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ABSTRACT
A formulation of the intermolecular force in the nonideal

gas lattice Boltzmann equation (LBE) method is examined. Dis-
cretization errors in the computation of the intermolecular force
cause parasitic currents. The parasitic currents can be elim-
inated to round-off if the potential form of the intermolecular
force is used with compact isotropic discretization. Numerical
tests confirm the elimination of the parasitic currents. In order
to demonstrate the applicability of the present model, inertial co-
alescence of droplets at high density ratio is studied.

INTRODUCTION
The lattice Boltzmann equation (LBE) methods for nonideal

gases or binary fluids have witnessed significant progress in re-
cent years [1–7]. The success of LBE methods can largely be
attributed to their mesoscopic and kinetic nature, which enables
the simulation of the macroscopic interfacial dynamics with the
underlying microscopic physics. On the macroscopic level, most
of these two-phase LBE methods can be considered as diffuse
interface methods [8] in that the phase interface is spread on
grid points and the surface tension is transformed into a volu-
metric force. Generally, diffuse interface methods have some ad-
vantages over sharp interface methods because computations are

∗Address all correspondence to this author.

much easier for three-dimensional (3-D) flows in which topolog-
ical change of the interfaces is complicated. When applied on
the uniform grid, LBE methods enjoy the unit CFL (Courant,
Friedrichs, and Lewy) property that eliminates any numerical er-
rors involved in the computation of the advection operator. The
inherent isotropy of the lattice guarantees isotropic discretization
of the differential operators in LBE. Free from advection errors
and anisotropic discretization, the LBE method can deliver much
improved solutions with the same grid resolution.

One undesirable feature of LBE methods as a diffuse inter-
face method is the existence of parasitic currents. The parasitic
currents are small-amplitude velocity fields caused by a slight
imbalance between stresses in the interfacial region [9]. These
currents increase as the surface tension force and can be reduced
with large viscous dissipation, but never disappear in most cases.
In the case of a 2-D liquid droplet immersed in a vapor phase, the
flow tends to be organized into eight eddies with centers lying on
the interface. In the diffuse interface method, the key to reduc-
ing the parasitic currents lies in the formulation of the surface
tension force. Jacqmin [10] suggested that the potential form of
the surface tension force was guaranteed to generate motionless
equilibrium states without parasitic currents. Jamet et al. [11]
later showed that the potential form ensured the correct energy
transfer between the kinetic energy and the surface tension en-
ergy, eliminating parasitic currents.
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Several attempts have been made to reduce the magnitude
of the parasitic currents and identify their origins [12–14] in the
LBE framework. Nourgaliev et al. [12] employed a finite differ-
ence approach in the streaming step of LBE and reported reduced
currents compared with the previous LBE methods. Lishchuk
et al. [13] noted that the parasitic currents were unwanted arti-
facts originating from the mesoscopic (or microscopic) nature of
LBE having the interface with a finite thickness, and they tried
to incorporate sharp interface kinematics into their LBE method.
Cristea and Sofonea [14] argued that the directional derivative
operator eα ·∇ in LBE (see Eq. (1)) generated the parasitic cur-
rents in the interfacial region, and consequently, they concluded
that the parasitic currents would be reduced by the surface ten-
sion force. All these LBE schemes were able to reduce the mag-
nitude of the parasitic currents to a certain degree but never made
them entirely disappear.

The discrete Boltzmann equation (DBE) proposed by He et
al. [5] will be analyzed, but the analysis is equally valid for other
LBE methods. We will show that the potential form of the in-
termolecular force in the LBE context eliminates the parasitic
currents. In order to demonstrate the applicability of the present
model, inertial coalescence of droplets will be examined.

NOMENCLATURE
fα Particle distribution function
f eq
α Equilibrium distribution function

eα Microscopic particle velocity
u Macroscopic velocity
ρ Density
cs Speed of sound
λ Relaxation time
τ Nondimensional relaxation time
tα Weighting factor
F Intermolecular force
κ Gradient parameter
p0 Thermodynamic pressure
Emix Mixing energy
E0 Bulk energy
µ0 Chemical potential
D Interface thickness
σ Surface tension
ν Kinematic viscosity
R0 Radius of a droplet

THEORY
The DBE with external force F can be written as

∂ fα

∂t
+ eα ·∇ fα =− fα− f eq

α
λ

+
(eα−u) ·F

ρc2
s

f eq
α , (1)

where fα is the particle distribution function, eα is the micro-
scopic particle velocity, u is the macroscopic velocity, ρ is the
density, cs is a constant, and λ is the relaxation time. The equi-
librium distribution function f eq

