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1. Introduction

While much of the hemodynamics in a healthy human body has low Reynolds number,
resulting in laminar flow, relatively high Reynolds number flow is observed at some spe-
cific locations, which can cause transition to turbulence. (The term “turbulence” refers
to the motion of a fluid having local velocities and pressures that fluctuate randomly.)
For example, the peak Reynolds number in the human aorta has been measured to be
approximately 4000 [25]. Surgical constructions such as the arteriovenous (AV) graft,
which consists of a prosthetic graft material surgically attached between an artery and a
vein, also results in relatively high Reynolds number flow (1000–3000) [8,40]. Complex
geometries such as a severe stenosis also can cause turbulent flow in the vasculature [22].

The simulation of turbulent vascular flows presents significant numerical challenges.
Because such flows are only weakly turbulent, they lack an inertial subrange that is
amenable to subgrid-scale modeling required for large-eddy or Reynolds-averaged Navier-
Stokes simulations. The only reliable simulation approach at present is to directly resolve
all scales of motion. While the Reynolds number is not high (Re=1000–2000, typ.),
the physical dissipation is nonetheless small, and high-order methods are essential for
efficiency. Moreover, turbulent blood flow exhibits a much broader range of scales than
does its laminar (healthy) counterpart and thus requires an order of magnitude increase
in spatial and temporal resolution. For example, recent work by Sherwin and Blackburn
has shown that roughly one to two million gridpoints are required for spectral/spectral-
element-based simulations of turbulence in an idealized stenosis [42].
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In this paper, we discuss temporal and spatial resolution requirements for direct nu-
merical simulation in two cases where turbulence is commonly found in the vasculature,
namely, in a stenosed carotid artery and in the venous anastomosis of an arteriovenous
graft. We also describe recent developments in the spectral element method designed
specifically for the simulation of high-Reynolds number vascular flows. The paper is orga-
nized as follows. Section 2 presents an outline of the spectral element method, including a
discussion of the transport properties relevant to high-Reynolds number flow simulation.
Section 3 discusses the imposition of flow division and treatment of outflow boundary
conditions for turbulent flows. Section 4 briefly describes our mesh generation procedure.
Section 5 presents the results of grid convergence studies for two turbulent flow cases,
including experimental validation results. Section 6 closes with a brief summary.

2. Navier-Stokes Discretization

We consider numerical solution of incompressible Navier-Stokes equations in Ω,

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2u, ∇ · u = 0, (1)

subject to appropriate initial and boundary conditions. Here, u is the velocity field, p is
the pressure normalized by the density, and Re = UD/ν is the Reynolds number based
on the characteristic velocity U , length scale D, and kinematic viscosity ν. For blood
flow, the Newtonian assumption is valid for shear rates approximately 100 s−1 and above,
which generally holds in larger vessels where transition is expected to take place. The use
of a rigid domain follows current practice in the field, and its validity varies from vessel
to vessel. For example, in arteriovenous grafts, wall motion is on the order of 1 percent of
the vessel diameter [32], so a rigid assumption is a reasonable starting point for analysis of
the flow transition process. Such an assumption, however, precludes incorporation of any
energy storage and exchange mechanism between the flowing blood and the elastic wall.
While we anticipate studying such phenomena in the near future, our focus here is on
the numerical algorithms related to (1). Our discretization of (1) is based on the spectral
element method (SEM) which is described in detail elsewhere (e.g.,[6,9,10]). Here, we give
a brief outline of the SEM and numerical timestepping scheme to provide a context for
the features that are specific to the simulation of high-Reynolds number vascular flows.

For the temporal discretization, we employ a semi-implicit formulation in which the
nonlinear terms are treated explicitly and the remaining linear Stokes problem is treated
implicitly. The time derivative in (1) is approximated by using a kth-order backwards
difference formula (BDFk, k=2 or 3), which for k=2 reads

3un − 4un−1 + un−2

2∆t
= S(un) + NLn. (2)

Here, un−q represents the velocity at time tn−q, q = 0, . . . , 2, and S(un) is the linear sym-
metric Stokes operator that implicitly incorporates the divergence-free constraint. The
term NLn approximates the nonlinear terms at time level tn and is given by the extrap-
olant NLn := −

