XIOPerf : A Tool For Evaluating Network Protocols

John Bresnahan, Rajkumar Kettimuthu and lan Foster
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, lllinois 60439
Email: {bresnaha,kettimut,fostg@mcs.anl.gov

Abstract—The nature of Grid and distributed computing user typically has one simple question. What protocol i bes

implies network communication between heterogeneous syshs for my needs?

over a wide and ever-changing variety of network environmets. Answering that question on paper can be a difficult task.

Often times large amounts of data is stored in remote locatios M f be identified and idered. E

and must be transmitted in bulk. It is desirable to have the buk any aptors must be identified and consi .ere : _very proto-

data transfers be as fast as possible, however due to the dyné col has its Strengths and could be a potentlal candidataeThe

networks involved it is often hard to predict what protocol will is no single fastest protocol for every situation. The basiae
most often depends on the environment in which the users

provide the fastest service for a given situation. In this pper
we present X|OPerf, a network protocol testing and evaluabn o 5jication exists. The user must consider at a minimum the
tool. XIOPerf is a command line program written on top of .

following parameters:

GlobusXIO with a simple and well defined interface to many

different protocol implementations. XIOPerf was created b give
users a way to quickly and easily experiment with an open
ended set of protocols over real networks to determine whickwvill
best suit their needs. We present a brief study of the overhea
introduced by XIOPerf and the performance of it when using a

Network type: Is it a dedicated link, or does some
quality of service guarantee that a portion of the
bandwidth is dedicated to the user?

Network activity: Is the network typically over-

variety of protocols. utilized or under-utilized? How congested is it? How
much packet loss is expected? Does the protocol

need to be fair to other users?

Endpoints: Are the endpoint machines fast enough
to keep up with the network, or are they the bottle

I. INTRODUCTION

The nature of Grid [1]-[4] and Distributed computing
implies an inherent need for communication. Resources that - HEE
need to interact are distributed across many networks. An N€ck in the pipeline?
important type of communication in these environments is Application: How does the application consume the
that of bulk data transfers. Often this means sending a file data? Does it write to disk? If so what is the disk
from one resource to another, but it can also mean streaming speed? Are many memory copies made? How will
large data sets from a scientific instrument or that resatnfr the applications consumption of data affect data
some computation. The important aspect of bulk transfers is sending rates or data packet loss.
that they involve very large data sets. Because of the sizeUnfortunately determining these categories is not an easy
to be transferred, it is important that the protocols usesl ahing to do. Many of the factors are not known, and some,
as efficient as possible. The quest to find the most efficidike network activity, are always changing. Additionaltiere
transfer protocols is a large and ongoing area of research.are factors too subtle to even categorize that can have tiama

Many protocols [5]-[10] have been developed and continuesults on the achieved performance. Even if a valid corarus
to evolve. Researchers strive to solve the problem of efficiecan be drawn on paper it may not actually be the best solution
bulk data transfer in better and faster ways. Their solstiom practice due to things like errors in (or liberties takeitiy
are usually targeted at solving a specific part of the problethe actual implementations of the protocol stack.

Some protocols are designed for dedicated networks and ar&he easiest, and most practical way for a user to determine
aimed at the greedy acquisition of bandwidth while othees awhat protocol is best is to actually try them. If the user were
designed to nicely coexist with the traffic of multiple usera able to experiment with all of the bulk data transfer protsco
shared network. Sometimes the problem is looked at by tarotavailable they could empirically determine which works the
the send rate, and other times how fast the user consurhest for their environment. This, of course, brings up aeoth
data is the dominating factor. However, no matter what thoblem, how can a user tests out every protocol proposed
thought process the protocol designer goes through, the @émdesearch? Clearly this is not realistic. However by dafini

standard interfaces for test applications to use and oeati ' * Teport will be witien to sidout. | o T oeR

bs # set the length of the read/wite buffer and thereby controls

a framework for assisting protocol implementation it may be the amount of data to post at one time.
. -w# A TCP specific option. This sets the TCP window size and
feaSIble tO tl‘y a |arge number Of them nmaintains interface conpatibility with IPerf

Sets the nunber of bytes to transfer to #.
<path> filename for input if sending, and output if receiving.

