
Using Multiple Grid Resources for Bioinformatics Applications in GADU

Dinanath Sulakhe1 Alex Rodriguez1 Michael Wilde1 Ian Foster1,2 Natalia Maltsev1
1 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA

2 Department of Computer Science, University of Chicago, Chicago, IL 60637, USA

Abstract
During the past decade, the scientific community has

witnessed the rapid accumulation of gene sequence data
and data related to physiology and biochemistry of
organisms. Bioinformatics tools used for efficient,
computationally intensive analysis of genetic sequences
require large-scale computational resources to
accommodate the growing data. Grid computational
resources such as the Open Science Grid and TeraGrid
have proved useful for scientific discovery. GADU is a
high-throughput computational system developed to
automate the steps involved in accessing the Grid
resources for running bioinformatics applications. This
paper describes the requirements for building an
automated scalable system such as GADU that can run a
job simultaneously on different Grids. The paper
describes the resource-independent configuration of
GADU using the Pegasus-based Virtual Data System that
helps in using heterogeneous Grid resources. The paper
also highlights the features implemented to make GADU
a gateway to computationally intensive bioinformatics
applications on the Grid.

1. Introduction
Bioinformatics is a “science of big numbers.” It

utilizes high-throughput computational analysis of
genomic sequences for discovering evolutionary patterns
underlying complex biological processes that produced
the diversity of life on this planet. Essential for this
approach is comparative and evolutionary analysis of a
wide spectrum of phylogenetically diverse organisms, in
order to that provide understanding of the adaptive
mechanisms that led to diversification of biological
systems on all levels of their organization: genomic,
metabolic, and phenotypic.

When properly understood, these variations can
present the answers to the following questions: How do
differences observed on the genomic level affect the
function of biological systems? What allows thermophilic
organisms to sustain life at the temperatures above 100
degrees C? What differences on the genomic level lead to
emergence of genetic diseases? Answering such questions
is fundamentally important for further progress in
biotechnology, medicine and bioremediation.

There has been an unprecedented accumulation of
gene sequence data and data related to the physiology and
biochemistry of organisms during the past decade. To

date, 343 genomes have been sequenced, and genomes of
more than 1500 organisms are at various levels of
completion [1]. This wealth of genomic information will
dramatically accelerate progress toward a comprehensive
understanding of the genetic mechanisms involved in
diverse biochemical processes pertinent to
bioremediation, medicine, biotechnology and agriculture.

Efficiency and accuracy of genetic sequence analysis
are achieved by the use of diverse CPU-intensive
bioinformatics tools and algorithms (e.g., analysis of
global similarities [3] [4] [5], domain and motif analysis
[6] [7] [8], analysis of the relevant structural [9] [10], and
functional data). Running these tools on the rapidly
growing data is a time-consuming process and needs
high-throughput computations to get results in a timely
fashion. The aggregated and distributed computational
and storage infrastructure of the Grids such as the Open
Science Grid (OSG) [2] and TeraGrid [11] offers an ideal
platform for mining biological information at this large
scale.

We have developed a system called GADU [12],
which has access to the OSG, TeraGrid and DOE Science
Grid [13] resources. The opportunistic availability and the
different architectures and environments of these
resources make it extremely difficult to use them
simultaneously through a single common system. GADU
addresses these issues by providing a resource-
independent system that can execute the bioinformatics
applications as workflows simultaneously on these
heterogeneous Grid resources. GADU is easily scalable to
add new Grid resources or individual clusters into its pool
of resources, thus providing more high-throughput
computational power to its scientific applications.

2. GADU, the Genome Analysis Server
The Genome Analysis and Database Update system,

GADU, is an automated, scalable, high-throughput
computational workflow engine that executes
computationally intensive workflows for the analysis of
sequence data on the Grid and performs updates to the
integrated database. The integrated database [12]
warehouses sequence data and annotations from the
monitored public databases as well as the results of data
analyses using GADU.

