jazz cluster is located at Argonne National 
Laboratory. 

 
In order to execute a workflow on Jazz, the following 

steps were performed: 
 Automate the steps involved in expressing, 
generating, and executing the application 
workflows inside GADU’s analysis server. 

 Install all the standard Grid middleware 
components such as Condor, Globus, and GridFTP 
on the submit machine. 

 Install the Pegasus-based Virtual Data System and 
a RLS server for data items. 

 Create a Globus GRAM interface on the Jazz 
cluster by coordinating with the site administrator. 

 Install all the tools involved in the workflows on 
the remote cluster. 

 Update the TC and SC file representing the 
transformations and the site specific information 
(shown in Fig 1 and Fig 2). 

 
One of the main functions of GADU is to 

automatically perform most of these tasks in setting up 
the infrastructure. GADU then executes and monitors the 
workflows involving bioinformatics applications. Figure 
3 represents GADU’s configuration and the steps 
required to generate and execute a workflow on the Jazz 
cluster. All the steps performed on the submit host are 
automated by GADU. 

 
3.4. Resource-Independent Configuration 

GADU provides a resource-independent 
configuration to execute the workflows on the Grid. It can 

submit jobs remotely to a resource, as long as the 
resource provides a Globus GRAM interface (for 
example, the Jazz cluster). All the transformations of a 
workflow are expressed as Condor submit files and a 
DAG using Pegasus. The Condor-G submits the 
workflow to a remote resource using the GRAM interface 
and also monitors the workflow.  

 

 

 

 
 

In the case of Jazz as well as most of the Grid 
resources containing multiple compute nodes, the 
gatekeeper acts as the single point of job submissions to 
the resource. This gatekeeper provides the Globus GRAM 
interface and is responsible for submitting the job to the 
local job management system (PBS, LSF, Condor, etc.), 
which executes the jobs on the compute nodes. 

GADU’s ability to run the jobs on any high-
throughput computational resource that provides a 
GRAM interface makes it scalable to accommodate more 
resources. 

Figure 3 represents the configuration of GADU as a 
resource-independent system for generating, executing, 
and monitoring the workflows on a multinode cluster 
resource. 
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4. Accessing the Open Science Grid and 
TeraGrid 
This section explains GADU’s ability to easily 

accommodate new Grid sites into its pool of resources. It 
l also explains how GADU automatically manages the 
dynamic changes in the state of the Grid resources using 
monitoring and information services along with the 
authentication and access models used at different Grids. 

Open Science Grid and TeraGrid are large-scale Grid 
computing infrastructures that provide computational 
resources for scientific discovery. TeraGrid was 
completed in September 2004, bringing over 40 teraflops 
of computing power and nearly 2 petabytes of rotating 
storage. It is a combined resource from eight different 
partner sites. The Open Science Grid Consortium was 
formed in 2004 to enable diverse scientific communities 
(physics, chemistry, astrology, etc.) to access the shared 
resources from a common Grid infrastructure. Currently it 
has a collective number of more than 18000 CPUs 
contributed by more than 60 institutions.  

Each site in the OSG provides a set of fundamental 
services for the users to run their jobs. The OSG software 
stack consists of middleware like Globus and Condor 
technologies packaged into a toolkit called Virtual Data 
Toolkit (VDT) [22]. The VDT package installed on the 
Grid resources provides a Globus GRAM interface for the 
users to submit and run their jobs remotely. Thus, it fits 
easily into GADU’s framework. GADU treats each of the 
OSG site as an individual resource and installs its 
scientific applications on all OSG resources that can be 
accessed. After each installation, the site-specific 
information such as applications installation directory on 
the remote resources, Globus location, gatekeeper name, 
and job-manager information. is collected and added in 
the TC and SC files of VDS. 

Similar to OSG, TeraGrid resources at the individual 
sites are managed autonomously, and the architecture is 
built by deploying Grid service layers that contain 
software components such as GRAM, Condor-G, 
GridFTP, GASS, and MDS. TeraGrid uses the NSF 
Middleware Initiative’s (NMI) software release as the 
Grid software base. Similar to OSG, TeraGrid also uses 
GRAM protocol for secure remote access to its resources. 
Thus, through the use of GRAM interface, GADU 
automatically adds TeraGrid sites as individual sites into 
the SC file. This addition gives GADU access to run its 
applications on the TeraGrid resources. 