If the effort required to transform a proof of concept im- ¢
plementation or a proprietary reference implementation @ -s se o tener o Yo
standard interface were minimized a situation could beteta 5+ “mhe nunber of paraiiel transter to conduct at 1 time.
where protocol authors were willing to do S0. In cases WHere : <conactorun in o ent mde and conect to the given contact string.
they did not, application developers interested in expenin " "™ e " of the next ariver o add o the stack
ing with the protocols may be motivated to spend the small
amount of effort required to morph the implementation itie t
standard framework. Once the implementation is accesgible
the standard interface a common testing tool can perform f
and accurate evaluation of protocols over real world nataor
This is exactly what XIOPerf strives to accomplish.

This paper introduces XIOPerf and proposes that it be ttss TTCP

ubiquitous network performance testing tool. XIOPerf is a 1ogt TCP (TTCP) is a predecessor of IPerf. They offer much
command line tool that presents the user with a familiarinteys the same functionality. Both measure the performance of
face and set of options for performing bulk data transfe s Ovrcp gyer a network. TTCP was originally created for the BSD

a network. The tool measures the performance characterisfiyerating system, since that time some ports of it have been

of a transfer and reports them to the user. XIOPerf is writtf; 4e to be more user friendly and to run on more operating
on top of GlobusXIO ?] so it has all of the dynamically systems, like Microsoft Windows.

loadable transport driver functionality allowing it to adds
the concerns we have outlined. C. Others

The remainder of this paper is organized in the following There is a bunch of other network measurement and network
way. We first present related work. We then introduce thgsting tools p]. While these tools are often used in conjunc-
reader to the XIOPerf program, its architecture, and hows® Ution with iperf, they are not aimed at end-to-end bandwidth
its basic functionality. We next describe the wrapblockdun testing. One exception to that is pathrate. But none of these
tionality which makes driver creation much easier. Wrapklo tools provide a feature to test the performance of different
has been added to GlobusXIO as part of this work. Finally Wgotocols on a network.
evaluate the testing tool by measuring the amount of overhea
the abstraction layer adds and the performance achieved usi 1. XIOPERF
XIOPerf with real protocols over real networks. XIOPerf presents a similar interface to that of IPerf. It is
a command line tool with many of the same options and
behaviors. Just as with IPerf, XIOPerf runs as a server on
A. IPerf one side of the network and a client on the other. The client

Presently IPerf is the defacto standard for measuring af@nnects to the server and a bulk data transfer occurs angord
optimizing bulk transfer performance. IPerf is a commane li to the parameters given. The user is given many runtime
tool written in C++ by NLANR [11]. IPerf allows a user toOptions including the amount of data to transfer, which side
send messages via either TCP [12] or UD®. A user can Sends and which receives, buffer sizes to use, whether or not
choose to either send a file and have the receiver write the fifleperform disk 10, etc. Some of the options can be found in
to disk, or remove the disk from the equation and only serigure 1.
data to and from memory in its process space. In additionThe option that is most important, and that makes XIOPerf
to measuring bandwidth, IPerf also measures jitter. This §&lique among applications of its kind is -D. This allows the
an important aspect that XIOPerf does not yet address. IPé€r to specify what protocol will drive the bulk transfehel
has proved to be an exceptionally useful tool. A typical fPeprotocol must be implemented as a GlobusXIO driver (how
session involves a user running IPerf as a server on one idéhgs is done will be discussed later). For example if the user
the network and as a client which connects to that serveren tiishes to measure the achieved bandwidth of the network
other. The client then sends either a set amount of bytes, o#ing TCP they would run the XIOPerf on the server:
sends for a set amount of time and completes by reporting thes gi obus-xi opert -s -b tep

Fig. 1. Some command line options to XIOPerf.

Ycp and UDP, XIOPerf is written on a framework that allows
the user to plug in arbitrary protocol implementations.