The interpretation of every newly sequenced genome
involves the analysis of sequence data by a variety of
computationally intensive bioinformatics tools, the

execution of result and annotation parsers, and other
intermediate data-transforming scripts. GADU acts as a
gateway to the Grid, handling all the high-throughput
computations. GADU is implemented in two modules,
analysis server and an update server. The analysis server
automatically creates workflows in the abstract Virtual
Data Language, based on predefined templates that it
executes on distributed Grid resources. The update server
updates the integrated database with recently changed
data from a set of monitored public databases (currently
including NCBI RefSeq [14], PIR [15], InterPro [6], and
KEGG [16]).

GADU has successfully used Grid resources with
different architectures and software environments like the
64-bit processors in TeraGrid and 32-bit processors in the
Open Science Grid or DOE Science Grid. GADU
executes its parallel jobs simultaneously on these
different Grid resources. It expresses the workflows in the
form of a directed acyclic graph (DAG) and executes it
on a specified Grid site using Condor-G [17]. GADU uses
the GriPhyN Virtual Data System [18] to express,
execute, and track the results of the workflows that helps
in using the grid resources.

3. Use of the Virtual Data System in GADU
In this section we introduce the use of the Virtual

Data System (VDS) [18] to generate, execute, and control
the workflows in Grid environments . We look at the
features of VDS that make GADU a resource-
independent system that can use multiple Grids of
different architectures and environments.

VDS provides tools to express, execute, and track the
workflows that consist of application invocations. The
workflows are expressed in a location-independent, high-
level abstract language called Virtual Data Language
(VDL). VDL frees the workflow from specifying details
of the location of files and programs in a distributed
environment.

VDS uses Pegasus [19] as a planner component to
generate executable forms of the workflow expressed
using VDL. Pegasus maps an abstract workflow
expressed in VDL to a specified Grid resource. It
generates a concrete workflow or a fully planned Condor
DAG from the initial abstract workflow. These concrete
workflows generated using VDS can be executed in a
variety of environments ranging from the desktop to
Grids such as the Open Science Grid and TeraGrid or any
individual computing cluster.

3.1. Representing Transformations and
Resources

The Virtual Data Language expresses an abstract
workflow as transformations and derivations.

Transformations are general descriptions of each
executable and provide information about the input and
output parameters required for each executable. The
transformation does not provide the physical locations of
the input and output files or the actual parameters going
into the executable. Rather, it provides a template to the
derivations that provides the physical locations and
parameters of the applications.

In VDS, each transformation or executable of a
workflow installed on a high-throughput computing
resource and its path on the remote resource is listed in a
Transformation Catalog (TC) file as shown in the Figure
1. The TC file contains transformation information for
each grid location, including the Grid site name,
transformation name, and physical location on the Grid.
Each site name is mapped into the Site Catalog (SC) file
containing information about the gatekeeper, job
manager, and remote working directory, as shown in
Figure 2. These two files together provide all the required
information for a planner software to create the workflow.

Figure 1: Sample Transformation Catalog on
Jazz Cluster

#SITE Transformation PFN TYPE
ANL_Jazz BLAST /soft/apps/BLAST/bin/blastall null
ANL_Jazz Blocks /soft/apps/run-Blocks.pl null
ANL_Jazz Chisel /soft/apps/chisel/runChisel.pl null
ANL_Jazz IPRSCAN /soft/apps/iprscan_wrapper.pl null
ANL_Jazz globus-url-copy /soft/apps/packages/globus-
2.2.4/bin/globus-url-copy
GLOBUS_LOCATION=/soft/apps/packages/globus-2
.2.4/;LD_LIBRARY_PATH=/soft/apps/packages/globus-
2.2.4/lib;PATH=/soft/apps/packages/globus-2.2.4/bin

pool ANL_Jazz {

 lrc "rls://gnare.mcs.anl.gov"
 gridftp "gsiftp:// jmayor1.lcrc.anl.gov:2812/soft/apps/gadu"
 gridlaunch "/soft/apps/gadu/bin/kickstart"
 workdir "/soft/apps/gadu/vdldata"
 universe vanilla "jmayor1.lcrc.anl.gov:2121/jobmanager-pbs"
 universe globus "jmayor1.lcrc.anl.gov:2121/jobmanager-pbs"
 universe transfer " jmayor1.lcrc.anl.gov:2812/jobmanager-fork"
}
….

