
Runtime Visualization of the Human Arterial Tree

Joseph A. Insley
*
, Michael E. Papka

*
, Suchuan Dong

†
, George Karniadakis

†
, and Nicholas T. Karonis

‡

*
Computation Institute

Argonne National Laboratory

The University of Chicago

†
Division of Applied Mathematics,

Brown University

‡
Department of Computer Science

Northern Illinois University

ABSTRACT

Large-scale simulation codes typically execute for extended

periods of time, often on distributed computational resources.

Because these simulations can run for hours, or even days,

scientists would like to get feedback about the state of the

computation and the validity of its results as it continues to run. It

is also important that these capabilities be made available with

little impact on the performance and stability of the simulation.

Visualizing and exploring data in the early stages of the

simulation can help scientists identify problems early, potentially

avoiding a situation where a simulation runs for several days, only

to discover an error with an input parameter caused both time and

resources to be wasted.

We describe an application that aids in the monitoring and

analysis of a simulation of the human arterial tree. The application

provides researchers with high-level feedback about the state of

the on-going simulation and enables them to investigate particular

areas of interest in greater detail. The application also offers

monitoring information about the amount of data produced and

data transfer performance between the various components of the

application.

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems -

Distributed/network graphics; I.6.6 [Simulation and Modelling]:

Simulation Output Analysis;

Keywords: Real-time visualization, flow visualization

1 INTRODUCTION

Simulation-driven science is increasingly being used to initiate

scientific discovery. As the accuracy and complexity of scientific

simulations continue to rise, the computational resources required

to execute these simulations also increase. Even with the

advancement of Grid-enabling technologies [1, 2] allowing

scientists to simultaneously utilize multiple distributed resources,

large-scale simulation codes often run for days at a time. As the

Department of Energy Office of Science Data-Management

Challenge report points out “Long-running simulations can

become vastly more productive if some information can be

visualized in real time, allowing decisions to abort or steer the

simulation. [3]” Enabling researchers both to monitor the progress

of the running simulation and to validate its results can enable

these types of decisions to be made, thereby saving valuable time

and resources.

Equally important to providing these visualization capabilities

is doing so with little or no impact on the performance and

stability of the running simulation. Failures in the visualization, as

a result of software or hardware malfunction for example, should

not cause the simulation to fail as well. The ability to stop and

start the visualization at arbitrary points while the simulation

continues to run is also valuable.

We present here an application developed to provide

visualization support for the Human Arterial Tree Simulation

Project [4]. A distributed visualization pipeline was designed and

developed that both archives data produced by these simulations

and is capable of visualizing it in near-real time, with little impact

on the performance and stability of the running simulation.

Section 2 discusses related work performed in this area. Section 3

provides information about the human arterial tree simulation.

Sections 4-8 give an overview of the visualization application and

describe the various components, including the Data Archiver, the

Low Resolution Client, and the High Resolution Client. Section 9

describes additional capabilities of the application. The paper

concludes with a discussion of proposed future work.

2 RELATED WORK

Particle Flurries, described in [5], is an example of synoptic 3D

flow visualization, which gives viewers a synopsis of all flow

features simultaneously. Motion-blurred linestrips surrounded by

a black halo are used to represent particles as they follow

pathlines from the inflow to the outflow of an artery. While this

*email: {insley,papka}@ci.uchicago.edu

Figure 1: Three instances of the High Resolution Client, each displaying isosurfaces of the blood flow pressure and vectors of the velocity

within a different 3D bifurcation mesh of the human arterial tree model.

method is well suited to the data produced in the human arterial

tree simulation, it requires the precomputing of particle paths.

Forsberg et al. [6], have also developed an application that uses

isosurfaces to help expose the gross features within the flow

region. This application also follows a policy that a common data

format is maintained between the simulation and the visualization

software. This eliminates the burden of transforming the data

between the two components.

Uintah [7] is a problem solving environment that enables the

visualization and computational steering of complex simulations.

It uses common component architecture to integrate the various

components into an integrated environment and manage

communication between them. It uses Nexus (now known as

Globus XIO) for wide-area communication and MPI between

colocated components.

3 THE HUMAN ARTERIAL TREE SIMULATION

Motivated by a grand-challenge problem in biomechanics, we are

striving to simulate blood flow in the entire human arterial tree.

The problem originates from the widely accepted causal

relationship between blood flow and the formation of arterial

disease such as atherosclerotic plaques. These disease conditions

preferentially develop in separated and recirculating flow regions

such as arterial branches and bifurcations. Modeling these types of

interactions requires significant compute resources to calculate the

three-dimensional unsteady fluid dynamics in the sites of interest.

Waveform coupling between the bifurcations, however, can be

reasonably modeled by a reduced set of one-dimensional

equations that capture the cross-sectional area and sectional

velocity properties [8]. One can therefore simulate the entire

arterial tree using a hybrid approach based on a reduced set of

one-dimensional equations for the overall system and detailed 3D

Navier-Stokes equations at arterial branches and bifurcations.