∑
j αju

n−j · ∇un−j. For k = 2, the standard extrapolation would use
α1 = 2 and α2 = −1. Typically, however, we use a three-term second-order formulation
with α1 = 8/3, α2 = −7/3, and α3 = 2/3, which has a stability region that encompasses a
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part of the imaginary axis, similar to third-order Adams-Bashforth [20]. As an alternative
to (2), we frequently use the operator-integration-factor scheme of Maday et al. [35] that
circumvents the CFL (Courant-Friedrichs-Lewy) stability constraints by setting NLn = 0
and replacing the left-hand side of (2) with an approximation to the material derivative
of u. In either case, one obtains an unsteady Stokes problem of the form

Hun − ∇pn = fn

∇ · un = 0,
(3)

to be solved implicitly. For k = 2, H is the Helmholtz operator H :=
(

3
2∆t

− 1
Re
∇2

)
. In

Section 3, we will formally refer to (3) in operator form Sus(u
n) = fn. In concluding

our temporal discretization overview, we note that we often stabilize high-Re cases by
filtering the velocity at each step (un = F (un)), using the high-order filter described in
[10,13].

Spatial discretization of (3) is based on the lPN − lPN−2 spectral element method of
Maday and Patera [34]. The SEM is a high-order weighted residual approach similar to
the finite element method (FEM). In the SEM, functions are approximated as tensor-
product Lagrange polynomials of degree N on each of E subdomains (elements), Ωe,
e = 1, . . . , E, leading to n ≈ ENd unknown basis coefficients for each velocity component
in lRd, d=1 or 2, with N=4–16 being typical. In the lPN − lPN−2 method, the pressure
is approximated as a tensor-product polynomial of degree N − 2 and is discontinuous,
leading to np = E(N − 1)d basis coefficients for p.

The relatively high polynomial degree of the SEM is enabled by the use of tensor-
product bases having the form (in 2D)

u(xe(r, s))|Ωe =
N∑

i=0

N∑

j=0

ue
ijh

N
i (r)hN

j (s) , (4)

where the ue
ijs are the nodal basis coefficients on element Ωe and hN

i ∈ lPN is the La-
grange polynomial based on the Gauss-Lobatto quadrature points, {ξN

j }N
j=0 (the zeros of

(1 − ξ2)L′

N(ξ), where LN is the Legendre polynomial of degree N). Here xe(r, s) is the
coordinate mapping from Ω̂ = [−1, 1]d to Ωe, implying that the elements are curvilinear
quadrilaterals in 2D or hexahedra in 3D.

In the SEM, all of the operator evaluations for explicit timestepping and iterative
solution of implicit substeps are performed in matrix-free form. As first suggested by
Orszag [38], this approach leads to a reduction in memory and operation counts from
O(EN6) (in 3D) to O(EN3) and O(EN4), respectively. Unstructured data accesses are
required at the global level (i.e., for e = 1, ..., E), but local data accesses within Ωe

are structured in i-j-k form. In particular, differentiation—a central kernel in operator
evaluation—can be implemented as a cache-efficient matrix-matrix product. For example,
ue

r,ij =
∑

p D̂ipu
e
pj, with D̂ip := h′

p(ξi) would return the derivative of (4) with respect to
the computational coordinate r at the points (ξi, ξj). Differentiation with respect to x is
obtained by the chain rule [6].

Inserting the SEM basis (4) into the weak form of (3) and applying numerical quadra-
ture, we obtain the discrete unsteady Stokes system

H un − DT pn = B fn, D un = 0. (5)
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Here, H = 1
Re

A+ 3
2∆t

B is the discrete equivalent of H; −A is the discrete Laplacian, B is
the (diagonal) mass matrix associated with the velocity mesh, D is the discrete divergence
operator, and fn accounts for the explicit treatment of the nonlinear terms. Note that
the Galerkin approach implies that the governing system in (5) is symmetric and that the
matrices H, A, and B are all symmetric positive definite.

The Stokes system (5) is solved approximately, by using the kth-order operator splitting
analyzed in [3,35,39]. The splitting is applied to the discretized system so that ad hoc
boundary conditions are avoided. For k = 2, one first solves

H û = B fn + DT pn−1, (6)

which is followed by a pressure correction step

Eδp = −Dû, un = û + ∆tB−1DT δp, pn = pn−1 + δp, (7)

where E := 2
3
∆tDB−1DT is the Stokes Schur complement governing the pressure in

the absence of the viscous term. Substeps (6) and (7) are solved with preconditioned
conjugate gradient (PCG) iteration. Jacobi preconditioning is sufficient for (6) because
H is strongly diagonally dominant. E is less well-conditioned and is solved either by the
multilevel overlapping Schwarz method developed in [9,12] or by more recent Schwarz-
multigrid methods [11,33]. The solution of (7) constitutes the most compute-intensive
substep of our Navier-Stokes time advancement.