GADU was invited to use OSG resources to run 
bioinformatics applications and form a virtual 
organization (VO). OSG resources are used on an 
opportunistic availability basis, and TeraGrid resources 
are used through a proposal requesting allocations or 
CPU hours. 

 

4.1. Automated Site Management in GADU 
GADU automates all the steps involved in adding a 

new site as well as maintaining all the sites where it can 
submit its workflows for high-throughput computing.  

I. Adding a New Site. 
In order to add a new site, GADU obtains the 

required information about the remote resource (i.e., 
gatekeeper contact string, job-managers, application and 
data storage directories, Globus path environment) from 
monitoring and information services such as GridCat and 
adds it to the TC and SC files. Then GADU installs the 
scientific applications by sending a packaged tar file onto 
the new remote resource. All these steps are automatically 
performed by GADU. 

II. Maintaining the Existing Sites 
Currently GADU has access to more than 65 

heterogeneous computational resources with different 
architectures and environments that are listed in its SC 
file. The SC file contains resources from OSG and 
TeraGrid, each having a different architecture and 
environment. Individual clusters such as Jazz are also 
used by GADU. With so many different resources, and all 
being managed autonomously by different institutions, 
the access information of these resources may change or 
update regularly, making it very difficult to track. GADU 
can handle these changes automatically and update the 
new access information periodically for each site. 
III. Grid Monitoring and Information Services 

In the cases of the OSG and TeraGrid, which contain 
multiple sites whose status may change without notice, it 
is important to have services that provide the information 
of any changes. These changes include addition of a new 
site or change of gatekeeper, job-managers, and 
installation directories. Additionally, it is necessary to 
monitor the status of all the sites to show the number of 
nodes available, number of jobs running, load ,and other 
useful information about the remote site. 

Both the OSG and TeraGrid have their own systems 
providing all the required information to the clients. The 
OSG uses GridCat [23] and MonaLISA [24] whereas the 
TeraGrid uses Inca and GPIR. GADU uses these services 
provided by OSG and TeraGrid at various levels. The 
OSG uses the information services (GridCat) to identify a 
new site added and gathers all the site-specific details to 
add it to the SC and TC files. Using this information, 
GADU installs its application package at the right place 
on the remote site and prepares it for job submission. 
GADU regularly monitors these services for any change 
in the state of access and automatically updates the 
changes. It also triggers reinstallation of the application 
packages whenever required. For individual clusters like 
Jazz that don’t provide any monitoring or information 
services, the information has to be manually identified 
and recorded. 



 

 
Figure 4 shows the various components of GADU as 

well as the information service and Grid sites from 
different Grid projects. 
 
4.2. Authentication at Various Resources 

GADU uses an X.509 certificate-based 
authentication scheme that utilizes the Grid Security 
Infrastructure (GSI) [25] protocol.  

In the OSG, every user belongs to a virtual 
organization, which runs a Virtual Organization 
Membership Service (VOMS). GADU runs its own 
VOMS server, GADU VO. User certificates from the 
GADU users are added to the VOMS, which in turn gets 
updated by all the Grid sites of OSG providing access to 
the users. The TeraGrid, on the other hand, provides 
individual logins to all its users. A user installs his 
certificates in the grid-mapfile by logging into all the 
TeraGrid sites. For individual clusters such as Jazz, all the 
user’s certificates are installed by the site administrator.  

Once all the user’s certificates are installed on the 
resources, GADU can submit the user’s jobs securely 
through the GRAM interface, as explained in the previous 
sections. 

 

4.3. Site Selection across Grids  
GADU’s access to a large pool of computational 

resources and their opportunistic availability makes it 
important to select a best available site that can execute 
the jobs with least amount of queuing times. Most of the 
high-throughput workflows executed through GADU 
involve running of bioinformatics tools on a large set of 
protein sequences. It is an embarrassingly parallel 
workload ideally suited for distributed computing, where 
a bunch of sequences are submitted to a Grid sites asking 
for a predefined number of CPUs. 

