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ABSTRACT 

Large-scale simulation codes typically execute for extended 

periods of time, often on distributed computational resources. 

Because these simulations can run for hours, or even days, 

scientists would like to get feedback about the state of the 

computation and the validity of its results as it continues to run. It 

is also important that these capabilities be made available with 

little impact on the performance and stability of the simulation. 

Visualizing and exploring data in the early stages of the 

simulation can help scientists identify problems early, potentially 

avoiding a situation where a simulation runs for several days, only 

to discover an error with an input parameter caused both time and 

resources to be wasted. 

We describe an application that aids in the monitoring and 

analysis of a simulation of the human arterial tree. The application 

provides researchers with high-level feedback about the state of 

the on-going simulation and enables them to investigate particular 

areas of interest in greater detail. The application also offers 

monitoring information about the amount of data produced and 

data transfer performance between the various components of the 

application. 
 

CR Categories: I.3.2 [Computer Graphics]: Graphics Systems - 

Distributed/network graphics; I.6.6 [Simulation and Modelling]: 

Simulation Output Analysis; 
 

Keywords: Real-time visualization, flow visualization 

1 INTRODUCTION 

Simulation-driven science is increasingly being used to initiate 

scientific discovery. As the accuracy and complexity of scientific 

simulations continue to rise, the computational resources required 

to execute these simulations also increase. Even with the 

advancement of Grid-enabling technologies [1, 2] allowing 

scientists to simultaneously utilize multiple distributed resources, 

large-scale simulation codes often run for days at a time. As the 

Department of Energy Office of Science Data-Management 

Challenge report points out “Long-running simulations can 

become vastly more productive if some information can be 

visualized in real time, allowing decisions to abort or steer the 

simulation. [3]” Enabling researchers both to monitor the progress 

of the running simulation and to validate its results can enable 

these types of decisions to be made, thereby saving valuable time 

and resources.  

Equally important to providing these visualization capabilities 

is doing so with little or no impact on the performance and 

stability of the running simulation. Failures in the visualization, as 

a result of software or hardware malfunction for example, should 

not cause the simulation to fail as well. The ability to stop and 

start the visualization at arbitrary points while the simulation 

continues to run is also valuable. 

We present here an application developed to provide 

visualization support for the Human Arterial Tree Simulation 

Project [4]. A distributed visualization pipeline was designed and 

developed that both archives data produced by these simulations 

and is capable of visualizing it in near-real time, with little impact 

on the performance and stability of the running simulation. 

Section 2 discusses related work performed in this area. Section 3 

provides information about the human arterial tree simulation. 

Sections 4-8 give an overview of the visualization application and 

describe the various components, including the Data Archiver, the 

Low Resolution Client, and the High Resolution Client. Section 9 

describes additional capabilities of the application. The paper 

concludes with a discussion of proposed future work. 

2 RELATED WORK 

Particle Flurries, described in [5], is an example of synoptic 3D 

flow visualization, which gives viewers a synopsis of all flow 

features simultaneously. Motion-blurred linestrips surrounded by 

a black halo are used to represent particles as they follow 

pathlines from the inflow to the outflow of an artery. While this 
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Figure 1: Three instances of the High Resolution Client, each displaying isosurfaces of the blood flow pressure and vectors of the velocity 

within a different 3D bifurcation mesh of the human arterial tree model. 



method is well suited to the data produced in the human arterial 

tree simulation, it requires the precomputing of particle paths.  

Forsberg et al. [6], have also developed an application that uses 

isosurfaces to help expose the gross features within the flow 

region. This application also follows a policy that a common data 

format is maintained between the simulation and the visualization 

software. This eliminates the burden of transforming the data 

between the two components. 

Uintah [7] is a problem solving environment that enables the 

visualization and computational steering of complex simulations. 

It uses common component architecture to integrate the various 

components into an integrated environment and manage 

communication between them. It uses Nexus (now known as 

Globus XIO) for wide-area communication and MPI between 

colocated components.  

3 THE HUMAN ARTERIAL TREE SIMULATION 

Motivated by a grand-challenge problem in biomechanics, we are 

striving to simulate blood flow in the entire human arterial tree. 

The problem originates from the widely accepted causal 

relationship between blood flow and the formation of arterial 

disease such as atherosclerotic plaques. These disease conditions 

preferentially develop in separated and recirculating flow regions 

such as arterial branches and bifurcations. Modeling these types of 

interactions requires significant compute resources to calculate the 

three-dimensional unsteady fluid dynamics in the sites of interest. 