α is given by

f eq
α = tαρ

[
1+

eα ·u
c2

s
+

(eα ·u)2

2c4
s

− (u ·u)
2c2

s

]
, (2)

tα being a weighting factor. In the above, F is the averaged ex-
ternal force experienced by each particle. In the case of a van der
Waals fluid without the effect of gravity, the intermolecular at-
traction through the mean field approximation and the exclusion
volume of molecules yield the external force [5]

F = ∇
(
ρc2

s − p0
)
+ρκ∇∇2ρ, (3)

where κ is the gradient parameter and p0 is the thermodynamic
pressure that separates phases. We call this form the pressure
form of the intermolecular force, or simply the pressure form.

In this model, phase separation is induced by mechanical
instability in the supernodal curve of the phase diagram. Unfor-
tunately, He and coworkers [15] reported numerical instability
due to the stiffness of F. Lee and Lin [7] later showed that the
compact and isotropic finite difference yields stable discretiza-
tion as long as the mechanically unstable region is resolved with
enough grid points. The first term of F is to cancel out with
the ideal gas contribution to the pressure. It is not responsible
for the parasitic currents but may cause serious numerical insta-
bility when an inappropriate discretization scheme is used. The
second term, the thermodynamic pressure gradient, is mechani-
cally unstable in the narrow interfacial region, in which ∂p0/∂ρ
changes its sign. The number of grid points in this region should
be chosen large enough to resolve the change. The third term is
associated to the interfacial stress and should balance the ther-
modynamic pressure gradient to maintain the equilibrium inter-
face profile. Without this term, the interface profile would be a
step function, which is numerically unsustainable unless artifi-
cial smearing of the interface is introduced, sacrificing accuracy.
We note that the interfacial stress term alone does not trigger the
parasitic currents. The parasitic currents are initiated by a slight
imbalance between the thermodynamic pressure gradient term
and the interfacial stress term as a result of truncation error.

To avoid the truncation error, we recast Eq. (3) in the same
form as the interfacial stress term using the thermodynamic iden-
tity. The mixing energy per unit volume for the isothermal sys-
tem is

Emix (ρ,∇ρ) = E0 (ρ)+
κ
2
|∇ρ|2, (4)
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where the bulk energy E0 is related to the thermodynamic pres-
sure p0 by the equation of state (EOS), and the chemical potential
is the derivative of the bulk energy with respect to the density:

p0 = ρ
∂E0

∂ρ
−E0, µ0 =

∂E0

∂ρ
. (5)

Using the relations Eq. (5), one can rewrite Eq. (3) in the poten-
tial form:

F = ∇ρc2
s −ρ∇

(
µ0−κ∇2ρ

)
. (6)

The equilibrium profile is determined such that the energy is min-
imized. Now µ = µ0−κ∇2ρ is treated as a scalar and discretized
in like manner.

In the vicinity of the critical point, EOS can be simpli-
fied [16] for control of the interface thickness and surface tension
at equilibrium. We assume that the bulk energy E0 is

E0 (ρ)≈ β
(
ρ−ρsat

v
)2 (

ρ−ρsat
l

)2
, (7)

where β is a constant that is related to the compressibility of bulk
phases, and ρsat

l and ρsat
l are the densities of vapor and liquid

phases at saturation, respectively. In a plane interface at equilib-
rium, the density profile across the interface is

ρ(z) =
ρsat

l +ρsat
v

2
+

ρsat
l −ρsat

v

2
tanh

(
2z
D

)
, (8)

where D is the interface thickness, which is chosen based on ac-
curacy and stability. Given D, β, and the saturation densities,
one can compute the gradient parameter κ and the surface ten-
sion force σ

κ =
βD2(ρsat

l −ρsat
v )2

8
, σ =

(ρsat
l −ρsat

v )3

6

√
2κβ. (9)

In the limiting case of zero κ, the interface thickness D goes
to zero. The above simplification may cease to be valid away
from the critical point, namely, at large density difference or
equivalently low temperature. In our experience, the numerically
sustainable interface thickness is D > 3, below which the LBE
method becomes unstable or the interface shape is distorted. At
large density difference, either β or σ is compromised because
of the lower bound for D. Since the speed of sound is related to
the bulk energy, changing β implies modification of the speed of
sound of the bulk fluid.