Limited computational resources are required for the 1D

model; therefore it can run on a single compute node. In order to

capture the flow dynamics in an artery bifurcation reasonably

well, however, the grid resolution typically requires a mesh of

70,000 to 200,000 finite elements of high order; here spectral

elements with a spectral polynomial order of 10 to 12 on each

element are used [9]. These 3D models clearly require

considerably more compute power to calculate.

The human arterial tree model used here contains the largest 55

arteries in the human body with 27 artery bifurcations. Because

many of the bifurcations are close together, some of the 3D

meshes contain multiple bifurcations. The primary compute

environment for this simulation is the National Science

Foundation’s TeraGrid [10]. Several of the largest runs took place

during demonstrations at SC|05. In order to reduce the simulation

times during these demonstrations, the spectral elements were

calculated with a polynomial order of 7, rather than 10 to 12.

Depending on the complexity of the particular mesh, anywhere

from 64 to 128 processors were used for each 3D mesh. These

arterial tree model simulations utilized compute resources at four

TeraGrid resource provider sites: National Center for

Supercomputing Applications (NCSA), San Diego Supercomputer

Center (SDSC), Pittsburgh Supercomputing Center (PCS), and

Texas Advanced Computing Center (TACC), along with a site in

the UK, Computer Services for Academic Research (CSAR). This

Compute power was coupled with visualization resources at The

University of Chicago/Argonne National Laboratory TeraGrid

resource provider site.

The runs consisted of 17 bifurcations contained in 11 3D

meshes distributed across the five-compute sites. The multi-job

submission mechanism enabled with Globus and MPICH-G2 was

used to submit the calculation of each of the 3D bifurcation

meshes as a separate subjob of a single MPI application, to be

executed across the five different resources. MPICH-G2 takes

care of the details of submitting the subjobs to the separate

resources and establishing the communication paths between

them. Once all of the processes are running, they are part of the

same MPI_Communicator and can exchange information via

standard message passing mechanisms.

Several types of data are associated with the simulations of this

arterial tree model. The input data comprises the three

dimensional unstructured mesh that defines the arterial

bifurcations. This data does not change over the course of the

simulation. The output data is of three types. First is the data from

the 1D simulation. This consists of 55 float values for each time

step of the simulation, which represent the pressure at the inlet of

each of the 55 arteries. Because this is a small amount of data, it is

output at each time step of the simulation. The output data of the

3D simulations comprises one scalar value, representing the

pressure, and three values, for the vector representing the blood

flow velocity, for each point on the unstructured mesh. Since this

can be a large amount of data, and because these values change

relatively little from one time step to the next, it is not practical to

output these values for every time step, as this would negatively

impact the simulation. Instead they are output at regular intervals,

typically every fifth time step. During the demonstrations at SC|05

this data was reduced to a polynomial order of 3 before being

output. While performing this reduction did have some impact on

the performance of the simulation, it was relatively minor. Also,

the trade-off of having the ability to visualize the data in near-real

time made the performance hit well worthwhile. In order to

provide feedback about the simulation more frequently, another

reduced set of data is output every third time step. This reduced

set consists of the pressure scalars and the velocity vectors for

only those points on the boundary of the mesh, typically a

reduction on the order of 98%. While this is a greater reduction in

the amount of data, it is less computationally intensive to perform

and can therefore be done more often with less impact on the

simulation.

4 VISUALIZATION OVERVIEW

The visualization application was designed with several goals in

mind and builds from previous visualization work [11, 12]. The

goals of the application were to:

• provide high-level feedback about the state of the on-going

simulation in as close to real time as possible,

• enable users to investigate particular areas of interest in

greater detail, and

• have little impact on the performance and stability of the

running simulation, which is to say, any failure in the

visualization should not cause the simulation to fail as well.

These three goals layout the major contributions as a visualization

application, specifically:

• visual feedback of the state of a complex simulation

distributed across many sites is extremely helpful,

• the use of multiple views of data is beneficial (i.e. rapid

display of low-resolution representation with high-resolution

version to follow), and

• the use of middleware solutions for the connection,

management, and separation of the visualization application

from the simulation.

The application consists of three separate, yet integrated

components, as seen in Figure 2. First is the Data Archiver. This

is the input to the visualization pipeline and is the only component

directly tied to the running simulation. The Data Archiver receives

data from the simulation and is responsible for writing that data to

disk, along with associated metadata. There are two visualization

clients, one high resolution, the other low resolution. These clients

have Data Loaders, which are colocated with the Data Archiver,

and Displays, which can be at a remote location. The clients use

the metadata written by the Data Archiver and interactions with

each other to determine the data to be visualized. These three

components are described in greater detail in the following

sections.