Convergence Properties
The primary distinction of the SEM is that it is designed for much higher approximation

orders than are typically used with the FEM. With the SEM, orders N=4–16 are typical
(and feasible, because of the use of matrix-free operator evaluation [6]). These high orders
lead to excellent transport (minimal numerical diffusion and dispersion) for a significantly
larger fraction of the resolved modes than is possible with the FEM. This point is illus-
trated in Fig. 1, which shows the error, εk, for eigenvalues associated with the model
convection problem ut +ux = 0 on [0, 2π] versus the fraction of resolvable modes, k/kmax.
Here kmax = n/2, according to the Nyquist criterion, n = EN is the number of degrees of
freedom for this one-dimensional problem, and εk := |k̃ − k|/k,. The approximate eigen-
value is computed as k̃ := (φ′

k, Dφk)N/(φ′

k, φ
′

k)N ,where φk(x) := cos(kx), D is the spectral
element derivative operator associated with E uniformly sized elements of order N , and
(., .)N refers to quadrature on the N +1 Gauss-Lobatto Legendre nodal points within each
domain that also correspond to the Lagrange interpolation points. Figure 1a shows the
errors for n=512, N=1, 2, 4, 8, 16, and E := n/N . Taking 1 percent as an acceptable
error threshold (indicated by the dashed line in Fig. 1a), we see that 10 percent of the
modes are well resolved with linear elements (N=1), whereas approximately half of the
modes are well resolved for N ≥ 8. Thus, the SEM provides roughly a fivefold reduction
in the required number of gridpoints per space dimension to properly propagate waves
at typical engineering tolerances. Note that, because the abscissa is scaled by kmax, the
curves in Fig. 1a exhibit little material change with increased resolution; as n increases,
one resolves more waves, but the relative fraction remains unchanged. By the same token,
one cannot circumvent the Nyquist sampling criterion by simply increasing N . In fact,
as N −→ ∞, one can resolve at most (2/π)kmax waves, because of the spacing of stable
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Figure 1. (a) Relative error in the 1D spectrum of u = λux versus fraction of resolvable
modes for n = 512, E := n/N , and N=1 (·), 2 (◦), 4 (+), 8 (∗), and 16 (2); (b–c) spectral
element solution of convected cone problem after a single plane-rotation on a 32×32 grid,
(b) (E,N) = (16 × 16, 2), (c) (4 × 4, 8) [6].

(Gauss-type) point distributions [6]. The use of moderate values of N is motivated by the
fact that one resolves nearly this number of waves with N ≈ 8–16.

The benefits of a minimally dispersive/dissipative spatial discretization are illustrated
by the two-dimensional convection problem of Figs. 1b and c, which show the solution
after an initially pointed cone is subjected to plane rotation on a pair of n = 32×32 grids
[6,18]. The second-order case, with E = 16×16 elements, exhibits significant numerical
dispersion after a single rotation. This dispersion is dramatically reduced as the order
is increased to N=8 (E = 4 × 4). The improvement is striking in light of the fact that
classical theory implies that the asymptotic convergence rate for a high-order method is
no better than for a low-order method if the problem is not smooth (e.g., well-resolved)
[18]. In the present case, the benefits derive from the fact that the high-order case is
better able to propagate those components of the solution that are resolved.

3. Boundary Conditions

Boundary conditions for the simulation of transition in vascular flow models present
several challenges not found in classical turbulence simulations. As velocity profiles are
rarely available, our usual approach at the vessel inflow is to specify a time-dependent
Womersely flow that matches the first 20 Fourier harmonics of measured flow waveform.
In some cases, it may be necessary to augment such clean profiles with noise in order to
trigger transition at the Reynolds numbers observed in vivo. At the outflow, our stan-
dard approach is to use the natural boundary conditions (effectively, p = 0 and ∂u

∂n
= 0)

associated with the variational formulation of (3). This outflow boundary treatment is
augmented in two ways for transitional vascular flows, as we now describe.