Waveform coupling between the bifurcations, however, can be 

reasonably modeled by a reduced set of one-dimensional 

equations that capture the cross-sectional area and sectional 

velocity properties [8]. One can therefore simulate the entire 

arterial tree using a hybrid approach based on a reduced set of 

one-dimensional equations for the overall system and detailed 3D 

Navier-Stokes equations at arterial branches and bifurcations. 

Limited computational resources are required for the 1D 

model; therefore it can run on a single compute node. In order to 

capture the flow dynamics in an artery bifurcation reasonably 

well, however, the grid resolution typically requires a mesh of 

70,000 to 200,000 finite elements of high order; here spectral 

elements with a spectral polynomial order of 10 to 12 on each 

element are used [9]. These 3D models clearly require 

considerably more compute power to calculate. 

The human arterial tree model used here contains the largest 55 

arteries in the human body with 27 artery bifurcations. Because 

many of the bifurcations are close together, some of the 3D 

meshes contain multiple bifurcations. The primary compute 

environment for this simulation is the National Science 

Foundation’s TeraGrid [10]. Several of the largest runs took place 

during demonstrations at SC|05. In order to reduce the simulation 

times during these demonstrations, the spectral elements were 

calculated with a polynomial order of 7, rather than 10 to 12. 

Depending on the complexity of the particular mesh, anywhere 

from 64 to 128 processors were used for each 3D mesh. These 

arterial tree model simulations utilized compute resources at four 

TeraGrid resource provider sites: National Center for 

Supercomputing Applications (NCSA), San Diego Supercomputer 

Center (SDSC), Pittsburgh Supercomputing Center (PCS), and 

Texas Advanced Computing Center (TACC), along with a site in 

the UK, Computer Services for Academic Research (CSAR). This 

Compute power was coupled with visualization resources at The 

University of Chicago/Argonne National Laboratory TeraGrid 

resource provider site.  

The runs consisted of 17 bifurcations contained in 11 3D 

meshes distributed across the five-compute sites. The multi-job 

submission mechanism enabled with Globus and MPICH-G2 was 

used to submit the calculation of each of the 3D bifurcation 

meshes as a separate subjob of a single MPI application, to be 

executed across the five different resources. MPICH-G2 takes 

care of the details of submitting the subjobs to the separate 

resources and establishing the communication paths between 

them. Once all of the processes are running, they are part of the 

same MPI_Communicator and can exchange information via 

standard message passing mechanisms.  

Several types of data are associated with the simulations of this 

arterial tree model. The input data comprises the three 

dimensional unstructured mesh that defines the arterial 

bifurcations. This data does not change over the course of the 

simulation. The output data is of three types. First is the data from 

the 1D simulation. This consists of 55 float values for each time 

step of the simulation, which represent the pressure at the inlet of 

each of the 55 arteries. Because this is a small amount of data, it is 

output at each time step of the simulation. The output data of the 

3D simulations comprises one scalar value, representing the 

pressure, and three values, for the vector representing the blood 

flow velocity, for each point on the unstructured mesh. Since this 

can be a large amount of data, and because these values change 

relatively little from one time step to the next, it is not practical to 

output these values for every time step, as this would negatively 

impact the simulation. Instead they are output at regular intervals, 

typically every fifth time step. During the demonstrations at SC|05 

this data was reduced to a polynomial order of 3 before being 

output. While performing this reduction did have some impact on 

the performance of the simulation, it was relatively minor. Also, 

the trade-off of having the ability to visualize the data in near-real 

time made the performance hit well worthwhile. In order to 

provide feedback about the simulation more frequently, another 

reduced set of data is output every third time step. This reduced 

set consists of the pressure scalars and the velocity vectors for 

only those points on the boundary of the mesh, typically a 

reduction on the order of 98%. While this is a greater reduction in 

the amount of data, it is less computationally intensive to perform 

and can therefore be done more often with less impact on the 

simulation. 

4 VISUALIZATION OVERVIEW 

The visualization application was designed with several goals in 

mind and builds from previous visualization work [11, 12]. The 

goals of the application were to: 

• provide high-level feedback about the state of the on-going 

simulation in as close to real time as possible,  

• enable users to investigate particular areas of interest in 

greater detail, and 

• have little impact on the performance and stability of the 

running simulation, which is to say, any failure in the 

visualization should not cause the simulation to fail as well. 