Il. RELATED WORK

XIOPerf connections using that driver stack, and passing the data
1 buffers down the chain of drivers.

Since the drivers are loaded dynamically and adhere to a
standard interface, they do not have to be linked or com-

' 3 piled into the application. New drivers can be added to the
b Buflers 3 LD LI BRARY_PATH at any time after the binary XIOPerf
GlobusXIO -":L installation has taken place. This is an important aspect
framework E which allows for growth as new protocols are developed by
m:‘ Py researchers.
Dafa Buflers E
¥ v V. GLOBUS XIO DRIVER CREATION

The success of XIOPerf is hinged on the existence of
L,'_lj GlobusXIO drivers for many bulk transfer protocols. We
propose to achieve this in a couple of ways. The first is angati
drivers within the GlobusXIO community. There are a limited
Fig. 2. XIOPerf Architecture set of resources within the community so we cannot expect to
create all drivers in this way. The second way we propose to
scale up on driver production is to make it very easy to write
and on the client: wrapper code that can glue a prototype or reference imple-
% gl obus-xi operf -D tep -c | ocal host : 50002 mentation into a driver interface. This will allow protosdhat
"""""""""""""""""""""""""""""""" only exist in some unstable proof of concept implementation
and those that do have robust reference implementations to b

Ti me exceeded. Ternminating.

Ti me: 00: 10. 0009 used
By? es sent: 5474.50 M .
T 05100000 In pursuit of this goal part we introduce the wrapblock

feature to GlobusXIO. This is a simple extension to the orig-
To change the protocol used by XIOPerf to UDT [7], théhal GlobusXIO driver interface that allows for much easier
user need only change the string they run with from 'tCRreation of drivers. The stock GlobusXIO driver interface i
to 'udt’. By specifying the -D option multiple times the usekyritten on a asynchronous model. While this is the most
can build a protocol stack over which the bulk transfer wikcalable and efficient model it is also the most difficult tdeo
occur. For example, if the user wanted to measure how a Tgfainst. The wrapblock functionality uses thread poolind a
transfer performed with GSI security they would run the @0vent callback techniques to transform the asynchrondes in
command with an addition *-D gsi’ argument appended to thgce to a blocking interface, thus presenting the impleerent
command line. with a much easier task. Some drivers such as TCP, UDP,
HTTP, File, Mode E P], UDT, Telnet, Queuing, Ordering, GSI
IV. GLoBusXIO and Multicast Transport?] have been developed for Globus
XIOPerf achieves the multi-protocol abstraction becausdO.
it is built on top of GlobusXIO [?]. GlobusXIlO is As an example we look at thedt ref driver. This driver
the Extensible Input Output component of the Globusses the wrapblock feature to glue the standard UDT [13]
Toolkit(tm) [?]. It is a framework that presents a singleeference implementation into a GlobusXIO driver. We were
standard open/close/read/write type interface to marfgréifit able to accomplish creating this driver and using it in the
protocol implementations. The protocol implementations aXIOPerf program in less than one day of work. To illustrate
called drivers. Creation of drivers is discussed later iis ththe ease in creation we look at the code required to implement
paper. Once created, a drivers can be dynamically loaded awite functionality in figure 3.
stacked by any GlobusXIO application. XIOPerf takes full As is shown, the implementation requires a simple pass
advantage of this feature. through call to the UDT library. The actual number of bytes
XIOPerf is a fairly simple application and gets most of itsvritten is passed back to GlobusXIO by reference in the ribyte
power from the GlobusXIO library. The diagram in figure arameter. The data structweeo_| _udt _ref handl e_t
illustrates how XIOPerf uses GlobusXIO. XIOPerf is linkeds created in the open interface call and is passed to alf othe
against GlobusXIO library. It uses the GlobusXIO API fointerface calls as a generic void * memory pointer. Thisvado
all of its 10 needs. GlobusXIO then takes care of findinthe developer to maintain connection state across opesatio
and loading the specified protocol drivers, establishing tiSimilar code is written to handle reading data. In the opeh an