3.1. Fast Implicit Enforcement of Flow Division
Imposition of proper flow division (or flow split) is central to accurate simulation of

vascular flows through bifurcations (sites prone to atherogenesis). The distribution of
volumetric flow rate through multiple daughter branches is usually available through
measured volume flow rates. A typical distribution in a carotid artery bifurcation, for
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example, is a 60:40 split between the internal and external carotid arteries. The distribu-
tion can be time-dependent, and the method we outline below is applicable to such cases.
A common approach to imposing a prescribed flow split is to apply Dirichlet velocity
conditions at one outlet and standard outflow (Neumann) conditions at the other. The
Dirichlet branch is typically artificially extended to diminish the influence of spurious
boundary effects on the upstream region of interest. Here, we present an approach to im-
posing arbitrary flow divisions among multiple branches that allows one to use Neumann
conditions at each of the branches, thus reducing the need for extraordinary extensions
of the daughter branches.

Our flow-split scheme exploits the semi-implicit approach outlined in the preceding
section. The key observation is that the unsteady Stokes operator, which is treated
implicitly and which controls the boundary conditions, is linear and that superposition
therefore applies. Thus, if ũn satisfies Sus(ũ

n) = fn and ũ0 satisfies Sus(ũ0) = 0 but
with different boundary conditions, then un := ũn + ũ0 will satisfy Sus(u

n + ũ0) = fn

with boundary conditions un|∂Ω = ũn|∂Ω + ũ0|∂Ω . With this principle, the flow split for
a simple bifurcation (one common inflow, two daughter outflow branches) is imposed as
follows. In a preprocessing step:

(i) Solve Sus(ũ0) = 0 with a prescribed inlet profile having flux Q̃ :=
∫
inlet ũ0 ·n dA, and

no flow (i.e., homogeneous Dirichlet conditions) at the exit of one of the daughter
branches. Use Neumann (natural) boundary conditions at the the other branch.
Save the resultant velocity-pressure pair (ũ0, p̃0).

(ii) Repeat the above procedure with the role of the daughter branches reversed, and
call the solution (ũ1, p̃1).

Then, at each timestep:

(iii) Compute (ũn, p̃n) satisfying (3) with homogeneous Neumann conditions on each
daughter branch, and compute the associated fluxes Q̃n

i :=
∫

∂Ω
i

ũn · n dA, i=0, 1,

where ∂Ω0 and ∂Ω1 are the respective active exits in (i) and (ii).

(iv) Solve the following for (α0, α1) to obtain the desired flow split Qn
0 :Qn

1 :

Qn
0 = Q̃n

0 + α0Q̃ (desired flux on branch 0) (8)

Qn
1 = Q̃n

1 + α1Q̃ (desired flux on branch 1) (9)

0 = α0 + α1 (change in flux at inlet) (10)

(v) Correct the solution by setting un := ũn +
∑

i αiũi and pn := p̃n +
∑

i αip̃i.

Remarks. The above procedure provides a fully implicit iteration-free approach to ap-
plying the flow split that readily extends to a larger number of branches by expanding
the system (8)–(10). Condition (10) ensures that the net flux at the inlet is unchanged
and, for a simple bifurcation, one needs only to store the difference between the auxiliary
solutions. We note that Sus is dependent on the timestep size ∆t and that the auxiliary
solutions (ũi, p̃i) must be recomputed if ∆t (or ν) changes. (One must also recompute
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the auxiliary solutions if the geometry changes, as would be the case when computing
fluid-structure interaction. In such situations, the iterative approach of Gin et al. might
be more appropriate [16].) The amount of viscous diffusion that can take place in a single
application of the unsteady Stokes operator is governed by ∆t, and one finds that the
auxiliary solutions have relatively thin boundary layers with a broad flat core. The inter-
mediate solutions obtained in (iii) have inertia and so nearly retain the proper flow split,
once established, such that the magnitude of αi will be relatively small after just a few
timesteps. It is usually a good idea to gradually ramp up application of the correction
if the initial condition is not near the desired flow split. Otherwise, one runs the risk of
having reversed flow on portions of the outflow boundary and subsequent instability, as
discussed in the next section. Moreover, to accommodate the exit “nozzle” (∇ · u > 0)
condition introduced below, which changes the net flux out of the exit, we compute Q̃n

i

at an upstream cross-section where ∇ · u = 0.