Figure 2: Sample Site Catalog on Jazz Cluster

Figures 1 and 2 provide a sample of the TC and SC
files respectively showing information for the Jazz cluster
at Argonne National Laboratory.

3.2. Executing the Workflows

The Pegasus planner in VDS maps the
transformations of an abstract workflow to an execution
resource based on the information derived from TC and
SC files. Pegasus uses dynamic sources such as
Monitoring and Discovery Service (MDS) [20] and

Replica Location Service (RLS) [21] to map the data files
used by the transformations during execution. If the
transformations of a workflow are mapped on different
resources and don’t share the data, Pegasus adds new
nodes in the workflow to transfer the data between the
tasks. The resulting output in the form of a Condor DAG
is submitted to a remote computing resource using the
Condor-G’s DAGMan. Condor-G and DAGMan form a
powerful combination to execute a workflow on any Grid
resource that provides a Globus Grid Resource Allocation
and Management (GRAM) interface.

3.3. Using GADU on the Jazz Cluster

The GADU analysis server has automated all the
steps involved in expressing and executing the
bioinformatics application workflows using VDS as
explained in the previous sections. GADU used VDS to
execute the workflows involving bioinformatic
applications such as Blast, Blocks, Pfam, Chisel, and
InterPro for the first time on Jazz, a 350-node computing
cluster that is part of the DOE Science Grid resources.
The Jazz cluster is located at Argonne National
Laboratory.

In order to execute a workflow on Jazz, the following

steps were performed:
 Automate the steps involved in expressing,
generating, and executing the application
workflows inside GADU’s analysis server.

 Install all the standard Grid middleware
components such as Condor, Globus, and GridFTP
on the submit machine.

 Install the Pegasus-based Virtual Data System and
a RLS server for data items.

 Create a Globus GRAM interface on the Jazz
cluster by coordinating with the site administrator.

 Install all the tools involved in the workflows on
the remote cluster.

 Update the TC and SC file representing the
transformations and the site specific information
(shown in Fig 1 and Fig 2).

One of the main functions of GADU is to

automatically perform most of these tasks in setting up
the infrastructure. GADU then executes and monitors the
workflows involving bioinformatics applications. Figure
3 represents GADU’s configuration and the steps
required to generate and execute a workflow on the Jazz
cluster. All the steps performed on the submit host are
automated by GADU.

3.4. Resource-Independent Configuration

GADU provides a resource-independent
configuration to execute the workflows on the Grid. It can

submit jobs remotely to a resource, as long as the
resource provides a Globus GRAM interface (for
example, the Jazz cluster). All the transformations of a
workflow are expressed as Condor submit files and a
DAG using Pegasus. The Condor-G submits the
workflow to a remote resource using the GRAM interface
and also monitors the workflow.

In the case of Jazz as well as most of the Grid
resources containing multiple compute nodes, the
gatekeeper acts as the single point of job submissions to
the resource. This gatekeeper provides the Globus GRAM
interface and is responsible for submitting the job to the
local job management system (PBS, LSF, Condor, etc.),
which executes the jobs on the compute nodes.

GADU’s ability to run the jobs on any high-
throughput computational resource that provides a
GRAM interface makes it scalable to accommodate more
resources.

Figure 3 represents the configuration of GADU as a
resource-independent system for generating, executing,
and monitoring the workflows on a multinode cluster
resource.

Submit
Host

Globus
GRAM Interface

Pegasus

DAGMan
Condor-G

Local Job
management system

Head
Node

Gatekeeper
JobManager

tc.data

Abstract
Workflow

Pool.config

Condor Submit
Files (DAG)

Worker
Node

Worker
Node

Remote
Resource

Figure 3: Workflow generation and execution on

4. Accessing the Open Science Grid and
TeraGrid
This section explains GADU’s ability to easily

accommodate new Grid sites into its pool of resources. It
l also explains how GADU automatically manages the
dynamic changes in the state of the Grid resources using
monitoring and information services along with the
authentication and access models used at different Grids.