static

gl obus_resul t _t Overhead
gl obus_| _xio_udt_ref_write(
void * driver_specific_handle, 995 140
const gl obus_xio_iovec_t * i ovec,) A 7y
int i ovec_count, 9851 Iperf Throughput 2+ 120
gl obus_size_t * nbyt es) & —&— XIOPerf Read Throughput /" -
{ i 1
ol obus_resul t_t result: g 975 | * XIOPerf Write Throughput - 100 g
xio_| _udt_ref_handle_t * handl e; = #— XIOPerf Read Overhead A ~
G obusXI ONane(gl obus_| _xio_udt_ref_wite); ‘5 965 — XI0OPerf Write Overhead 3 + 80 E
2
handl e = (xio_| _udt_ref_handl e_t *) driver_specific_handle; ﬁl / 4 60 f
a
*nbytes = (gl obus_size_t) UDT::send(g 955 s
handl e- >sock, (char*)iovec[0].iov_base, iovec[0].iov_|len, 0); = + 40
if(*nbytes < 0) =
{ F 945 R S 20
result = G obusXl QUdt Error (" UDT::send failed");)
oto error;
_ 935 ‘ : : : 0
0 200 400 600 800 1000
return GLOBUS_SUCCESS; N
error: Number of Noop Drivers
return result;

} Fig. 4. Measurement of overhead with noop drivers

Fig. 3. A sample wrapblock write interface implementatiam &DT.

is entirely different and therefore it is appropriate that w

| interf function the devel initiali Gk see different times. However, the difference between the tw
close Interface function the developer Intializes andal® o o, mewhat dramatic. This is due to some convenience

up resources as would be expected. The code inside } ﬁctionality in GlobusXIO. Internally GlobusXIO does sem

drl\{[erfslks_rvhery mucl_f:tlllkerlal Zlmp;(IIeoprogra};n usw(;g tge thir vent synchronization on the way up the stack to ensure that
fharyt ‘ ’ feret_ls e ‘ 0 USAdd_t_SDGCI: |cﬂ::0 ed €YONthe user of the library receives events in a sane manner. For
€ intertace function sighatures. luonally, there driver example, there is a barrier between all data operation svent

sp_ecn‘lg hooks that a"OYV th? user o dllre.ctly.mteract whb t and close events. This gives users a guarantee that when the
driver in order to provide it with optimization parameters

. . . . tlose event is delivered they will receive no other events an
This is handled via cntl functions that look much like th y

%h fely cl thei . Without thi
standard UNIX ioctl(). Further discussion on this can benfibu us can salely ceanup fheir resources. IWIEhout this users

¢ htto:// lob Itoolkit/docs/4.0/ i would have to reference count their events or track them
at hitp-/iwww.globus.orgftoolkitidocs/.Licommon/xio in some other way that would unnecessarily complicate the

VI. EXPERIMENTS application.

The first set of experiments shows the overhead introduced Operation | Up | Down | Both
by the GlobusXIO framework. Since we are adding an abstrac- Read 0.014 | 0.001 | 0.007
tion layer between the application and the code that does the Write 0.015] 0.001 | 0.008
actual work of shipping bits there will necessarily be some Both | 0.015] 0.001 | 0.008
overhead. In our first set of results we recorded the time TABLE |

before we registered an event in the application space, and
then again when the event made its way to the drivers interfac
function. This is the exact interval from the time the user
requests an operation to the time it can begin to be deliveredlo show how the overhead scaled in the presence of many
by the protocol implementation. This measurement is reterrdrivers we created the noop driver. This driver only forveard
to as “down the stack”. We also measure the time 'up threquests down the stack and completion notifications up the
stack’. This is the interval from immediately before thevdri stack. It is intended to sit in the middle and do nothing but
signals it has completed its work to the time the applicaticadd the overhead required for each additional driver. Mdny o
is notified of the completion. These two measurements shoese were added to the stack to show how additional drivers
the exact overhead of the GlobusXIO abstraction. We toaiffect the performance. We measured the average overhead
the average of many hundreds of read and write operatidimaes up and down the stack, as we did above, but with an
and averaged them together both separately and together.iléeeasing number of noop drivers. On the bottom of the stack
ran the experiment on a UC TeraGrid [14] node with Dualas the TCP driver which did a bulk data transfer across the
1.5Ghz Itanium processors and the Linux 2.4.21 kernel.€Talibcal gigabit network of the UC TeraGrid. To show how this
1 shows the results of the average overhead per operatiorowerhead affects performance we also measured the achieved
milliseconds. throughput of XIOPerf and IPerf. Figure 4 shows this.