These three goals layout the major contributions as a visualization 

application, specifically: 

• visual feedback of the state of a complex simulation 

distributed across many sites is extremely helpful, 

• the use of multiple views of data is beneficial (i.e. rapid 

display of low-resolution representation with high-resolution 

version to follow), and 

• the use of middleware solutions for the connection, 

management, and separation of the visualization application 

from the simulation. 

The application consists of three separate, yet integrated 

components, as seen in Figure 2. First is the Data Archiver. This 

is the input to the visualization pipeline and is the only component 

directly tied to the running simulation. The Data Archiver receives 



data from the simulation and is responsible for writing that data to 

disk, along with associated metadata. There are two visualization 

clients, one high resolution, the other low resolution. These clients 

have Data Loaders, which are colocated with the Data Archiver, 

and Displays, which can be at a remote location. The clients use 

the metadata written by the Data Archiver and interactions with 

each other to determine the data to be visualized. These three 

components are described in greater detail in the following 

sections. 

5 DATA ARCHIVER 

The Data Archiver communicates directly with the running 

simulations. All of the simulations, while distributed among 

several geographically distributed sites, are all part of a single 

integrated job. However, there is one instance of the Data 

Archiver for the 1D simulation and one for each of the 3D 

bifurcation simulations. The simulations connect to the Data 

Archivers via a connect/accept mechanism made available in the 

MPICH-G2 implementation. Each of the bifurcation meshes is 

given a numerical bifurcation ID. When each Data Archiver starts, 

it is given the ID of the bifurcation that it will be responsible for 

(0 is used for the 1D data simulation). Each Data Archiver then 

calls MPI_Accept and publishes the host and port where it is 

listening for a connection to a well-known location using a call to 

wget and a php script. Each simulation then uses a reciprocal call 

to wget and the php script to discover the host and port for the 

appropriate Data Archiver, and calls MPI_Connect to connect to 

it.  

Once connected, the Data Archivers and the simulations are 

members of the same MPI_Communicator and use standard 

message passing routines to communicate with one another. After 

exchanging some initial setup information, the simulations send 

the 3D mesh information to the Data Archiver. This information 

consists of the coordinates of each of the elements in the mesh, 

which may be of varying resolutions. The communication is done 

for both the full 3D mesh and the reduced boundary mesh. The 

Data Archiver uses the Visualization Toolkit (VTK) [13] to create 

an unstructured grid object from each of the meshes and write 

them to a local shared file system. The data is written to a location 

determined by several variables provided to the Data Archiver at 

runtime and a letter that indicates whether the data is for the full 

mesh, “a” for artery, or the reduced mesh, “b” for boundary. 

These variables include a Base Directory, a Run ID (a unique 

identifier for the current run of the simulation), and the 

Bifurcation ID.  

As the simulation proceeds and output data is produced, the 

simulation sends this data to the Data Archiver. As mentioned 

previously, the 1D data is quite small, 55 float values per time 

step. This data, along with its time-step information, is sent after 

each time step. The data for all time steps is written to a single 

binary file. In addition, a metadata file is also written. This file, 

named 1D_latest.txt, stores the number of the latest time 

step that was written to the data file, along with the corresponding 

simulation time value. 

Because the geometry of the mesh does not change over the 

course of the simulation, only the data values associated with the 

points on the mesh are transferred to the Data Archiver as the 

simulation runs. This approach eliminates the transfer of 

redundant data, thus reducing the impact on the performance of 

the simulation, especially when sending data over wide-area 

networks. Again, as indicated earlier, this data is sent at different 

intervals. The data for the boundary mesh is sent every third time 

step, and the data for the full 3D mesh is sent every fifth time step. 

The pressure scalar values and the velocity vector values for each 

mesh are written to separate binary files for each time step 

received. Several metadata files are also written for the full mesh 

and the boundary mesh for each bifurcation. Similar to the 1D 

metadata, two files, called a_latest.txt and 

b_latest.txt for the full and boundary meshes, respectively, 

contain information about the last time step that has been 

successfully written to disk for the corresponding mesh. Two 

other files, named a_list.txt and b_list.txt, consist of 

information about all of the time steps that have been written for 

that mesh. The clients then use this metadata to determine which 

time steps to display.  

6 LOW RESOLUTION CLIENT 

The Low Resolution Client comprises several components that 

work together to provide a high-level overview about the state of 

a running simulation in near-real time. It processes and visualizes 

the 1D data and the 3D boundary data as it is written to disk, 

providing the user with an overview of the current state of the 

simulation and the ability to control which bifurcations are 

examined in greater detail with the High Resolution Client. 