5 DATA ARCHIVER

The Data Archiver communicates directly with the running

simulations. All of the simulations, while distributed among

several geographically distributed sites, are all part of a single

integrated job. However, there is one instance of the Data

Archiver for the 1D simulation and one for each of the 3D

bifurcation simulations. The simulations connect to the Data

Archivers via a connect/accept mechanism made available in the

MPICH-G2 implementation. Each of the bifurcation meshes is

given a numerical bifurcation ID. When each Data Archiver starts,

it is given the ID of the bifurcation that it will be responsible for

(0 is used for the 1D data simulation). Each Data Archiver then

calls MPI_Accept and publishes the host and port where it is

listening for a connection to a well-known location using a call to

wget and a php script. Each simulation then uses a reciprocal call

to wget and the php script to discover the host and port for the

appropriate Data Archiver, and calls MPI_Connect to connect to

it.

Once connected, the Data Archivers and the simulations are

members of the same MPI_Communicator and use standard

message passing routines to communicate with one another. After

exchanging some initial setup information, the simulations send

the 3D mesh information to the Data Archiver. This information

consists of the coordinates of each of the elements in the mesh,

which may be of varying resolutions. The communication is done

for both the full 3D mesh and the reduced boundary mesh. The

Data Archiver uses the Visualization Toolkit (VTK) [13] to create

an unstructured grid object from each of the meshes and write

them to a local shared file system. The data is written to a location

determined by several variables provided to the Data Archiver at

runtime and a letter that indicates whether the data is for the full

mesh, “a” for artery, or the reduced mesh, “b” for boundary.

These variables include a Base Directory, a Run ID (a unique

identifier for the current run of the simulation), and the

Bifurcation ID.

As the simulation proceeds and output data is produced, the

simulation sends this data to the Data Archiver. As mentioned

previously, the 1D data is quite small, 55 float values per time

step. This data, along with its time-step information, is sent after

each time step. The data for all time steps is written to a single

binary file. In addition, a metadata file is also written. This file,

named 1D_latest.txt, stores the number of the latest time

step that was written to the data file, along with the corresponding

simulation time value.

Because the geometry of the mesh does not change over the

course of the simulation, only the data values associated with the

points on the mesh are transferred to the Data Archiver as the

simulation runs. This approach eliminates the transfer of

redundant data, thus reducing the impact on the performance of

the simulation, especially when sending data over wide-area

networks. Again, as indicated earlier, this data is sent at different

intervals. The data for the boundary mesh is sent every third time

step, and the data for the full 3D mesh is sent every fifth time step.

The pressure scalar values and the velocity vector values for each

mesh are written to separate binary files for each time step

received. Several metadata files are also written for the full mesh

and the boundary mesh for each bifurcation. Similar to the 1D

metadata, two files, called a_latest.txt and

b_latest.txt for the full and boundary meshes, respectively,

contain information about the last time step that has been

successfully written to disk for the corresponding mesh. Two

other files, named a_list.txt and b_list.txt, consist of

information about all of the time steps that have been written for

that mesh. The clients then use this metadata to determine which

time steps to display.

6 LOW RESOLUTION CLIENT

The Low Resolution Client comprises several components that

work together to provide a high-level overview about the state of

a running simulation in near-real time. It processes and visualizes

the 1D data and the 3D boundary data as it is written to disk,

providing the user with an overview of the current state of the

simulation and the ability to control which bifurcations are

examined in greater detail with the High Resolution Client.

Because none of these components are directly connected to the

simulation itself, or even to the Data Archiver, they cannot

negatively impact the stability of the simulation. The Low

Figure 2: Overview of the components of the arterial tree simulation and visualization.

Resolution Client can start and stop, whether intentionally or as

the result of a failure, without any effect on the simulation. This

feature becomes increasingly useful as the expected run time of

the calculation increases, enabling the scientist to periodically

check on the running simulation.

The components include Data Loader processes and a Display

process. Similar to the Data Archiver, there is one Data Loader for

the 1D data and one for each of the 3D bifurcation meshes. Unlike

the Data Archiver, however, these processes are all part of a

single instance of the application. The Display process is also part

of the same application instance. However, it is typically not

colocated with the Data Loaders. This arrangement enables

remote visualization of the data, allowing the researcher to

monitor the simulation and investigate the results using modest

local graphics hardware, without the need to transfer and store all

of the data locally. Just as with the simulation, MPICH-G2 is used

to submit the Data Readers and the Display as separate subjobs of

a single MPI application, to be executed on two different

resources. MPICH-G2 again handles the details of submitting the

subjobs to the separate resources and establishing the

communication paths between them.

6.1 Data Loaders

The Data Loaders are colocated with the Data Archivers and

therefore can access data from the same shared file system. The

1D Data Loader reads from the 1D metadata file written by the

Data Archiver, using file locks to ensure that memory access by

the two processes is mutually exclusive. The loader keeps track of

the last time step that it has read and compares this to the current

value in the 1D_latest.txt file. If the value in the file is

newer, it reads the values for the corresponding time step from the

1D data file. Once read from disk, these new values are sent to the

Display process, along with the time step and simulation time

values, using MPI_Send.