When a large number of sequences are submitted to 
GADU to run through a computationally intensive tool, 
for example running a BLAST [26] tool for NCBI’s non-
redundant protein sequences containing over 3 million 
sequences, it usually takes a few days to get the results 
for all the sequences. GADU uses the embarrassingly 
parallel method, where it keeps sending a small set of 
sequences as a batch job (e.g., 1000 sequences per site) to 
a suitable site from its pool of sites listed in the SC file.  

GADU has implemented a site selector, presented in 
the paper on GNARE [12], that can referred for a detailed 
understanding of the site selection mechanism. The site 
selector automatically picks the best possible site for a 
given batch job at a given time. The data from 
information services, the Condor queue on the submit 
host, and periodic tests conducted by the site selector, is 
used in selecting a site for the next job. Figure 4 shows a 
site selector in GADU’s configuration.  

 

 

5. Results 
GADU is extensively used by the bioinformatics 

group at Argonne National Laboratory for building 
applications for the high-throughput analysis of genomes. 
Applications such as PUMA2 [27], Pathos [28], Target 
[29], Chisel [30], and GNARE’s prototype for user-
submitted genomes regularly use GADU.  

Figure 5 shows GADU’s performance in three 
scenarios. GADU was first used to run BLAST on the 
Jazz cluster for 1.4 million sequences in the NCBI non-
redundant database of protein sequences. It took 170 
hours to process all the sequences using 200 reserved 
CPUs on the Jazz cluster. The projected amount of time 
required to run BLAST as the number of sequences 
increases from 1.4 to 1.5, 1.7 and 3.1 million is shown in 
Figure 5. Once the first stable version of GADU was 
tested on the Jazz cluster, OSG (formerly known as 
GRID3) was added to the list of Grid resources in 
GADU.  A BLAST job run on the OSG resources that 
involved 1.7 million sequences against itself took about 
208 hours to complete. GADU’s site selector was used 
for this job to pick the appropriate site for each batch job. 
On average 250 nodes were used at any given time. 
GADU’s access to the amount of compute resources has 
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Figure 4:  GADU using different Grid resources. 
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increased by the addition of OSG and TeraGrid resources 
together. But at the same time, the sequence data is 
growing exponentially. In the last BLAST run, 3.1 
million sequences took only 144 hours, a significantly 
shorter time compared to the projected time using only 
OSG. 

Apart from BLAST, GADU has also run other 
bioinformatics tools such as BLOCKS, PFam, Chisel, and 
InterPro on various Grids to which it has access. 
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Figure 5: GADU’s performance in using different 
Grid resources for running BLAST. 

 
GADU’s ability to use multiple Grids has made it 

possible to analyze the biological data much faster and 
help the biologists in their scientific discoveries. GADU 
has been successfully used by many other groups and 
projects such as the SEED [31] project, the NIH Midwest 
Center for Structural Genomics (MCSG) [32], the NIH 
Great Lakes RCE for Biodefense and Emerging 
Infections [33], MetaGenome project from the DOE 
Microbial Genome program [34], and Shewanella 
Consortium for the analysis of Shewanella genomes [35]. 

 

6. Conclusions 
In this paper we described the capabilities of GADU 

to use multiple Grid resources simultaneously for running 
bioinformatics tools. The exponential growth in genomic 
sequence data requires distributed Grid resources for its 
faster analysis using a variety of Bioinformatics tools and 
algorithms. Use of the Pegasus-based VDS system makes 
GADU able to add more Grid sites easily  into its pool of 
computational resources. In this paper we are not 
concentrating on the other important features of VDS 
such as data provenance; we describe only those features 
that help in using multiple Grid resources through 
GADU. 

Currently GADU is used to support various 
applications built by the Bioinformatics group at Argonne 
National Laboratory. In future, we plan to provide 

services to the bioinformatics community via a Web-
based gateway, thus allowing users to submit and analyze 
their sequence data by a variety of tools and algorithms 
using Grid resources. A prototype of such a system has 
been built under the framework of GNARE’s User 
Models. From the examples provides in the Results 
section, we can see that using multiple Grids has 
significantly reduced the total amount of time taken to 
execute BLAST. 
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