Because none of these components are directly connected to the 

simulation itself, or even to the Data Archiver, they cannot 

negatively impact the stability of the simulation. The Low 

 

Figure 2: Overview of the components of the arterial tree simulation and visualization. 



Resolution Client can start and stop, whether intentionally or as 

the result of a failure, without any effect on the simulation. This 

feature becomes increasingly useful as the expected run time of 

the calculation increases, enabling the scientist to periodically 

check on the running simulation. 

The components include Data Loader processes and a Display 

process. Similar to the Data Archiver, there is one Data Loader for 

the 1D data and one for each of the 3D bifurcation meshes. Unlike 

the Data Archiver, however, these processes are all part of a 

single instance of the application. The Display process is also part 

of the same application instance. However, it is typically not 

colocated with the Data Loaders. This arrangement enables 

remote visualization of the data, allowing the researcher to 

monitor the simulation and investigate the results using modest 

local graphics hardware, without the need to transfer and store all 

of the data locally. Just as with the simulation, MPICH-G2 is used 

to submit the Data Readers and the Display as separate subjobs of 

a single MPI application, to be executed on two different 

resources. MPICH-G2 again handles the details of submitting the 

subjobs to the separate resources and establishing the 

communication paths between them.  

6.1 Data Loaders 

The Data Loaders are colocated with the Data Archivers and 

therefore can access data from the same shared file system. The 

1D Data Loader reads from the 1D metadata file written by the 

Data Archiver, using file locks to ensure that memory access by 

the two processes is mutually exclusive. The loader keeps track of 

the last time step that it has read and compares this to the current 

value in the 1D_latest.txt file. If the value in the file is 

newer, it reads the values for the corresponding time step from the 

1D data file. Once read from disk, these new values are sent to the 

Display process, along with the time step and simulation time 

values, using MPI_Send. 

The 3D Data Loaders for the Low Resolution Client are 

responsible for reading the boundary data for their designated 

bifurcation. Because the size and complexity of the 3D meshes 

vary from one to the next, the simulations are executed on a 

varying number of processors, in an attempt to keep their 

completion times synchronized. However, it is not uncommon for 

some bifurcation simulations to complete earlier than others. So, 

in order to keep the 3D Data Loaders synchronized, they all read 

the latest time step from the b_latest.txt file for their 

assigned bifurcation. All of these latest time step values are then 

compared, and the lowest one is determined. Collectively the 

loaders all keep track of the last time step that was read from disk. 

When the lowest value is greater than the previous time step that 

has been loaded, all of the 3D Data Loaders read the data for their 

respective bifurcations for this new time step. If this is the first 

time step to be loaded, as at the beginning of the simulation, the 

3D Data Loaders first read in the geometry data for the boundary 

mesh for their designated bifurcation, creating a VTK 

unstructured grid object. For all subsequent time steps only the 

data values are read, and the unstructured grid object is updated to 

reflect these new values. As each 3D Data Loader finishes reading 

the data for the current time step it sends the updated unstructured 

grid object, along with the time step information, to the Display 

process. Because these boundary meshes are relatively small, just 

over 2 MB for the largest one, there is no performance penalty for 

sending the whole mesh, rather than just the data values. 

6.2 Display 

The Display process is responsible for providing visual 

representations of the 1D and low-resolution (boundary) 3D data 

produced by the simulations. Recall that the 1D data consists of a 

single value for each of the 55 major arteries in the human body, 

specifically the pressure on the arterial walls at the inlet of the 

artery. Even when only a subset of the 3D bifurcations is 

simulated, the 1D data is still calculated for all 55 arteries. To 

visually represent these values, we borrowed from a popular 2D 

diagram of the 55 major arteries. Using VTK objects, we 

constructed a 3D model of this diagram. The model allows each of 

the arteries to be easily addressed by name or by index. When the 

simulation is started, the researcher knows the range of pressure 

values expected to be produced by these 1D calculations. A color 

lookup table based on this value range is used to color the 

individual arteries in this model. When the Display process is 

started, it loads the artery model and creates the lookup table. 

Another VTK object is used to represent the boundary data of 

each of the 3D bifurcations being simulated. This object, called 

the bifurcation group, is initially empty and is populated with the 

boundary meshes as they are received from the Data Loaders. The 

expected range of the pressure values over the entire set of 

bifurcations is similar to that of the 1D data. Therefore, the same 

color lookup table is used to color the points on each 3D mesh. 