The results show that much more overhead is introducedOverhead increased linearly with the addition of more noop
up the stack than down the stack. The code path for eadtivers. This was expected. On average each driver adds

OVERHEAD TIMES

.125 microseconds of overhead on our test system. BothWherertt is the round trip time, andw is the available
reads and writes add roughly the same amount of overhebdndwidth. The rtt is used because it takes into account the
The achieved bandwidth was unaffected by the introducéche for a byte of payload to move from the sender to the
overhead. The achieved throughput is steadily maintaitiedraceiver and the time it takes for the acknowledgment to move
around 950 Megabits per second. Since the ping time betwdssm the receiver to the sender. BW reflects the number of
the nodes in the transfer is approximately 0.372 milliselspn bytes that can be sent in a given time slice.
which is significantly higher than all of the latency added by A user of TCP can select the maximum window size,
GlobusXIO between serial 10 operations, the delay of bufflowever TCP scales up and down the percentage of the
delivery that is added does not affect the throughput. window that it will use at any particular time. The algoritam
IPerf achieves a steady 990 Mb/s, which is better thahat TCP uses to decide on the current window size are well
XIOPerf. The performance differences are likely due to th@ocumented elsewhere. Here we only want to point out two
asynchronous implementation of the TCP driver. GlobusXI&spects that greatly affect its effectiveness in LFNs ambltia
and IPerf are designed on different IO models. IPerf isetworks.
written with blocking socket code and threads. GlobusXIO The first is TCP slow start. TCP starts with a very small
is designed for highly parallel and scalable systems so itwsndow size and exponentially increases it as it receives
on an asynchronous model. Because of this the performaacknowledgments. Slow Start may sound like a bit of a
of GlobusXIO with applications displaying high levels ofreo misnomer when the growth is exponential but it really does
current 1O should be very steadily distributed across steeamake for a slow start. While linear growth would be much
and ultimately achieve the most scalable performance. worse, this still makes for many round trips before the wimdo
can be fully open. In LFNs where the optimal window is large
and the time it takes to receive acknowledgments is large, it
In an effort to show the need for XIOPerf we familiarizegnay take the entire lifetime of the transfer or more to insesa
the reader with various distinctly optimized and commonlip an optimal window size. This is a performance Kkiller.
cited bulk transfer protocols. We look at TCP, UDT, and The nextissue in TCP is how it handles congestion events.
GridFTP (Mode E). To show the effectiveness of XIOPeibince TCP is designed to be multi-stream friendly if it détec
when evaluating protocols we have compared the performartiat one stream is moving too fast and thus causing congestio
inside of XIOPerf against the reference implementation fdtrwill decrease this streams window size. The problem enter
each protocol. Bulk transfers of increasing sizes were uar o with how drastically the window size is decreased and how
the UC TeraGrid LAN and on the wide area network betweestowly it is rebuilt. When TCP detects a congestion event
UC TeraGrid nodes and SDSC TeraGrid nodes. No disk liDdivides the window size by two. However, it will only

VIl. DRIVER EXPERIMENTS

was done in this study. increase the window by the size of one segment, which is
typically around 1500 bytes, per acknowledgment received.
A. TCP When the ideal window size is many megabytes this obviously