The 3D Data Loaders for the Low Resolution Client are

responsible for reading the boundary data for their designated

bifurcation. Because the size and complexity of the 3D meshes

vary from one to the next, the simulations are executed on a

varying number of processors, in an attempt to keep their

completion times synchronized. However, it is not uncommon for

some bifurcation simulations to complete earlier than others. So,

in order to keep the 3D Data Loaders synchronized, they all read

the latest time step from the b_latest.txt file for their

assigned bifurcation. All of these latest time step values are then

compared, and the lowest one is determined. Collectively the

loaders all keep track of the last time step that was read from disk.

When the lowest value is greater than the previous time step that

has been loaded, all of the 3D Data Loaders read the data for their

respective bifurcations for this new time step. If this is the first

time step to be loaded, as at the beginning of the simulation, the

3D Data Loaders first read in the geometry data for the boundary

mesh for their designated bifurcation, creating a VTK

unstructured grid object. For all subsequent time steps only the

data values are read, and the unstructured grid object is updated to

reflect these new values. As each 3D Data Loader finishes reading

the data for the current time step it sends the updated unstructured

grid object, along with the time step information, to the Display

process. Because these boundary meshes are relatively small, just

over 2 MB for the largest one, there is no performance penalty for

sending the whole mesh, rather than just the data values.

6.2 Display

The Display process is responsible for providing visual

representations of the 1D and low-resolution (boundary) 3D data

produced by the simulations. Recall that the 1D data consists of a

single value for each of the 55 major arteries in the human body,

specifically the pressure on the arterial walls at the inlet of the

artery. Even when only a subset of the 3D bifurcations is

simulated, the 1D data is still calculated for all 55 arteries. To

visually represent these values, we borrowed from a popular 2D

diagram of the 55 major arteries. Using VTK objects, we

constructed a 3D model of this diagram. The model allows each of

the arteries to be easily addressed by name or by index. When the

simulation is started, the researcher knows the range of pressure

values expected to be produced by these 1D calculations. A color

lookup table based on this value range is used to color the

individual arteries in this model. When the Display process is

started, it loads the artery model and creates the lookup table.

Another VTK object is used to represent the boundary data of

each of the 3D bifurcations being simulated. This object, called

the bifurcation group, is initially empty and is populated with the

boundary meshes as they are received from the Data Loaders. The

expected range of the pressure values over the entire set of

bifurcations is similar to that of the 1D data. Therefore, the same

color lookup table is used to color the points on each 3D mesh.

Once both of these VTK objects have been instantiated, a

second thread is created. This thread is responsible for all

communication with the Data Loaders. After exchanging some

initial synchronization messages, it registers to receive data from

the 1D and each of the 3D Data Loaders. It then loops, checking

whether data has been received from any of the loaders.

The main thread of the Display process controls the graphics

window where the objects are rendered; see Figure 3. It is laid out

with two main regions, the artery model with the 1D data on the

right and the bifurcation model with the 3D data on the left. Each

region displays its respective models along with a label indicating

the current time step and simulation time being shown. Because

the models share a color lookup table, a scalar bar showing that

table and its associated values is displayed across the bottom of

the full window. Initially, before any data values have been

received, all of the arteries in the 1D model are colored white,

while no data objects get displayed on the 3D side, as all of the

bifurcations are hidden until data has been received for them.

The two threads of the Display process use shared memory to

exchange data and information. When the communication thread

receives 1D data, a lock is put on the artery model and the color of

each of the arteries is updated to reflect the new pressure values.

The time-step information is also updated. Once the lock is

released, the main thread updates the display window to reflect

the newly colored arteries and the updated time information.

Each time through the execution loop the communication

thread tests to see whether any new messages have been received

from any of the 3D Data Loaders. If any new messages have been

received, a lock is put on the bifurcation group object, and all new

messages are processed. The receiving thread knows which

bifurcation the data it received was intended for based on the ID

of the Data Loader that sent the message. If this is the first data

message received for a given bifurcation, the unstructured grid

that was received is added to the bifurcation group object, and its

status of “hidden” is changed to “display”. Otherwise, the

unstructured grid that was received replaces the existing one for

this bifurcation. If the time step information in this message is

greater than what is currently being displayed for the bifurcation

group, that information is updated as well. Once all new messages

received since the previous pass through the loop are processed,

the lock is released. The main thread can now update the display

window to reflect any new data that was received. The 3D

bifurcation objects are rendered on the left side of the display.

Their positions reflect where they would actually be located in the

body, relative to one another.