Once both of these VTK objects have been instantiated, a 

second thread is created. This thread is responsible for all 

communication with the Data Loaders. After exchanging some 

initial synchronization messages, it registers to receive data from 

the 1D and each of the 3D Data Loaders. It then loops, checking 

whether data has been received from any of the loaders. 

The main thread of the Display process controls the graphics 

window where the objects are rendered; see Figure 3. It is laid out 

with two main regions, the artery model with the 1D data on the 

right and the bifurcation model with the 3D data on the left. Each 

region displays its respective models along with a label indicating 

the current time step and simulation time being shown. Because 

the models share a color lookup table, a scalar bar showing that 

table and its associated values is displayed across the bottom of 

the full window. Initially, before any data values have been 

received, all of the arteries in the 1D model are colored white, 

while no data objects get displayed on the 3D side, as all of the 

bifurcations are hidden until data has been received for them. 

The two threads of the Display process use shared memory to 

exchange data and information. When the communication thread 

receives 1D data, a lock is put on the artery model and the color of 

each of the arteries is updated to reflect the new pressure values. 

The time-step information is also updated. Once the lock is 

released, the main thread updates the display window to reflect 

the newly colored arteries and the updated time information. 

Each time through the execution loop the communication 

thread tests to see whether any new messages have been received 

from any of the 3D Data Loaders. If any new messages have been 

received, a lock is put on the bifurcation group object, and all new 

messages are processed. The receiving thread knows which 

bifurcation the data it received was intended for based on the ID 

of the Data Loader that sent the message. If this is the first data 

message received for a given bifurcation, the unstructured grid 

that was received is added to the bifurcation group object, and its 

status of “hidden” is changed to “display”. Otherwise, the 

unstructured grid that was received replaces the existing one for 

this bifurcation. If the time step information in this message is 

greater than what is currently being displayed for the bifurcation 

group, that information is updated as well. Once all new messages 

received since the previous pass through the loop are processed, 

the lock is released. The main thread can now update the display 

window to reflect any new data that was received. The 3D 

bifurcation objects are rendered on the left side of the display. 



Their positions reflect where they would actually be located in the 

body, relative to one another.  

Seeing the 3D bifurcations side by side with the 1D artery 

model, one can match the corresponding arteries from the two 

representations, especially if one has an intimate understanding of 

the arterial system. Having these two displays also gives the 

scientist a better idea of what is happening in the simulation. For 

instance, one can see that the pressure is initially greatest at the 

first artery, that closest to the heart. As the simulation progresses, 

this high pressure travels through the arterial tree toward the 

extremities. Seeing the results of the 3D simulations on these 

reduced boundary meshes both assures the scientist that the 

simulation is progressing as expected and enables the viewer to 

discover areas of interest to explore in greater detail. This in-depth 

investigation is done through the High Resolution Client, 

described in the following section.  

7 HIGH RESOLUTION CLIENT 

The High Resolution Client enables exploration of a full 3D 

bifurcation mesh. Its architecture is similar to that of the Low 

Resolution Client, but with some notable differences. Like the 

Low Resolution Client, it comprises several components that 

work together to enable the visualization of data from a running 

simulation. There again are Data Loader processes and a Display 

process, which execute as a single application while on separate, 

usually distributed, resources, enabling remote visualization of the 

simulation data. Likewise, MPICH-G2 is used to start the 

processes and establish communication between them. They also 

have no direct interaction with the simulation or the Data 

Archiver, and thus cannot negatively impact the performance or 

stability. This feature again enables the Client to be stopped and 

started with no effect on the simulation.  

Unlike the Low Resolution Client, the High Resolution Client 

visualizes only a single 3D mesh at a time. However, in addition 

to providing a simple view of the boundary data, it applies other 

visualization methods to the data of the full 3D mesh. Multiple 

instances of this client can be run simultaneously in order to view 

multiple bifurcations at the same time.  

7.1 Data Loaders 

The Data Loaders are again colocated with the Data Archivers and 

access data and metadata from the same shared file system, using 

file locks to ensure data integrity. Two methods are used for 

selecting which time step of the simulation data to display. In 

“Latest Step” mode the Data Loader looks in the 

a_latest.txt file to discover the last time step that has been 

successfully written to disk. If this is a later time step than the one 

currently being displayed, the data for this new time step is 

loaded. In “Playback” mode the Data Loader reads through the 

a_list.txt file and sequentially loads the data for each time 

step, one at a time. When the end of file is reached, it rewinds 

back to the beginning and starts over. 