Open Science Grid and TeraGrid are large-scale Grid
computing infrastructures that provide computational
resources for scientific discovery. TeraGrid was
completed in September 2004, bringing over 40 teraflops
of computing power and nearly 2 petabytes of rotating
storage. It is a combined resource from eight different
partner sites. The Open Science Grid Consortium was
formed in 2004 to enable diverse scientific communities
(physics, chemistry, astrology, etc.) to access the shared
resources from a common Grid infrastructure. Currently it
has a collective number of more than 18000 CPUs
contributed by more than 60 institutions.

Each site in the OSG provides a set of fundamental
services for the users to run their jobs. The OSG software
stack consists of middleware like Globus and Condor
technologies packaged into a toolkit called Virtual Data
Toolkit (VDT) [22]. The VDT package installed on the
Grid resources provides a Globus GRAM interface for the
users to submit and run their jobs remotely. Thus, it fits
easily into GADU’s framework. GADU treats each of the
OSG site as an individual resource and installs its
scientific applications on all OSG resources that can be
accessed. After each installation, the site-specific
information such as applications installation directory on
the remote resources, Globus location, gatekeeper name,
and job-manager information. is collected and added in
the TC and SC files of VDS.

Similar to OSG, TeraGrid resources at the individual
sites are managed autonomously, and the architecture is
built by deploying Grid service layers that contain
software components such as GRAM, Condor-G,
GridFTP, GASS, and MDS. TeraGrid uses the NSF
Middleware Initiative’s (NMI) software release as the
Grid software base. Similar to OSG, TeraGrid also uses
GRAM protocol for secure remote access to its resources.
Thus, through the use of GRAM interface, GADU
automatically adds TeraGrid sites as individual sites into
the SC file. This addition gives GADU access to run its
applications on the TeraGrid resources.

GADU was invited to use OSG resources to run
bioinformatics applications and form a virtual
organization (VO). OSG resources are used on an
opportunistic availability basis, and TeraGrid resources
are used through a proposal requesting allocations or
CPU hours.

4.1. Automated Site Management in GADU
GADU automates all the steps involved in adding a

new site as well as maintaining all the sites where it can
submit its workflows for high-throughput computing.

I. Adding a New Site.
In order to add a new site, GADU obtains the

required information about the remote resource (i.e.,
gatekeeper contact string, job-managers, application and
data storage directories, Globus path environment) from
monitoring and information services such as GridCat and
adds it to the TC and SC files. Then GADU installs the
scientific applications by sending a packaged tar file onto
the new remote resource. All these steps are automatically
performed by GADU.

II. Maintaining the Existing Sites
Currently GADU has access to more than 65

heterogeneous computational resources with different
architectures and environments that are listed in its SC
file. The SC file contains resources from OSG and
TeraGrid, each having a different architecture and
environment. Individual clusters such as Jazz are also
used by GADU. With so many different resources, and all
being managed autonomously by different institutions,
the access information of these resources may change or
update regularly, making it very difficult to track. GADU
can handle these changes automatically and update the
new access information periodically for each site.
III. Grid Monitoring and Information Services

In the cases of the OSG and TeraGrid, which contain
multiple sites whose status may change without notice, it
is important to have services that provide the information
of any changes. These changes include addition of a new
site or change of gatekeeper, job-managers, and
installation directories. Additionally, it is necessary to
monitor the status of all the sites to show the number of
nodes available, number of jobs running, load ,and other
useful information about the remote site.