3.2. Turbulent Outflow Boundary Conditions
Turbulent flows can generate vortices of sufficient strength to create a (locally) negative

flux at the outflow boundary. Because the Neumann boundary condition does not specify
flow characteristics at the exit, a negative flux at the outflow can rapidly lead to instability,
with catastrophic results. One way to eliminate incoming characteristics is to force the
exit flow through a nozzle, effectively adding a mean axial component to the velocity field.
The advantage of using a nozzle is that one can ensure that the characteristics at the exit
point outward under a wide range of flow conditions. By contrast, schemes based on
viscous buffer zones require knowledge of the anticipated space and time scales to ensure
that vortical structures are adequately damped as they pass through the buffer zone.

Numerically, a nozzle can be imposed without change to the mesh geometry by im-
parting a positive divergence to the flow field near the exit (in the spirit of a supersonic
nozzle). In our simulations, we identify the layer of elements adjacent to the outflow and
there impose a divergence D(x) that ramps from zero at the upstream end of the layer
to a fixed positive value at the exit. Specifically, we set D(x) = C[ 1 − (x

⊥
/L

⊥
)2 ], where

x
⊥

is the distance normal to the boundary and L
⊥

is maximum thickness of the last layer
of elements. By integrating the expression for D from x

⊥
/L

⊥
=1 to 0, one obtains the

Figure 2. Velocity vectors near the outflow of an internal carotid artery: (left) uncorrected,
(center) corrected, and (right) corrected minus uncorrected.
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net gain in mean velocity over the extent of the layer. We typically choose the constant
C such that the gain is equal to the mean velocity prior to the correction. One could,
however, increase the gain if stronger fluctuations are encountered.

Results for the nozzle-based outflow condition are illustrated in Fig. 2. The left panel
shows the velocity field for the standard (uncorrected Neumann) condition near the out-
flow boundary of an internal carotid artery at Re ≈ 1400 (based on the peak flow rate and
stenosis diameter). Inward-pointing velocity vectors can be seen at the exit boundary,
and the simulation becomes catastrophically unstable within 100 timesteps beyond this
point. The center panel shows the flow field computed with the outflow correction. The
flow is leaving the domain at all points along the outflow boundary and the simulation is
stable for all time. The difference between the two cases (right) shows that the outflow
treatment does not pollute the solution upstream of the boundary.

4. Mesh Generation

Spectral element mesh generation shares much in common with its FE counterpart.
Several important distinctions, however, place constraints on the SE meshes. First, the
use of matrix-free operator evaluation, which reduces the storage from O(EN6) to O(EN3)
and work per evaluation from O(EN6) to O(EN4), is dependent upon the tensor-product
forms (4). This reduction is most effectively achieved with hexahedral elements, which
may be curved through the use of iso- or subparametric mappings from Ω̂ to Ωe [6]. Second,
the fact that typical orders are in the range N=8 to 16 implies roughly a thousandfold
reduction in the number of elements required compared to an FE mesh at comparable
resolution. The reduction, while advantageous in reducing the size of the input files, places
significant constraints on the mesh generation scheme. Consequently, we have developed
an SE mesh generation scheme that is specific to vascular geometries [27,43].

Our mesh generation scheme employs a sweeping algorithm, in which disc-shaped slabs
are meshed by using a standard O-grid configuration, as illustrated in Fig. 3. The slab
surfaces are identified with isosurfaces of conduction (potential) solutions satisfying ho-
mogeneous Neumann conditions along the vessel wall. The isosurfaces are computed by
numerically solving a sequence of Laplace equations, one for each branch, in the compu-
tational domain on a preliminary mesh comprising tetrahedral elements. Because of the
robustness of the conduction problem, the preliminary mesh can be of almost arbitrary
quality. The isosurfaces define a set of natural coordinate systems that have the desirable
properties of being orthogonal to the vessel walls and of being guaranteed to produce
nonintersecting cross-sections that could otherwise lead to vanishing Jacobians associ-
ated with the transformation from Ω̂ to Ωe. Through a judicious choice of conduction
problems, one can identify three principal isosurfaces that naturally trisect the bifurca-
tion geometry, as depicted in Fig. 3b. This trisection leads to a decomposition of the
bifurcation into three branches, each of which is individually meshed with the sweeping
algorithm. The advantages of the conduction-based approach is that it can be automated
(starting with a segmented stack, mesh generation requires a matter of minutes on a work-
station [43]) and it produces high-quality all-hexahedral meshes with a minimum number
of topology-induced defects.
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Figure 3. Swept templates, projected onto isopotential surfaces, for hexahedral mesh
generation in a carotid bifurcation geometry. The closeup on the right shows the princi-
pal isosurfaces from the three conduction problems that provide a uniquely determined
trisection of the domain into independently swept branches [43].