There are two Data Loader processes. Both processes read the 

same bifurcation mesh. The bifurcation ID for this mesh is 

initially given as an input parameter but can later be changed, as 

described in the following section. Both of the Data Loader 

processes read the pressure scalar values and the velocity vector 

data. Once read, the unstructured grid is updated with these new 

values. One process then generates ten isosurfaces using values 

evenly distributed across the range of pressure values in the 

 

Figure 3:  The Low Resolution Client displaying the 1D data for the 55 major arteries on the right, and the boundary data of 11 of the 3D 

bifurcation meshes on the left. 



current time step. The geometry for these isosurfaces is then 

transferred to the Display process by using a call to MPI_Send. 

The other Data Loader process uses a glyph filter to generate 

arrows that depict the direction and magnitude of the velocity of 

the blood flow over a random sampling of the elements in the 

mesh. These arrows may be colored by either the pressures values, 

or the magnitude of the velocity vectors. The geometry of the 

arrows is then transferred to the Display process, again by using a 

call to MPI_Send. Both processes also send information about the 

current time step along with their data. While each of the Data 

Loaders is currently only a single process, each could be 

parallelized to take advantage of multiple processors for 

calculating the glyphs and isosurfaces.  

7.2 Display 

As in the Low Resolution Client, the Display process for the High 

Resolution Client is responsible for rendering the visual 

representations of the data. When the Display process is started, it 

is given the ID of the initial bifurcation that it will visualize. It 

reads a local copy of the boundary data for this bifurcation, 

without any data values, and renders it in the graphics window. 

The boundary data is given a neutral grey translucent color and is 

used to give a frame of reference for the shape of the bifurcation 

being simulated. VTK objects that will be used to display the 

isosurfaces and glyphs generated by the Data Loaders are also 

created. Also added to the display are the color lookup table and 

its associated values, and a label indicating the current time step 

and simulation time being shown, initially set to zero. 

As with the Low Resolution Client, here again a second thread 

is created that is responsible for communicating with the Data 

Loaders. Again the threads use shared memory to exchange data 

and locks to ensure mutually exclusive access to the data. The 

communication thread registers to receive data from each of the 

Data Loaders. Because both of the Data Loaders will be sending 

data for the same time step, the communication thread waits until 

it receives the data from both before processing the data. Once all 

of the data for the time step is received, the VTK objects are 

locked, and the isosurface and glyph objects are updated with the 

new data. When the lock is released, the main thread updates the 

display with the newly received data. 

Users can interact with the Display to change the position and 

orientation of the bifurcation data. They can also zoom in to get a 

closer look at a particular region of interest, or out to see the entire 

bifurcation. By pressing a key on the keyboard the users can also 

easily switch between “Latest Step” mode, where the display is 

updated to show the latest time step of the simulation to be 

completed, and “Playback” mode, which animates through all of 

the time steps that have been completed so far. When the key is 

pressed, the main thread captures this event and determines 

whether a change of mode should be triggered. If so, it 

communicates this change to the communication thread via shared 

memory. The communication thread then uses MPI_Send calls to 

notify the Data Loaders of the change in mode. The Data Loaders 

can then switch from reading the a_latest.txt file to the 

a_list.txt file, or vice versa, depending on the current mode. 

8 TYING IT ALL TOGETHER 

As mentioned earlier, the Low Resolution and High Resolution 

Clients work together to both provide a high-level overview and 

enable detailed exploration of the arterial tree simulation data. The 

Display components of the clients are intended to run on the same 

resource. For the SC|05 demonstrations a tiled display was used to 

display the Low Resolution Client and multiple instances of the 

High Resolution Client, each on a different tile of the display; see 

Figure 4. In order to simplify the startup process of all of these 

clients, including the Data Loader components running on the 

UC/ANL TeraGrid visualization resource, a script and 

configuration file are used. The configuration file includes 

information such as what resource manager each subjob should be 

submitted to, the path to the application executables on the 

different resources, directory paths to where the data should be 

written, the bifurcation IDs that will be included in the current 

run, and the number of High Resolution Clients that should be 

started. MPICH-G2 makes use of RSL (Resource Specification 

Language) [14] to describe the job requests that it submits. The 

startup script reads the configuration file, creates the appropriate 

RSL expression, and calls MPICH-G2’s mpirun to submit a job 

request for the each of the clients to be started. 