Both the OSG and TeraGrid have their own systems
providing all the required information to the clients. The
OSG uses GridCat [23] and MonaLISA [24] whereas the
TeraGrid uses Inca and GPIR. GADU uses these services
provided by OSG and TeraGrid at various levels. The
OSG uses the information services (GridCat) to identify a
new site added and gathers all the site-specific details to
add it to the SC and TC files. Using this information,
GADU installs its application package at the right place
on the remote site and prepares it for job submission.
GADU regularly monitors these services for any change
in the state of access and automatically updates the
changes. It also triggers reinstallation of the application
packages whenever required. For individual clusters like
Jazz that don’t provide any monitoring or information
services, the information has to be manually identified
and recorded.

Figure 4 shows the various components of GADU as

well as the information service and Grid sites from
different Grid projects.

4.2. Authentication at Various Resources

GADU uses an X.509 certificate-based
authentication scheme that utilizes the Grid Security
Infrastructure (GSI) [25] protocol.

In the OSG, every user belongs to a virtual
organization, which runs a Virtual Organization
Membership Service (VOMS). GADU runs its own
VOMS server, GADU VO. User certificates from the
GADU users are added to the VOMS, which in turn gets
updated by all the Grid sites of OSG providing access to
the users. The TeraGrid, on the other hand, provides
individual logins to all its users. A user installs his
certificates in the grid-mapfile by logging into all the
TeraGrid sites. For individual clusters such as Jazz, all the
user’s certificates are installed by the site administrator.

Once all the user’s certificates are installed on the
resources, GADU can submit the user’s jobs securely
through the GRAM interface, as explained in the previous
sections.

4.3. Site Selection across Grids
GADU’s access to a large pool of computational

resources and their opportunistic availability makes it
important to select a best available site that can execute
the jobs with least amount of queuing times. Most of the
high-throughput workflows executed through GADU
involve running of bioinformatics tools on a large set of
protein sequences. It is an embarrassingly parallel
workload ideally suited for distributed computing, where
a bunch of sequences are submitted to a Grid sites asking
for a predefined number of CPUs.

When a large number of sequences are submitted to
GADU to run through a computationally intensive tool,
for example running a BLAST [26] tool for NCBI’s non-
redundant protein sequences containing over 3 million
sequences, it usually takes a few days to get the results
for all the sequences. GADU uses the embarrassingly
parallel method, where it keeps sending a small set of
sequences as a batch job (e.g., 1000 sequences per site) to
a suitable site from its pool of sites listed in the SC file.

GADU has implemented a site selector, presented in
the paper on GNARE [12], that can referred for a detailed
understanding of the site selection mechanism. The site
selector automatically picks the best possible site for a
given batch job at a given time. The data from
information services, the Condor queue on the submit
host, and periodic tests conducted by the site selector, is
used in selecting a site for the next job. Figure 4 shows a
site selector in GADU’s configuration.

5. Results
GADU is extensively used by the bioinformatics

group at Argonne National Laboratory for building
applications for the high-throughput analysis of genomes.
Applications such as PUMA2 [27], Pathos [28], Target
[29], Chisel [30], and GNARE’s prototype for user-
submitted genomes regularly use GADU.

Figure 5 shows GADU’s performance in three
scenarios. GADU was first used to run BLAST on the
Jazz cluster for 1.4 million sequences in the NCBI non-
redundant database of protein sequences. It took 170
hours to process all the sequences using 200 reserved
CPUs on the Jazz cluster. The projected amount of time
required to run BLAST as the number of sequences
increases from 1.4 to 1.5, 1.7 and 3.1 million is shown in
Figure 5. Once the first stable version of GADU was
tested on the Jazz cluster, OSG (formerly known as
GRID3) was added to the list of Grid resources in
GADU. A BLAST job run on the OSG resources that
involved 1.7 million sequences against itself took about
208 hours to complete. GADU’s site selector was used
for this job to pick the appropriate site for each batch job.
On average 250 nodes were used at any given time.
GADU’s access to the amount of compute resources has

GADU’s automated
Analysis Server,
expressing,
executing and
tracking the
scientific workflows
on Grid.

Resource 1 (OSG) Resource 2 (TG) Resource N (Jazz)

Figure 4: GADU using different Grid resources.