5. Resolution Requirements

An important component of any numerical study is the establishment of adequate
resolution. This is particularly challenging in turbulent flows because one can expect to
converge only in the mean and higher-order statistics, which require long-time simulations
to eliminate natural fluctuations as a source of variance. For pulsatile turbulent flows,
it is necessary to use phase averaging, in which one samples the solution at a certain
phase of the cardiac cycle over a large number of cycles and then averages these results.
Experiments in the transitional flow regime have shown that relatively slow pulsatility
coupled to rapidly evolving turbulence merely acts as a switch that turns the turbulence
on or off and does not materially change the turbulent state [24,1]. Thus, given the
length of the cardiac cycle (>10 flow-through times for a typical bifurcation model) and
the number of samples required to reach a statistically stationary state, it is preferable
to test for grid convergence by simply using steady inlet conditions at the peak Reynolds
numbers. One can then exploit temporal homogeneity and ergodicity to obtain mean and
rms velocity distributions that can be used for convergence tests.

As with its global spectral counterpart, the standard convergence procedure for the
spectral element method is to increase the polynomial degree N for a fixed number of
elements E. It is also possible, however, to use an adaptive procedure in which one
refines the mesh and varies the polynomial degree locally to obtain optimal convergence
rates, as is done with hp finite element methods [21,36]. Our general approach has been to
construct a mesh that is finest in the region of interest, starting with relatively low degree
(typ., N=4), and to then increase N as we increase the Reynolds number. We typically
construct the mesh such that, at the target Reynolds number, N=8-12 will be sufficient.
This range of N is typically optimal for the performance of our spectral element code
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Figure 4. (a) and (b) E=2544 element mesh for stenosed carotid artery simulations and
(c) coherent vortical structures at systolic mid-deceleration phase identified by using the
λ2 criterion of Jeong and Hussain [23].

and, as illustrated in Fig. 1, provides a significant fraction of the maximal benefit to be
derived from high-order approximations.

In this section, we examine the resolution requirements for direct numerical simulation
of turbulence in two cases, flow in a stenosed carotid artery and flow in an arteriove-
nous graft. As a measure of convergence, we present time-averaged and rms velocity
distributions as a function of resolution (N) for a fixed number of elements. We note
that convergence of these profiles is really a minimal requirement for spatial convergence.
For example, Ethier et al. [7] have pointed out that accurate determination of wall shear
stress or wall shear stress gradient distributions represent even more stringent convergence
criteria, even in the case of laminar flows.

5.1. Stenosed Carotid Artery Flow
Atherothrombotic carotid stenoses, followed by ischemic stroke, is one of the leading

causes of mortality and morbidity in Western countries [37]. The presence of high-grade
stenosis manifested by plaque deposits can result in transition to turbulent flow, which
may produce an audible sound (bruit) discernible by a physician.

Many studies have been conducted to characterize local hemodynamics and their role
on the early development of atherosclerosis in arteries. Atherosclerotic-prone sites are
often localized at bifurcations, junctions, and regions of high curvature, which are also
regions of low wall shear stress (WSS) and flow disruption [2,4,17,26,45].

In contrast, regions downstream of severe constrictions (post-stenotic regions) experi-
ence a significantly different biomechanical environment than do healthy vessels because
of the presence of transitional and turbulent flow. Because flow resistance is primarily
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Figure 5. Pulsatile velocity results for a stenosed carotid artery: (a) time history points,
(b) time traces of axially aligned velocity for four cardiac cycles, and (c) axial velocity
energy spectra for point (f).

controlled by smaller vessels downstream (arterioles and capillaries), the presence of a
stenosis does not materially change the flow rate. The area reduction within a stenosis
thus accelerates the flow and leads to high WSS. This high WSS and the presence of
turbulence may damage the endothelial cells [14,19] and play a role in platelet activation
[41] or plaque rupture [15]. In addition, the large spatial WSS gradient associated with
turbulent flow is thought to enhance mass transport into the arterial wall proximal to
the stenosis, which may weaken the plaque and make it vulnerable to rupture [5]. High
temporal shear gradients are also shown to stimulate endothelial cell proliferation [44].
The ability to accurately predict the hemodynamics in such an environment is of interest
to clinicians and researchers alike.