LBE is obtained by discretizing Eq. (1) along characteristics
over the time step δt:

fα(x+ eαδt, t +δt)− fα(x, t) (10)

=−R t+δt
t

fα− f eq
α

λ dt ′+
R t+δt

t
(eα−u)·(∇ρc2

s−ρ∇µ)
ρc2

s
f eq
α dt ′.

The time integration in [t, t + δt] is coupled with the space inte-
gration in [x,x + eαδt]. Application of the trapezoidal rule for
second-order accuracy and unconditional stability leads to

fα(x+ eαδt, t +δt)− fα(x, t) (11)

=− fα− f eq
α

2τ |(x,t)− fα− f eq
α

2τ |(x+eαδt,t+δt)

+ δt
2

(eα−u)·(∇ρc2
s−ρ∇µ)

ρc2
s

f eq
α |(x,t)

+ δt
2

(eα−u)·(∇ρc2
s−ρ∇µ)

ρc2
s

f eq
α |(x+eαδt,t+δt),

where the nondimensional relaxation time τ = λ/δt and is related
to the kinematic viscosity by ν = τc2

s δt.
The space discretization of δteα ·∇ρ and δteα · ρ∇µ is of

critical importance to stability and elimination of the parasitic
currents. Lee and Lin [7] showed that discretizations of these
directional derivatives at (x + eαδt) and (x) should be compact
around (x+ eαδt):

δteα ·∇ρ|(x+eαδt) = ρ(x+eαδt)−ρ(x+eαδt)
2 , (12)

δteα ·∇ρ|(x) = −ρ(x+2eαδt)+4ρ(x+eαδt)−3ρ(x)
2 .

Finite differences in Eq.(13) are second-order accurate and re-
quire only three lattice sites around (x + eαδt). In Eq. (13), a
backward characteristic approximation is used. Derivatives other
than the directional derivatives can be obtained by taking mo-
ments of the 1-D second-order central difference along charac-
teristics. Specifically, the first and the second derivatives are dis-
cretized as follows:

∇ρ|(x) = ∑α6=0
tαeα[ρ(x+eαδt)−ρ(x−eαδt)]

2c2
s δt , (13)

∇2ρ|(x) = ∑α 6=0
tα[ρ(x+eαδt)−2ρ(x)+ρ(x−eαδt)]

c2
s δt2 .

The isotropic discretization in LBE and its force terms prevents
the parasitic currents from developing into organized eddies.

Here, we introduce modified particle distribution function
f̄α and equilibrium distribution function f̄ eq

α to facilitate compu-
tation:

f̄α = fα + fα− f eq
α

2τ − δt
2

(eα−u)·(∇ρc2
s−ρ∇µ)

ρc2
s

f eq
α , (14)

f̄ eq
α = f eq

α − δt
2

(eα−u)·(∇ρc2
s−ρ∇µ)

ρc2
s

f eq
α .
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Note that δteα ·∇ρ and δteα ·ρ∇µ in the definition of the modified
equilibrium distribution f̄ eq

α should be discretized by the central
difference. The density and the momentum can be computed
by taking the zeroth and first moments of the modified particle
distribution function:

ρ = ∑α fα = ∑α f̄α, (15)
ρu = ∑α eα fα = ∑α eα f̄α + δt

2

(
∇ρc2

s −ρ∇µ
)
.

The above LBE can then be recast in a simpler form:

f̄α(x+ eαδt, t +δt)− f̄α(x, t) =− 1
τ+0.5

(
f̄α− f̄ eq

α
) |(x,t) (16)

+
(eα−u)·(∇ρc2

s−ρ∇µ)
ρc2

s
f eq
α |(x,t)δt.

Although the above equation appears to be explicit in time, it is
fully implicit for the relaxation term and the intermolecular force
terms alike and, therefore, is unconditionally stable and second
order accurate. The directional derivatives in the force terms are
discretized by the mixed difference, for instance,

eα ·∇ρ|(x) = [ρ(x+eαδt)−ρ(x−eαδt)]
4δt (17)

+ [−ρ(x+2eαδt)+4ρ(x+eαδt)−3ρ(x)]
4δt .