When each of the High Resolution Clients is started, it is given 

the initial bifurcation ID that it will be responsible for. The Low 

Resolution Client is also given this information, so it knows how 

many High Resolution Clients are running and which bifurcation 

each will be displaying. Because the Display components of all of 

the clients are running on the same resource, in this case a 9-node 

cluster, they share a common file system. Thus the clients can 

communicate through the use of shared files, again using locks to 

ensure exclusive access. In the display of the Low Resolution 

Client some of the 3D bifurcations have colored bounding boxes 

around them. The bounding boxes indicate that these bifurcations 

are being displayed in one of the High Resolution Clients. The 

color of the bounding box matches the color of a label that is 

drawn in the display of the corresponding High Resolution Client. 

The user can select a different bifurcation to be displayed in one 

of the High Resolution Clients by simply picking one of the 

bifurcations in the Low Resolution Client that does not have a 

bounding box. Keys on the keyboard are used to select the High 

Resolution Client for which picking is currently active. The index 

and color of the active High Resolution Client are displayed in the 

lower left corner of the Low Resolution Client. When a new 

bifurcation is picked, the Low Resolution Client writes its 

bifurcation ID to a file for the active High Resolution Client. 

When the High Resolution Client checks the file and discovers a 

new bifurcation ID, it uses MPI_Send to notify its Data Loaders 

of the new value. The loaders then discard the unstructured grid 

that they are currently using, load that of the new bifurcation ID, 

and start reading data and metadata from the corresponding 

location. 

 

Figure 4: Components of the arterial tree visualization application 

running on a tiled display at SC|05. 



9 ADDITIONAL FEATURES 

In addition to enabling the real-time remote visualization of the 

simulation data, this application provides several other features 

including performance monitoring, playback, and improved 

network performance. 

9.1 Performance Monitoring 

As the compute environment that simulations are executed in 

becomes more complex, providing users with feedback about the 

progress of long-running computations becomes increasingly 

important. To enable the users of our application to monitor its 

performance, as well as that of some aspects of the simulation, we 

have instrumented several of the components. Specifically, we 

used geeViz [15], a previously developed system for visualizing 

Grid-enabled environments. It provides an API that can be used to 

easily log events of interest, and an application that is used to 

visualize those events.  

The first component to be instrumented is the Data Archiver. 

Whenever it receives data from the simulation, it calculates the 

bandwidth between the simulation and itself. It does so using a 

timestamp that was sent with the data, the local time when the 

data was received, synchronization information that was 

exchanged when the two processes first connected, and the size of 

the data buffer that was received. The Data Archiver then logs a 

transfer event, which includes the source and destination of the 

transfer, the bandwidth, and the amount of data received. The 

geeViz application displays an image of a world map. It plots the 

location of the source and destination of the transfer event on the 

map and draws a link between them. Spheres are moved along the 

link in the direction of the transfer, at a speed based on the 

bandwidth. Also displayed are labels of the locations of the 

endpoints and the amount of data that was either sent or received. 

Other events are used to indicate the number of bifurcations being 

calculated at a given site. This information is added to the display. 

The SC|05 demonstration involved multiple compute sites, 

some simulating multiple bifurcations. Figure 5 shows the geeViz 

display with the locations of compute sites (NCSA, SDSC, 

TACC, PSC, and CSAR) plotted on the map. Each is labeled and 

indicates how many bifurcations it is simulating, as well as how 

much data it has produced so far. Links connect each of these sites 

with UC/ANL, where the Data Archivers are running. Displayed 

here is the total amount of data received, for all five computation 

sites combined. When multiple transfers are sent along the same 

link, such as the boundary data and the full 3D mesh data coming 

from the same site, they are represented by different colored 

spheres moving along the link. 

The High Resolution and Low Resolution Clients are also 

instrumented. Using a formula similar to the one in the Data 

Archiver, the Display processes calculate the bandwidth from the 

Data Loaders whenever they receive data. Transfer events are 

again logged and visualized in the geeViz display. Figure 5 shows 

a link between UC/ANL, where all of the Data Loaders are 

running, and the SC|05 exhibit floor in Seattle, WA, where all of 

the Displays are running. 

Placing the mouse over any of the sites on the map will bring 

up a graph showing the bandwidth performance into and out of 

that site over time. The user can also interact with the geeViz 

display to pan and zoom to focus on particular areas of interest. 