We have undertaken a numerical study of pulsatile flow in a carotid bifurcation model
that exhibits a severe stenosis (∼75% area reduction) in the internal carotid artery (ICA)
[28]. The computational mesh, shown in Fig. 4a and b, comprises E=2544 spectral
elements generated by using the potential-based approach described in Section 4. A
time-dependent Womersely profile, synthesized from phase averages of measured flow
waveforms, was imposed at the inlet to the common carotid artery (CCA), and a 40:60
split was imposed between the external (ECA) and internal (ICA) branches throughout
the 0.75 sec cardiac cycle by using the technique described in Section 3. The Reynolds
number, based on the ICA diameter and bulk velocity, ranged from 380 at diastole to
1320 at peak systole. For N=9, a timestep of ∆t = 5 × 10−6 sec (150,000 steps/cycle)
guaranteed a Courant-Freidrichs-Lewy (CFL) number of < 0.5 throughout the cylce,
which ensured stability of the semi-implicit time advancement. Each cardiac cycle required
20 hours of CPU time on 256 processors of the TCS1 parallel computer at the Pittsburgh
Supercomputer Center.

Although our primary focus is on the resolution requirements for turbulent vascular
flows, we present some flow details here in order to indicate where resolution is required.
(A more detailed description of this set of simulations is provided in [28].) Figure 4c shows
a set of typical vortical structures, identified by the λ2 criterion of Jeong and Hussein [23],
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(a)

2.4 m/s

(b) (c) (d)

Figure 6. Comparison of time-averaged velocity profiles for transitional flow under steady
inlet conditions: (a) N=7, (b) N=9, (c) N=11, (d) N=9 and 11 overlaid.

(a)

0.2 m/s

(b) (c) (d)

Figure 7. Comparison of rms profiles of axial velocity for transitional flow under steady
inlet conditions: (a) N=7, (b) N=9, (c) N=11, (d) N=9 and 11 overlaid.
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Graft

DVS

PVS

Figure 8. Coherent structures in an AV graft at Re = 1200 with a 70:30 (PVS:DVS) flow
split. The simulation employed E=2640 elements of order N = 12 and ∆t = 5 × 106s
(from [31]).

in the mid-deceleration phase past peak systole. The presence of transverse rolls, stretched
by the mean shear, and the increase in small-scale structure downstream of the stenosis
are hallmarks of the transition process. Nearer to the systolic peak (not shown) the flow
is significantly more complex, with less clearly identifiable structure. The ICA is to be
contrasted with the ECA, where the flow exhibits one or two dominant axial vortices
that do not break down—the flow in the ECA remains laminar. Further evidence of the
spatio-temporal resolution requirements is given in Fig. 5b, which shows time traces of
axial velocity at points (a)–(f), indicated in Fig. 5a. The passage of small-scale structures
registers as high-frequency variation in velocities in the post-stenotic region. A Fourier
transform of the time trace for (f), shown in Fig. 5c, reveals significant spectral peaks in
the range ∼ 150–500 Hz, which is much higher than the order-unity frequencies associated
with the cardiac cycle.

To address the question of resolution, we have undertaken a series of runs with steady
inlet conditions at a flow rate corresponding to that just beyond the systolic peak, where
maximun turbulence intensity is observed in the pulsatile case. Simulations with N = 7,
9, and 11 (n = 850000, 1820000, and 3338000 points, respectively) were run from the
same turbulent initial condition for 33 flow-through times, with statistics collected over
the last 30 flow-through times. The average and rms velocity profiles in the ICA mid-
plane are shown in Figs. 6 and 7, respectively. The results show that N=9 and 11 give
nearly identical mean and rms distributions, whereas N=7 shows significant deficiencies,
particularly for the rms. This study indicates that approximately 2 million gridpoints are
required to adequately resolve this flow when 9th-order spectral elements are used.