Site Selector

GADU

Condor Submit
files

DAGMan
Condor-G

Pegasus
 SC file

Globus
GRAM Interface

 TC file

WN

Job management
system

Gatekeeper
JobManager

WNWN WN

Job management
system

Gatekeeper
JobManager

WN WN WN

Job management
system

Gatekeeper
JobManager

WN WN

Remote
Resources

Submit
Host

 Information Services

Database

Controller

Query Interface

Abstract Workflow
as VDL

increased by the addition of OSG and TeraGrid resources
together. But at the same time, the sequence data is
growing exponentially. In the last BLAST run, 3.1
million sequences took only 144 hours, a significantly
shorter time compared to the projected time using only
OSG.

Apart from BLAST, GADU has also run other
bioinformatics tools such as BLOCKS, PFam, Chisel, and
InterPro on various Grids to which it has access.

65 69 79

144

206

376

182
170 208

160 171

380

0
50

100
150
200
250
300
350
400

1.4 1.5 1.7 3.1

Sequences (in Millions)

Ti
m

e
(h

ou
rs

)

Jazz (200 nodes)
Grid3 (~ 250 nodes)
OSG+TG+Jazz (~ 400 nodes)

Figure 5: GADU’s performance in using different
Grid resources for running BLAST.

GADU’s ability to use multiple Grids has made it

possible to analyze the biological data much faster and
help the biologists in their scientific discoveries. GADU
has been successfully used by many other groups and
projects such as the SEED [31] project, the NIH Midwest
Center for Structural Genomics (MCSG) [32], the NIH
Great Lakes RCE for Biodefense and Emerging
Infections [33], MetaGenome project from the DOE
Microbial Genome program [34], and Shewanella
Consortium for the analysis of Shewanella genomes [35].

6. Conclusions
In this paper we described the capabilities of GADU

to use multiple Grid resources simultaneously for running
bioinformatics tools. The exponential growth in genomic
sequence data requires distributed Grid resources for its
faster analysis using a variety of Bioinformatics tools and
algorithms. Use of the Pegasus-based VDS system makes
GADU able to add more Grid sites easily into its pool of
computational resources. In this paper we are not
concentrating on the other important features of VDS
such as data provenance; we describe only those features
that help in using multiple Grid resources through
GADU.

Currently GADU is used to support various
applications built by the Bioinformatics group at Argonne
National Laboratory. In future, we plan to provide

services to the bioinformatics community via a Web-
based gateway, thus allowing users to submit and analyze
their sequence data by a variety of tools and algorithms
using Grid resources. A prototype of such a system has
been built under the framework of GNARE’s User
Models. From the examples provides in the Results
section, we can see that using multiple Grids has
significantly reduced the total amount of time taken to
execute BLAST.

Acknowledgments

We extend special thanks to the following individuals

who contributed valuable advice and support: Elizabeth
Glass, Mark D’Souza, Jens Voeckler, Miron Livny, Alain
Roy, Susan Coghlan, and the systems support groups of
MCS, OSG, TeraGrid, Globus, Condor, and iVDGL
VDT, Center for Grid Technologies at ISI, USC. This
work was supported in part by the U.S. Department of
Energy under Contract W-31-109-ENG-38 and by the
National Science Foundation under grants 86044
(GriPhyN), 122557 (iVDGL), and the NCSA Alliance
Expedition “A PACI Petascale Data Quest” (PDQ).

References

1. GOLD: http://www.genomesonline.org/
2. Open Science Grid, http://www.opensciencegrid.org
3. Pearson, W.R. (1994) Using the FASTA program to search

protein and DNA sequence databases. Methods Mol. Biol.,
24, 307-331.

4. Shpaer, E.G., Robinson, M., Yee, D., Candlin, J.D., Mines,
R., Hunkapiller, T. (1996) Sensitivity and selectivity in
protein similarity searches: a comparison of Smith-
Waterman in hardware to BLAST and FASTA. Genomics,
38, 179-191.

5. Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A.,
Barrell, D., Bateman, A., Binns, D., Biswas, M., Bradley,
P., Bork, P., et al. (2003) The InterPro Database, 2003
brings increased coverage and new features. Nucleic Acids
Res., 31, 315-318.

6. Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller,
L., Eddy, S.R., Griffiths Jones, S., Howe, K.L., Marshall,
M., Sonnhammer, E.L. (2002) The Pfam protein families
database. Nucleic Acids Res., 30, 276-280.

7. Henikoff, S., Henikoff, J.G., Pietrokovski, S. (1999)
Blocks+: a non-redundant database of protein alignment
blocks derived from multiple compilations. Bioinformatics,
15, 471-479.

8. Pearl, F.M., Bennett, C.F., Bray, J.E., Harrison, A.P.,
Martin, N., Shepherd, A., Sillitoe, I., Thornton, J., Orengo,
C.A. (2003) The CATH database: an extended protein
family resource for structural and functional genomics.
Nucleic Acids Res., 31, 452-455.

9. Lo Conte, L., Brenner, S.E., Hubbard, T.J., Chothia, C.,
Murzin, A.G. (2002) SCOP database in 2002: refinements

http://www.genomesonline.org/
http://www.opensciencegrid.org/

accommodate structural genomics. Nucleic Acids Res., 30,
264-267.

10. “Encyclopedia of Life” (http://eol.sdsc.edu/)
11. Catlett, C. The TeraGrid: A Primer, 2002.

www.teragrid.org.
12. Sulakhe, D., Rodriguez, A., D'Souza, M., Wilde, M.,

Nefedova, V., Foster, I., Maltsev, N. (2005) Gnare:
automated system for high-throughput genome analysis
with grid computational backend. J Clin Monit Comput.,
19(4-5): 361-369.

13. DOE Science Grid, www.doesciencegrid.org
14. The NCBI handbook [Internet]. Bethesda (MD): National

Library of Medicine (US), National Center for
Biotechnology Information; 2002 Oct. Chapter 17, The
Reference Sequence (RefSeq) Project. Available from
http://ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books.

15. Wu, C.H., Huang, H., Arminski, L., Castro-Alvear, J.,
Chen, Y., Hu, Z., Robert, S., (2002) The Protein
Information Resource: an integrated public resource of
functional annotation of proteins. , Nucleic Acids Res.,
30(1), 35-37.

16. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H.,
Kanehis, M. (1999) KEGG: Kyoto Encyclopedia of Genes
and Genomes. Nucleic Acids Res. 27(1), 29-34..

17. Frey, J., Tannenbaum, T., Foster, I., Livny, M, and Tuecke,
S. (2002)Condor-G: a computation management agent for
multi-institutional Grids. Cluster Computing, 5, 237–246.

18. Foster, I., Voeckler, J., Wilde, M., Zhou, Y.(2002).
Chimera: A virtual data system for representing, querying,
and automating data derivation. In Proceedings of the 14th
Conference on Scientific and Statistical Database

19. Deelman, D., Blythe, J., Gil, Y., Kesselman, C. (2002)
Pegasus: planning for execution in Grids. , GriPhyN
technical report 2002-20..

20. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.
(2001) Grid Information Services for distributed resource
sharing, presented at 10th IEEE International Symposium
on High Performance Distributed Computing.

21. Chervenak, A., Deelman, E., et al. (2002) Giggle: a
framework for constructing scalable replica location
services, in Proceedings of Supercomputing 2002
(SC2002).

22. The Virtual Data Toolkit, http://vdt.cs.wisc.edu/
23. Grid Cataloging System, http://www.ivdgl.org/gridcat
24. Newman, H.B., Legrand, I C., Galvez, P., VoicuR.,

Cirstoiu, C. (2003). Monalisa: a distributed monitoring
service architecture, in Computing in High Energy and
Nuclear Physics (CHEP03), La Jolla, California, Mar. 24-
28.

25. Tuecke, S. (2000). Grid Security Infrastructure (GSI)
roadmap. Internet Draft, October,
http://www.gridforum.org/security/ggf1_2001-
03/drafts/draft-ggf-gsi-roadmap-02.pdf.

26. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman,
D.J. (1990). Basic local alignment search tool. J. Mol. Biol.
215, 403-410

27. Maltsev, N., Glass, E. Sulakhe, D., Rodriguez, A., Syed,
M. H. Bompada, T, Zhang, Y. D’Souza, M. (2006).
PUMA2 -- Grid-based high-throughput analysis of
genomes and metabolic pathways. Nucleic Acids Res. Jan
1; 34(Database issue):D369-372.

28. Pathos System, http://compbio.mcs.anl.gov/pathos
29. TarGet Environment, http://compbio.mcs.anl.gov/target
30. Chisel, http://compbio.mcs.anl.gov/CHISEL
31. Overbeek, R., Disz, T., Stevens, R. (2004). The SEED: a

peer-to-peer environment for genome annotation, Comm.
ACM, 47(11)46-51.

32. Midwest Center for Structural Genomics (MCSG)
http://www.mcsg.anl.gov

33. Great Lakes Regional Center of Excellence for Biodefense
& Emerging Infectious Diseases Research,
http://www.glrce.org.

34. Maltsev, N., Bompada, T., Gopolan, B., Li, S., Zhang, W.,
Detter, J.C., Richardson, P., Romine, M. Brockman, F.
(2005). Metagenome analysis of contaminated sediments at
the DOE Hanford site. Internet Draft, January 5,
http://doegenomestolife.org/pubs/2005abstracts/addendum.
pdf

35. Fredrickson, J.,Romine, M., Giometti, C.S., Kolker, E.,
Nelson, K.N., Tiedje, J. M., Zhou, J. (2005). The
Shewanella Federation: functional genomic investigations
of dissimilatory metal-reducing Shewanella. Internet Draft,
http://www.doegenomestolife.org/pubs/2005abstracts/shew
anella.pdf

The submitted manuscript has been created by the
University of Chicago as Operator of Argonne National
Laboratory ("Argonne") under Contract No.W-31-109-ENG-38
with the U.S. Department of Energy. The U.S. Government
retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on
behalf of the Government.

http://eol.sdsc.edu/
http://www.teragrid.org/
http://www.hubmed.org/search.cgi?q=Sulakhe%20D%20%5bAU%5d
http://www.hubmed.org/search.cgi?q=Rodriguez%20A%20%5bAU%5d
http://www.hubmed.org/search.cgi?q=D'Souza%20M%20%5bAU%5d
http://www.hubmed.org/search.cgi?q=Wilde%20M%20%5bAU%5d
http://www.hubmed.org/search.cgi?q=Nefedova%20V%20%5bAU%5d
http://www.hubmed.org/search.cgi?q=Foster%20I%20%5bAU%5d
http://www.hubmed.org/search.cgi?q=Maltsev%20N%20%5bAU%5d
http://www.isi.edu/%7Edeelman/Pegasus/pegasus%20overview.pdf
http://www.ivdgl.org/gridcat
http://compbio.mcs.anl.gov/pathos
http://compbio.mcs.anl.gov/target
http://compbio.mcs.anl.gov/CHISEL
http://www.mcsg.anl.gov/
http://www.glrce.org/
http://doegenomestolife.org/pubs/2005abstracts/addendum.pdf
http://doegenomestolife.org/pubs/2005abstracts/addendum.pdf
http://www.doegenomestolife.org/pubs/2005abstracts/shewanella.pdf
http://www.doegenomestolife.org/pubs/2005abstracts/shewanella.pdf

	1. Introduction
	2. GADU, the Genome Analysis Server
	3. Use of the Virtual Data System in GADU
	3.1. Representing Transformations and Resources
	3.2. Executing the Workflows
	3.3. Using GADU on the Jazz Cluster
	3.4. Resource-Independent Configuration

	4. Accessing the Open Science Grid and TeraGrid
	4.1. Automated Site Management in GADU
	4.2. Authentication at Various Resources
	4.3. Site Selection across Grids

	5. Results
	6. Conclusions
	Acknowledgments