Seeing the 3D bifurcations side by side with the 1D artery

model, one can match the corresponding arteries from the two

representations, especially if one has an intimate understanding of

the arterial system. Having these two displays also gives the

scientist a better idea of what is happening in the simulation. For

instance, one can see that the pressure is initially greatest at the

first artery, that closest to the heart. As the simulation progresses,

this high pressure travels through the arterial tree toward the

extremities. Seeing the results of the 3D simulations on these

reduced boundary meshes both assures the scientist that the

simulation is progressing as expected and enables the viewer to

discover areas of interest to explore in greater detail. This in-depth

investigation is done through the High Resolution Client,

described in the following section.

7 HIGH RESOLUTION CLIENT

The High Resolution Client enables exploration of a full 3D

bifurcation mesh. Its architecture is similar to that of the Low

Resolution Client, but with some notable differences. Like the

Low Resolution Client, it comprises several components that

work together to enable the visualization of data from a running

simulation. There again are Data Loader processes and a Display

process, which execute as a single application while on separate,

usually distributed, resources, enabling remote visualization of the

simulation data. Likewise, MPICH-G2 is used to start the

processes and establish communication between them. They also

have no direct interaction with the simulation or the Data

Archiver, and thus cannot negatively impact the performance or

stability. This feature again enables the Client to be stopped and

started with no effect on the simulation.

Unlike the Low Resolution Client, the High Resolution Client

visualizes only a single 3D mesh at a time. However, in addition

to providing a simple view of the boundary data, it applies other

visualization methods to the data of the full 3D mesh. Multiple

instances of this client can be run simultaneously in order to view

multiple bifurcations at the same time.

7.1 Data Loaders

The Data Loaders are again colocated with the Data Archivers and

access data and metadata from the same shared file system, using

file locks to ensure data integrity. Two methods are used for

selecting which time step of the simulation data to display. In

“Latest Step” mode the Data Loader looks in the

a_latest.txt file to discover the last time step that has been

successfully written to disk. If this is a later time step than the one

currently being displayed, the data for this new time step is

loaded. In “Playback” mode the Data Loader reads through the

a_list.txt file and sequentially loads the data for each time

step, one at a time. When the end of file is reached, it rewinds

back to the beginning and starts over.

There are two Data Loader processes. Both processes read the

same bifurcation mesh. The bifurcation ID for this mesh is

initially given as an input parameter but can later be changed, as

described in the following section. Both of the Data Loader

processes read the pressure scalar values and the velocity vector

data. Once read, the unstructured grid is updated with these new

values. One process then generates ten isosurfaces using values

evenly distributed across the range of pressure values in the

Figure 3: The Low Resolution Client displaying the 1D data for the 55 major arteries on the right, and the boundary data of 11 of the 3D

bifurcation meshes on the left.

current time step. The geometry for these isosurfaces is then

transferred to the Display process by using a call to MPI_Send.

The other Data Loader process uses a glyph filter to generate

arrows that depict the direction and magnitude of the velocity of

the blood flow over a random sampling of the elements in the

mesh. These arrows may be colored by either the pressures values,

or the magnitude of the velocity vectors. The geometry of the

arrows is then transferred to the Display process, again by using a

call to MPI_Send. Both processes also send information about the

current time step along with their data. While each of the Data

Loaders is currently only a single process, each could be

parallelized to take advantage of multiple processors for

calculating the glyphs and isosurfaces.

7.2 Display

As in the Low Resolution Client, the Display process for the High

Resolution Client is responsible for rendering the visual

representations of the data. When the Display process is started, it

is given the ID of the initial bifurcation that it will visualize. It

reads a local copy of the boundary data for this bifurcation,

without any data values, and renders it in the graphics window.

The boundary data is given a neutral grey translucent color and is

used to give a frame of reference for the shape of the bifurcation

being simulated. VTK objects that will be used to display the

isosurfaces and glyphs generated by the Data Loaders are also

created. Also added to the display are the color lookup table and

its associated values, and a label indicating the current time step

and simulation time being shown, initially set to zero.

As with the Low Resolution Client, here again a second thread

is created that is responsible for communicating with the Data

Loaders. Again the threads use shared memory to exchange data

and locks to ensure mutually exclusive access to the data. The

communication thread registers to receive data from each of the

Data Loaders. Because both of the Data Loaders will be sending

data for the same time step, the communication thread waits until

it receives the data from both before processing the data. Once all

of the data for the time step is received, the VTK objects are

locked, and the isosurface and glyph objects are updated with the

new data. When the lock is released, the main thread updates the

display with the newly received data.