5.2. Transition in an Arteriovenous Graft
Arteriovenous (AV) grafts consist of a ∼15 cm section of 6 mm i.d. synthetic tubing

that is surgically implanted to provide an arterial-to-vein round-the-clock short circuit.
Because they connect a high-pressure vessel to a low-pressure one, high flow rates are
established that make AV grafts efficient dialysis ports for patients suffering from poor
kidney function. The high-speed flow is normally accompanied by transition to a weakly
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Figure 9. Comparison of time-averaged velocity profiles in the AV graft for transitional
flow under steady inlet conditions with a 70:30 (PVS:DVS) flow split: (a) u, (b) v, and
(c) w.
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Figure 10. Comparison of rms velocity profiles in the AV graft for transitional flow under
steady inlet conditions with a 70:30 (PVS:DVS) flow split: (a) urms, (b) vrms, and (c)
wrms.
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turbulent state, manifested as a 200–300 Hz vibration at the vein wall [29,32]. This high-
frequency excitation is thought to lead to intimal hyperplasia, which can lead to complete
occlusion of the vein and graft failure within six months of implant. We are investigating
the mechanisms leading to transition in subject-specific AV-graft models with the aim
of reducing turbulence through improved geometries. Detailed comparisons with laser
Doppler anemometry (LDA) measurements are presented in [31]. Results for a pulsatile
flow study are given in [29], and the influence of the flow division between the proximal
venous segment (PVS) and distal venous segment (DVS) is discussed in [30].

Figure 8 shows a typical turbulent case when there is a 70:30 split between the PVS
and DVS. Significant small-scale structures are generated downstream (toward the heart)
of the anastomosis in the PVS, which channels the majority of the flow. Steady graft
inlet conditions are imposed, with a mean (cross-sectional average) velocity of U0. The
Reynolds number based on the graft diameter is Re := U0D/ν = 1200. The SEM solution
was computed with E=2640 elements of order 12 (4.5 million gridpoints).

A grid independence study was performed at Reynolds number 1200 with a flow split
of 70:30, corresponding to the conditions shown in Fig. 8. Comparisons of time-averaged
velocity and root-mean-square (rms) of the velocity fluctuation with N = 7, 10, and 12
for the 70:30 flow division are shown in Figs. 9 and 10, respectively. Statistics were
gathered for 1 second after an initial transient of 0.15 seconds, which was not included in
the statistics. (For comparison, the mean flow-through time is ∼0.1 seconds in vivo units;
D=6 mm and U0 = 649 mm/sec). The time-averaged velocity did not show significant
change for N=7, 10 or 12. However, the rms of velocity showed noticeable change between
polynomial orders, even in the results of N = 12. This dependency could be attributed
to statistical variance over the collection period or indicate the need for still higher grid
resolution. However, the results with N = 12 are adequate for demonstrating the primary
features of the flow since the rms of velocity is observed to be bounded in Fig. 10 with
increasing polynomial order.

Based on these grid independence studies, the numerical results with N = 12 were used
for validation with experimental measurements obtained using laser Doppler anemometry
(LDA), as described in [31]. Figure 11 shows a comparison of mean and rms cross-sectional
velocity distributions in the turbulent PVS flow with a 70:30 flow split at Re=1200.
Measurements were taken at stations x/D=1.34, 2.34, and 3.34 (see Fig. 9). It is clear
that the N=12 case is able to accurately predict both the mean flow distribution and the
rms fluctuations.

6. Summary

We have presented methodology and convergence results for the application of a high-
order spectral element method to the simulation of vascular flows. We have demonstrated
a fast implicit approach to imposition of arbitrary flow division among daughter branches
that avoids the need for extraordinary extensions or iteration to determine exit pressures.
We have also developed an outflow treatment for turbulent flows that eliminates incoming
characteristics that can destabilize the simulation. We have demonstrated some of the
desirable transport properties of high-order discretizations that are relevant to turbulent
flows and shown that roughly 2–4 million points are required for direct numerical simula-
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Figure 11. Numerical (SEM) / experimental (LDA) validation for AV graft flow with a
70:30 flow split and Re=1200: cross-sectional mean and rms velocity distributions (m/sec)
at x/D = 1.34 (A), 2.34 (B), and 3.34 (C). (See Fig. 9.)

tion of turbulent vascular flows in bifurcation geometries at clinically relevant Reynolds
numbers. These results have been validated through detailed comparisons with LDA
measurements.
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