TCP [12], [15], [16] is a well known and ubiquitousmakes a dropped packet very costly in terms of performance.
protocol. We will therefore only touch on a few aspects ofhis algorithm is commonly referred to as Additive Increase
it here. TCP is targeted at the Internet at large. It has doNltiplicative Decrease (AIMD).
an impressive job scaling as the Internet has gone through ahe GlobusXIO TCP driver is written on top of the standard
boom in terms of users as well as transfer rates. It providB§SD socket interface available on all UNIX platforms. The
reliable and fair access to many users of a network. For astual protocol is implemented inside of the kernel.
targeted audience it is a very good protocol. However, for
lambda networks [17] and LFNs [18] it is not ideal. B. UDT

TCP is window based. A window size constitutes a certain UDT is a UDP based reliable protocol and like TCP it is
number of bytes that can be in flight at a given time. ltargeted at shared networks. However, UDTs main audience is
flight refers to the bytes that the receiver has not yet aghder used networks with a small number of UDT streams. It
knowledged as having received. Various algorithms whidh wis designed to be able to coexist fairly with TCP streams, but
not be discussed here determine how and when the recei@so be able to achieve high throughput faster and have less
acknowledges bytes received. The size of this window and tbka penalty for a congestion event. Beyond being a protocol
latency on the network greatly affects the rate at which datiDT is a framework that allows users to plug in their own
can flow. The ideal size of the window is calculated by theongestion control algorithms.
bandwidth delay product: Like TCP, UDT uses a window and an AIMD strategy for

bwdp = rtt x bw congestion control. The difference is that UDT determines

the factors to use by a much more sophisticated strate@P protocol. A set of TCP connection are established and
To determine these factors UDT must estimate the availaltkee data is transferred equally across them. As the transfer
bandwidth on the link. It does this by sending two probis in progress TCP streams can be added or removed. When
packets for every sixteen data packets. The probe packetsthe transfer completes the establish TCP connections can be
sent sequentially without any regard for rate limiting. 8&®n cached for use with a later transfer.
the time apart that they arrive a bandwidth estimate is madeCategorically parallel TCP protocols all have the same
This bandwidth estimate is used to calculated the additiaelvantages and disadvantages. The difference between them
increase factor. are largely based on implementation. GridFTP is different i
The decrease factor is much less severe than TCP. Uikt it does not stop at using parallel streams for endpoint
only decreases the window size when a NAK is received. This endpoint performance gain. It has extended the concept
occurs less often then a TCP congestion event. Additionalparallel TCP streams so that many different endpoints can
when the NAK is received, instead of cutting the window iparticipate in a single coordinated transfer in a M to N fashi
half, the window is set to 8/9ths of its previous size. This i§his has the obvious advantage of summing the collective
still a multiplicative decrease, and a back off of sending,ra bandwidth available at all endpoint pairs.
but it is a much less severe penalty. The increase factor isThe general advantage to using multiple streams is that it

determined by looking at the greater of the following: proportionally reduces the disadvantages associated M
o 10[(tegl0(B=CYMTUNT 3/MTU by the number of parallel streams. For clarity we will refer
o 1/MTU to the number of parallel streams as P. The bandwidth delay

Where B is the bandwidth estimate, C is the curreffoduct for each stream in a transfer is bw*latency/P which
sending rated is a constant value of 0.0000015. MTU is thdS 1/P smaller than the optimal window size of a single TCP
maximum transmission unit for the network. The UDT driveptréam. Therefor each individual window can be fully opened
is implemented using the previously discussed wrapbloERSter- A_nd since f';\II streams are used in parallel the slaw st
feature newly added to GlobusXIO. We have wrapped ti¢ TCP is theoretically reduced by 1/P. Similarly, the penal
reference implementation provided by Grossman et al. [1§§somated with a congestion event is also reduced by 1/P.

into a GlobusXIO driver. As stated above, TCP is most efficient when a properly set
_ window is fully open. When a congestion event occurs window
C. GridFTP is closed and slowly rebuilt. This constitutes a large pgnal