Users can interact with the Display to change the position and

orientation of the bifurcation data. They can also zoom in to get a

closer look at a particular region of interest, or out to see the entire

bifurcation. By pressing a key on the keyboard the users can also

easily switch between “Latest Step” mode, where the display is

updated to show the latest time step of the simulation to be

completed, and “Playback” mode, which animates through all of

the time steps that have been completed so far. When the key is

pressed, the main thread captures this event and determines

whether a change of mode should be triggered. If so, it

communicates this change to the communication thread via shared

memory. The communication thread then uses MPI_Send calls to

notify the Data Loaders of the change in mode. The Data Loaders

can then switch from reading the a_latest.txt file to the

a_list.txt file, or vice versa, depending on the current mode.

8 TYING IT ALL TOGETHER

As mentioned earlier, the Low Resolution and High Resolution

Clients work together to both provide a high-level overview and

enable detailed exploration of the arterial tree simulation data. The

Display components of the clients are intended to run on the same

resource. For the SC|05 demonstrations a tiled display was used to

display the Low Resolution Client and multiple instances of the

High Resolution Client, each on a different tile of the display; see

Figure 4. In order to simplify the startup process of all of these

clients, including the Data Loader components running on the

UC/ANL TeraGrid visualization resource, a script and

configuration file are used. The configuration file includes

information such as what resource manager each subjob should be

submitted to, the path to the application executables on the

different resources, directory paths to where the data should be

written, the bifurcation IDs that will be included in the current

run, and the number of High Resolution Clients that should be

started. MPICH-G2 makes use of RSL (Resource Specification

Language) [14] to describe the job requests that it submits. The

startup script reads the configuration file, creates the appropriate

RSL expression, and calls MPICH-G2’s mpirun to submit a job

request for the each of the clients to be started.

When each of the High Resolution Clients is started, it is given

the initial bifurcation ID that it will be responsible for. The Low

Resolution Client is also given this information, so it knows how

many High Resolution Clients are running and which bifurcation

each will be displaying. Because the Display components of all of

the clients are running on the same resource, in this case a 9-node

cluster, they share a common file system. Thus the clients can

communicate through the use of shared files, again using locks to

ensure exclusive access. In the display of the Low Resolution

Client some of the 3D bifurcations have colored bounding boxes

around them. The bounding boxes indicate that these bifurcations

are being displayed in one of the High Resolution Clients. The

color of the bounding box matches the color of a label that is

drawn in the display of the corresponding High Resolution Client.

The user can select a different bifurcation to be displayed in one

of the High Resolution Clients by simply picking one of the

bifurcations in the Low Resolution Client that does not have a

bounding box. Keys on the keyboard are used to select the High

Resolution Client for which picking is currently active. The index

and color of the active High Resolution Client are displayed in the

lower left corner of the Low Resolution Client. When a new

bifurcation is picked, the Low Resolution Client writes its

bifurcation ID to a file for the active High Resolution Client.

When the High Resolution Client checks the file and discovers a

new bifurcation ID, it uses MPI_Send to notify its Data Loaders

of the new value. The loaders then discard the unstructured grid

that they are currently using, load that of the new bifurcation ID,

and start reading data and metadata from the corresponding

location.

Figure 4: Components of the arterial tree visualization application

running on a tiled display at SC|05.

9 ADDITIONAL FEATURES

In addition to enabling the real-time remote visualization of the

simulation data, this application provides several other features

including performance monitoring, playback, and improved

network performance.

9.1 Performance Monitoring

As the compute environment that simulations are executed in

becomes more complex, providing users with feedback about the

progress of long-running computations becomes increasingly

important. To enable the users of our application to monitor its

performance, as well as that of some aspects of the simulation, we

have instrumented several of the components. Specifically, we

used geeViz [15], a previously developed system for visualizing

Grid-enabled environments. It provides an API that can be used to

easily log events of interest, and an application that is used to

visualize those events.

The first component to be instrumented is the Data Archiver.

Whenever it receives data from the simulation, it calculates the

bandwidth between the simulation and itself. It does so using a

timestamp that was sent with the data, the local time when the

data was received, synchronization information that was

exchanged when the two processes first connected, and the size of

the data buffer that was received. The Data Archiver then logs a

transfer event, which includes the source and destination of the

transfer, the bandwidth, and the amount of data received. The

geeViz application displays an image of a world map. It plots the

location of the source and destination of the transfer event on the

map and draws a link between them. Spheres are moved along the

link in the direction of the transfer, at a speed based on the

bandwidth. Also displayed are labels of the locations of the

endpoints and the amount of data that was either sent or received.

Other events are used to indicate the number of bifurcations being

calculated at a given site. This information is added to the display.

The SC|05 demonstration involved multiple compute sites,

some simulating multiple bifurcations. Figure 5 shows the geeViz

display with the locations of compute sites (NCSA, SDSC,

TACC, PSC, and CSAR) plotted on the map. Each is labeled and

indicates how many bifurcations it is simulating, as well as how

much data it has produced so far. Links connect each of these sites

with UC/ANL, where the Data Archivers are running. Displayed

here is the total amount of data received, for all five computation

sites combined. When multiple transfers are sent along the same

link, such as the boundary data and the full 3D mesh data coming

from the same site, they are represented by different colored

spheres moving along the link.