Using this information on the geeViz display, the scientist can 

monitor the progress of the simulation. This feature proved to be 

particularly useful at the beginning of the simulation, to see when 

sites were starting to send data. The fact that some sites were not 

yet reporting results, while others had been for some time, 

indicated a potential problem and prompted further investigation. 

9.2 Playback of Archived Data 

In addition to visualizing the results of the arterial tree simulations 

in real time, the data is also archived and can be viewed at a later 

time. Because the clients do not communicate with the simulation 

directly, they are not dependent on it. They determine which time 

steps to load and visualize based on the metadata in the 

*_latest.txt files. Rather than relying on the Data Archivers 

to update these files, a script can be used to update them instead. 

The script takes a configuration file, which indicates the rate at 

which each of the files should be updated. This should be the 

same rate at which the simulation output its data. In the examples 

we’ve discussed, the 1D was updated every step, the 3D boundary 

data every three steps, and the full 3D artery data every five steps, 

but these rates may vary. For instance, if the elements in the mesh 

are calculated to a polynomial order of 12, it may make more 

sense to output the data less often. The configuration file can also 

contain a delay value, which is used to determine how long the 

script should wait between simulation time steps.  

9.3 Network Performance Boost 

Poor network performance when communicating over wide-area 

networks, such as when the Data Loaders of the High Resolution 

Client send data to the Display process, has been identified as a 

major bottleneck in the performance of the visualization 

application. By default MPICH-G2 uses TCP over the wide area. 

 

Figure 5:  Image of geeViz displaying monitoring information of human arterial tree simulation and visualization demonstration during SC|05. 



The high bandwidth and high latency found in the networks used 

here result in the TCP protocol entering congestion avoidance 

mode, where the sender-side congestion window becomes too 

small. In an attempt to overcome this obstacle, MPICH-G2 

employs a technique that uses UDT [16], a reliable UDP-based 

protocol that does automatic optimization, including congestion 

avoidance. By setting a few attributes on both the sending and 

receiving sides of a transfer, MPI_Send can be configured to use 

the UDT-based protocol. This was done in the High Resolution 

Client, for data transfers between the Data Loaders and the 

Display process. While monitoring transfers between these two 

components using the information provided by geeViz, network 

bandwidth performance was observed to increase by an order of 

magnitude. Thus, enabling UDT clearly eliminated the network as 

the performance bottleneck. 

10 CONCLUSIONS AND FUTURE WORK 

We have articulated the value of visualizing simulation data early 

and often, while the simulation is still running. In particular, the 

productivity of long-running simulations can benefit from this 

capability. Equally important is the ability to do this with little 

impact on the performance and stability of the simulation. We 

described an application we developed to provide these 

capabilities to a human arterial tree simulation. The various 

components of the application, including the Data Archivers and 

the High Resolution and Low Resolution Clients and their 

elements, the Data Loaders and Displays, were described in great 

detail. This effort, while focused on a single application, has 

illustrated the benefits that a flexible, low-impact runtime 

visualization application can have on demonstrating, monitoring, 

and debugging a large distributed simulation. The benefit of the 

use of low- and high-resolution renderings for immediate 

feedback to users was also demonstrated. Finally, it showed that 

the visualization community can greatly benefit from advances 

within the Grid community for the integration of visualization into 

running simulations and as part of the analysis pipeline. 

We have identified the following areas in which future work 

can increase the usefulness and robustness of the application. The 

way that the simulations currently discover the contact 

information of the Data Archivers is through the use of wget and a 

php script. While this method works, there are more robust ways 

in which this information discovery could be done. The use of a 

services-oriented architecture with an index service may be a 

more appropriate approach. 

In the previous section we described performance gains that 

were obtained by enabling the use of UDT over wide area 

networks. Adding this functionality to transfers between the 

components of the Low Resolution Client, and between the 

simulation and the Data Archiver, could be done with little effort 

and would likely result in similar increased performance. 

While the visualization capabilities provided by the High 

Resolution Client are valuable, they are just a start. Additional 

control over the parameters used in the visualizations is needed. 

The ability to manage the values used in creating the isosurfaces, 

for instance, would be helpful. Including more visualization 

algorithms, such as cutting plane and streamlines, would also be 

useful. As mentioned in an earlier section, parallelizing these 

visualization algorithms in the Data Loaders would provide 

enhanced performance.  
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