NUMERICAL TEST
The test cases confirm that the LBE with the potential form

is able to reach an equilibrium. Figure 1 shows ρu fields af-
ter 100,000 time steps are plotted, when steady-state solutions
are assumed. As initial conditions, a 2-D droplet is generated
on 100×100 periodic computational domain for a D2Q9 lattice.
The interface thickness, droplet radius, and relaxation time are
D = 4, R0 = 25, and τ = 0.5, respectively. We fixed β = 0.01,
ρsat

l = 1.0, and ρsat
v = 0.1, in which case the surface tension is

σ = 2.187×10−3. Values of ρu are magnified by 2×105 times
in (a) and 1×1015 times in (b). Figure 1(a) indicates the presence
of parasitic currents that are roughly aligned in the direction nor-
mal to the interface, when the pressure form of the intermolecu-
lar force is used. Away from the interface, the parasitic currents
rapidly disappear. Inexact satisfaction of ∇p0 = ρ∇µ0 is respon-
sible for the parasitic currents. Following the analysis of Jamet
et al. [11], the discretized relation for ∇p0|(x) = ρ∇µ0|(x) should
be

∑α6=0
tαeα[p0(x+eαδt)−p0(x−eαδt)]

2c2
s δt (18)

= ∑α6=0
tαeαρ[µ0(x+eαδt)−µ0(x−eαδt)]

2c2
s δt .

0.2
0.55

0.9

(a) Pressure form

0.55
0.9

0.2

(b) Potential form

Figure 1. ρu FIELDS AFTER 100,000 TIME STEPS ON 100× 100
LATTICE AT D = 4, R0 = 25, τ = 0.5, β = 0.01, ρsat

l = 1.0, and
ρsat

v = 0.1. VALUES OF ρu ARE MAGNIFIED BY 2× 105 TIMES IN
(a) AND 1×1015 TIMES (b).

However, the Taylor-series expanding the pressure and the chem-
ical potential reveals that the truncation error is proportional to
the density gradients:

∇p0|(x)−ρ∇µ0|(x) = ∑
α6=0

tαeα

6c2
s δt

[(
∂µ0

∂ρ

)
(δteα ·∇ρ)(δteα ·∇)2 ρ

]

(x)
.

(19)
We observe that the flow does not exhibit any organized eddies
despite the presence of parasitic currents. We speculate that the
absence of eddies is due to the isotropic discretization of LBE.
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Figure 2. TIME EVOLUTION OF THE MAXIMUM KINETIC ENERGY
FOR A POTENTIAL FORM AND A PRESSURE FORM OF THE INTER-
MOLECULAR FORCE AT D = 4, R0 = 25, ρsat

l = 1.0, and ρsat
v = 0.1.

TIME IS NONDIMENSIONALIZED TO THE VISCOUS TIME OF THE VA-
POR PHASE tv = ρsat

v νsat
v R0/σ. τ IS FIXED AT 0.5 IN (a), AND THE

SURFACE TENSION FORCES ARE σ = 4.374×10−3, 2.187×10−3,
AND 1.094× 10−3 IN THE DESCENDING ORDER OF β. IN (b) β IS
FIXED AT 0.01.

The magnitude of the currents may be small, but the most unde-
sirable outcome of the parasitic currents is the violation of mass
conservation. Fig. 1(a) shows that the droplet radius is increased
after long time integration. Ideally, the net balance of mass flux
across the interface region should be zero, even if values of ρu re-
main finite. The potential form eliminates the parasitic currents,
as numerically confirmed in Fig. 1(b). The radius of the droplet
is also well maintained. Effects of β on the parasitic currents

Figure 3. COALESCENCE OF TWO DROPLETS ON 200×400×200
LATTICE D = 4, R0 = 50, β = 0.02, τsat

l = 0.01, τsat
v = 0.2, ρsat

l =
1.0, AND ρsat

v = 0.001. TIME IS NONDIMENSIONALIZED TO THE

INERTIAL TIME OF THE LIQUID PHASE ti =
√

ρsat
l R3

0/σ.

are examined in Fig. 2(a). The relaxation time and the interface
thickness are fixed at τ = 0.5 and D = 4, respectively. By fixing
τ, the viscosity of the fluid is fixed. Given the interface thickness
and the density ratio, higher β means higher surface tension force
as well as less compressibility, thus implying faster convergence
rate. When the time is nondimensionalized to the viscous time of
the vapor phase tv = ρsat

v νsat
v R0/σ, the convergence rates for dif-

ferent β and models collapse on a single curve. The maximum
kinetic energy with the potential form decreases exponentially
to round-off. On the contrary, the maximum kinetic energy with
the pressure form initially decreases at the same rate as that of the
potential form, but eventually stagnates. The maximum steady-
state kinetic energy of the pressure form decreases with β, as the
surface tension force decreases accordingly. A similar trend can
be found when β is fixed and the relaxation time τ is varied in
Fig. 2(b).