The High Resolution and Low Resolution Clients are also

instrumented. Using a formula similar to the one in the Data

Archiver, the Display processes calculate the bandwidth from the

Data Loaders whenever they receive data. Transfer events are

again logged and visualized in the geeViz display. Figure 5 shows

a link between UC/ANL, where all of the Data Loaders are

running, and the SC|05 exhibit floor in Seattle, WA, where all of

the Displays are running.

Placing the mouse over any of the sites on the map will bring

up a graph showing the bandwidth performance into and out of

that site over time. The user can also interact with the geeViz

display to pan and zoom to focus on particular areas of interest.

Using this information on the geeViz display, the scientist can

monitor the progress of the simulation. This feature proved to be

particularly useful at the beginning of the simulation, to see when

sites were starting to send data. The fact that some sites were not

yet reporting results, while others had been for some time,

indicated a potential problem and prompted further investigation.

9.2 Playback of Archived Data

In addition to visualizing the results of the arterial tree simulations

in real time, the data is also archived and can be viewed at a later

time. Because the clients do not communicate with the simulation

directly, they are not dependent on it. They determine which time

steps to load and visualize based on the metadata in the

*_latest.txt files. Rather than relying on the Data Archivers

to update these files, a script can be used to update them instead.

The script takes a configuration file, which indicates the rate at

which each of the files should be updated. This should be the

same rate at which the simulation output its data. In the examples

we’ve discussed, the 1D was updated every step, the 3D boundary

data every three steps, and the full 3D artery data every five steps,

but these rates may vary. For instance, if the elements in the mesh

are calculated to a polynomial order of 12, it may make more

sense to output the data less often. The configuration file can also

contain a delay value, which is used to determine how long the

script should wait between simulation time steps.

9.3 Network Performance Boost

Poor network performance when communicating over wide-area

networks, such as when the Data Loaders of the High Resolution

Client send data to the Display process, has been identified as a

major bottleneck in the performance of the visualization

application. By default MPICH-G2 uses TCP over the wide area.

Figure 5: Image of geeViz displaying monitoring information of human arterial tree simulation and visualization demonstration during SC|05.

The high bandwidth and high latency found in the networks used

here result in the TCP protocol entering congestion avoidance

mode, where the sender-side congestion window becomes too

small. In an attempt to overcome this obstacle, MPICH-G2

employs a technique that uses UDT [16], a reliable UDP-based

protocol that does automatic optimization, including congestion

avoidance. By setting a few attributes on both the sending and

receiving sides of a transfer, MPI_Send can be configured to use

the UDT-based protocol. This was done in the High Resolution

Client, for data transfers between the Data Loaders and the

Display process. While monitoring transfers between these two

components using the information provided by geeViz, network

bandwidth performance was observed to increase by an order of

magnitude. Thus, enabling UDT clearly eliminated the network as

the performance bottleneck.

10 CONCLUSIONS AND FUTURE WORK

We have articulated the value of visualizing simulation data early

and often, while the simulation is still running. In particular, the

productivity of long-running simulations can benefit from this

capability. Equally important is the ability to do this with little

impact on the performance and stability of the simulation. We

described an application we developed to provide these

capabilities to a human arterial tree simulation. The various

components of the application, including the Data Archivers and

the High Resolution and Low Resolution Clients and their

elements, the Data Loaders and Displays, were described in great

detail. This effort, while focused on a single application, has

illustrated the benefits that a flexible, low-impact runtime

visualization application can have on demonstrating, monitoring,

and debugging a large distributed simulation. The benefit of the

use of low- and high-resolution renderings for immediate

feedback to users was also demonstrated. Finally, it showed that

the visualization community can greatly benefit from advances

within the Grid community for the integration of visualization into

running simulations and as part of the analysis pipeline.

We have identified the following areas in which future work

can increase the usefulness and robustness of the application. The

way that the simulations currently discover the contact

information of the Data Archivers is through the use of wget and a

php script. While this method works, there are more robust ways

in which this information discovery could be done. The use of a

services-oriented architecture with an index service may be a

more appropriate approach.

In the previous section we described performance gains that

were obtained by enabling the use of UDT over wide area

networks. Adding this functionality to transfers between the

components of the Low Resolution Client, and between the

simulation and the Data Archiver, could be done with little effort

and would likely result in similar increased performance.

While the visualization capabilities provided by the High

Resolution Client are valuable, they are just a start. Additional

control over the parameters used in the visualizations is needed.

The ability to manage the values used in creating the isosurfaces,

for instance, would be helpful. Including more visualization

algorithms, such as cutting plane and streamlines, would also be

useful. As mentioned in an earlier section, parallelizing these

visualization algorithms in the Data Loaders would provide

enhanced performance.