To test stability of the proposed model, we examine inertial
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coalescence of droplets, driven by the surface tension. Industrial
applications of this process may include emulsion stability, ink-
jet printing, and coating applications. At the moment of contact
of droplets, the inversion of radius of curvature causes a singular-
ity, forming a liquid bridge between the droplets. The radius of
the liquid bridge R0 then grows as R0(t) ∝

√
t by equating cap-

illary and inertial forces. Aarts et al. [17] experimentally found
the following prefactors for the scaling relation: water, 1.14; 5
mPa s silicon oil, 1.24; and 20 mPa s silicon oil, 1.11. Invis-
cid incompressible simulation by Ducheminet al. [18] predicted
a rather large prefactor of 1.62. The initialization of simulation
of coalescence is particularly challenging. Duchemin et al. [18]
and Menchaca-Rocha et al. [19] smoothed the interface profile
in the region of liquid bridge to avoid infinitely large capillary
forces caused by the singular curvature. An effect of smoothing
could be slower initial growth of the radius of the liquid bridge
as a result of smaller capillary forces.

Instead of smoothing the initial profile, we choose to sep-
arate two stationary droplets by the equilibrium interface thick-
ness D as shown in Figure 3(a). The intermolecular attraction
acts at this distance and initiates the formation of the liquid
bridge. Fig. 3 shows coalescence of two droplets. Two 3-D
droplets are generated on a 200× 400× 200 periodic compu-
tational domain for a D3Q27 lattice. The interface thickness,
droplet radius, and relaxation times for liquid and vapor phases
are D = 4, R0 = 50, and τsat

l = 0.01 and τsat
v = 0.2, respec-

tively. We fixed β = 0.02, ρsat
l = 1.0, and ρsat

v = 0.001. Time
is nondimensionalized to the inertial time of the liquid phase

ti =
√

ρsat
l R3

0/σ [18] and is measured from the moment of con-
tact (Fig. 3(b)). The results are in good qualitative agreement
with previous experimental results [17, 18], except for the elon-
gated neck region due to initial separation. The finite value of the
initial separation relative to the radius of droplets can be reduced
by adopting a finer mesh or an adaptive mesh refinement.

Although the approach based on free energy is derived to de-
scribe the near-critical behavior of nonideal gases at small den-
sity ratio, it is generally believed to be valid even when the den-
sity gradients become large [20]. As β decreases in the present
model, however, the approximation of the bulk energy by Eq. (7)
may become inaccurate. The effect of β on the inertial coales-
cence of droplets plotted in Fig. 4, shows time evolution of the
nondimensionalized neck radii for β = 0.02, 0.01, and 0.005.
The differences in the results are negligible in this range of β.
The radii of the neck converge to the line whose slope is 1.2 [17]
after rapid early growth, which is governed by the singular curva-
ture at the moment of contact. Using an inviscid incompressible
numerical method, Menchaca-Rocha et al. [19] reported slower
initial growth of the neck radius, followed by transition region.
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Figure 4. TIME EVOLUTION OF THE RADIUS OF THE NECK FOR
INERTIA DOMINATED FLOWS. THE FULL LINE HAS A SLOPE OF
1.2 [17].

CONCLUDING REMARKS
Two sources of error in the computation of the surface ten-

sion force lead to development of the parasitic currents. A slight
imbalance between the pressure gradient and the stresses due
to truncation error initiates the parasitic currents. As long as
isotropy of the numerical scheme is retained, the parasitic cur-
rents are kept aligned in the direction normal to the interface. If
isotropy is not maintained, however, the parasitic currents even-
tually develop into the organized flow patterns. The LBE method
with isotropic discretizations can avoid formation of organized
flow patterns. Furthermore, the use of the potential form of the
intermolecular force eliminates the parasitic currents to round-
off.

The present LBE model is applied to the simulation of
droplet coalescence in order to demonstrate its stability at high
density ratio. The results show that the evolution of the com-
puted neck radius follows the experimental growth rate, but de-
viates from the growth rate determined by inviscid incompress-
ible numerical calculation. This deviation can be attributed to the
incompressibility in the interface region and the initial profile of
droplets.
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