ACKNOWLEDGMENTS

We wish to thank Peter Schmitt for his work on the 3D artery

model used for the 1D data visualization and Kelly Gaither for her

insightful comments on draft versions of this document. This

work was supported in part by the Mathematical, Information, and

Computational Sciences Division subprogram of the Office of

Advanced Scientific Computing Research, Office of Science, U.S.

Department of Energy, under Contract W-31-109-ENG-38, and in

part by NSF under Grant OCI-0504086.

REFERENCES

[1] I. Foster and C. Kesselman, "Globus: A Toolkit-Based Grid

Architecture," in The Grid: Blueprint for a New Computing

Infrastructure, I. Foster and C. Kesselman, Eds.: Morgan Kaufmann,

1999, pp. 259-278.

[2] N. Karonis, B. Toonan, and I. Foster, "MPICH-G2: A Grid-Enabled

Implementation of the Message Passing Interface," Journal of

Parallel and Distributed Computing, vol. 63, 2003, pp. 551-563.

[3] "The Department of Energy Office of Science Data-Management

Challenge,” November 2004.

[4] S. Dong, L. Grinberg, A. Yakhot, S. Sherwin, and G. E. Karniadakis,

"Simulation of blood flow in human arterial tree on the TeraGrid," in

SIAM Conference on Parallel Processing for Scientific Computing.

San Francisco, CA, 2006

[5] J. Sobel, A. Forsberg, D. H. Laidlaw, R. Zeleznik, D. Keefe, I.

Pivkin, G. Karniadakis, P. Richardson, and S. Swartz, "Particle

Flurries: Synoptic 3D Pulsatile Flow Visualization," IEEE Computer

Graphics and Applications, vol. 24, 2004, pp. 76-85.

[6] A. S. Forsberg, D. H. Laidlaw, A. vanDam, R. M. Kirby, G. E.

Karniadakis, and J. L. Elion, "Immersive Virtual Reality for

Visualizing Flow Through an Artery," in IEEE Visualization. Salt

Lake City, Utah, 2000, pp. 457-460.

[7] J. D. de St. Germain, J. McCorquodale, S. G. Parker, and C. R.

Johnson, "Uintah: A Massively Parallel Problem Solving

Environment," in Ninth IEEE Internalional Symposium on High

Performance Distributed Computing (HPDC'00). Pittsburgh, PA:

IEEE Computer Society, 2000, pp. 33-41.

[8] S. J. Sherwin, L. Formaggia, J. Peiro, and V. Franke,

"Computational Modeling of 1D Blood Flow with Variable

Mechanical Properties in the Human Arterial System," International

Journal for Numerical Methods in Fluids, vol. 43, 2003, pp. 673-

700.

[9] G. E. Karniadakis and S. J. Sherwin, Spectral/HP Element Methods

for CFD: Oxford University Press, 1999.

[10] C. Catlett, The TeraGrid: A Primer, www.teragrid.org.

[11] G. von Laszewski, J. A. Insley, I. Foster, J. Bresnahan, C.

Kesselman, M. Su, M. Thiebaux, M. L. Rivers, S. Wang, B. Tieman,

and I. McNulty, "Real-time Analysis, Visualization and Steering of

Microtomography Experiments at Photon Sources," in Ninth SIAM

Conference on Parallel Processing for Scientific Computing, 1999.

[12] N. Karonis, M. E. Papka, J. Binns, J. Bresnahan, J. A. Insley, D.

Jones, and J. Link, "High-Resolution Remote Rendering of Large

Datasets in a Collaborative Environment," Future Generation of

Computer Systems, pp. 909-917, 2003.

[13] W. Schroeder, K. Martin, and B. Lorensen, The Visualization

Toolkit, An Object Oriented Approach to 3D Graphics: Kitware,

Inc., 2004.

[14] Resource Specification Language (RSL)

www.globus.org/gram/rsl_spec1.html.

[15] W. A. Allcock, J. Bester, J. Bresnahan, I. Foster, J. Gawor, J. A.

Insley, J. M. Link, and M. E. Papka, "A Tool for Visualizing the

Behavior of Large-Scale Distributed Systems," in IEEE

International Symposium on High Performance Distributed

Computing, 2002, pp. 179-187.

[16] Y. Gu and R. L. Grossman, "UDT: An Application Level Transport

Protocol for Grid Computing," presented at the Second International

Workshop on Protocols for Fast Long-Distance Networks, Argonne,

IL, 2004.

The submitted manuscript has been created by the University of

Chicago as Operator of Argonne National Laboratory ("Argonne")

under Contract No. W-31-109-ENG-38 with the U.S. Department

of Energy. The U.S. Government retains for itself, and others

acting on its behalf, a paid-up, nonexclusive, irrevocable

worldwide license in said article to reproduce, prepare derivative

works, distribute copies to the public, and perform publicly and

display publicly, by or on behalf of the Government. This

government license should not be published with the paper.