GridFTP [19] is a protocol for file transfers. GridFTP ign a bulk transfer. However if many streams are used a single
commonly misunderstood to be a single protocol for bulkongestion event only affects one stream, and therefoeetaff
transfer. This is not exactly true. It is not itself a singl@nly 1/P of the overall transfer.
protocol, but rather is a collection of protocols. Much like The target network of Mode E is similar to that of UDT. It
standard well know FTP protocol documented in RFC959, ig aimed at underused networks. If too many parallel streams
has two channels. There is a control channel specificatiain tAre used the protocol becomes unfair to other streams and can
allows users to execute shell-ike commands such as mkdigtentially choke itself by causing too may congestion éven
rename, delete, etc, and most importantly request files forThe Mode E driver was written using the native GlobusXIO
transfer. The control channel protocol is specified on top @fiver API. This is the best solution for creating scalahte a
telnet and TCP. This protocol is not optimized for efficiencgfficient protocol drivers. GlobusXIO provides an assisean
and is thus not intended to be fast. It is simply a reliablemseaAP! for creating drivers in this way.
of establishing data channels pathways. The data chantiel is
pathway of which the bulk data transfer flows. D. Results

The protocol used for the data channel is open ended.The results of the performance evaluation are shown in
The authors of RFC959 had much foresight in realizing thfigures 5 through 10. We measured the achieved throughput
different users may prefer a different means of transfgrriof each protocol with increasing bulk transfer lengths. The
the bulk data. To allow for this they defined the data channiehportant difference between the two networks over which
protocol to be a Mode and then created a control chanmwet tested is the latency between endpoints. On the LAN study
command that allows the client to select what mode they wige latency was about 0.372 microseconds and the WAN was
to use. This gives the user the ability to decide what bulibout 58.140 milliseconds. The networks were not congested
protocol they will use to send their file at transfer time. so some of the aspects of each protocol were not tested.

The commonly used mode in GridFTP is called ModeE. Along with the throughput results, each graph also shows
Since Mode E is the bulk data transfer protocol in GridFTP ihe percentage by which the reference implementation out-
is therefore what we will be exploring. Mode E is a parallgherformed the XIOPerf implementation. In all cases this

Mode E - LAN TCP - WAN
1000 20 1000 20
D QO | e S R S S S— E 900 A O aasassanpsnass
3 +15 2 - ris g
§ 800 @ E, 800 4 Iperf Throughput I s
2 700 Reference Throughput L 10 ‘é 2 700 —#- XIOPerf Throughput _ 110 E
s —#- XIOPerf Throughput g s % Difference in Throughput Y
3 600 b———— % Difference in Throughput @ 3 600 a
] 15 ® g +s
£ s00 £ s00 <
400 +— - — — T T v - — = 0 400 T T T T T T 0
0 300 600 900 1200 1500 1800 2100 0 300 600 900 1200 1500 1800 2100
Transfer Size (MB) Transfer Size (MB)

Fig. 5. Comparison of Mode E protocol’s performance on allamaa Fig. 8. Comparison of TCP protocol’s performance on a widsaretwork
network as observed with XIOPerf and the actual run of theefeice as observed with XIOPerf and Iperf.
implementation of the protocol.

UDT - LAN
Mode E - WAN
1000 20
1000 20
E 900 —;—-_---—----—
w900 4 2 T15
:‘:" | 15 5 800 o
T 800 g. < Reference Throughput 8
:g 8 5 700 ——— @ XIOPerf Throughput — 10 E
a 700 Reference Throughput 110 § g % Difference in Throughput @
5 —#- XIOPerf Throughput g 2 600 4 ° ghp . g
600 | i ; g = T
E % Difference in Throughput ls a ,'E 500
£
= 500 400 T T T T T T 0
400 —— — 0 0 300 600 900 1200 1500 1800 2100
0 300 600 900 1200 1500 1800 2100 Transfer Size (MB)
Transfer Size (MB R .
(M8) Fig. 9. Comparison of UDT protocol's performance on a logakanetwork

Fig. 6. Comparison of Mode E protocol's performance on a wadea as observed with XIOPerf and the actual run of the referemqseimentation
network as observed with XIOPerf and the actual run of theefefce of the protocol.
implementation of the protocol.

UDT - WAN
TCP - LAN
1000 20
1000 o r 20
s B 000 et

~) o r 15 @
3 T15 4 £ 800 g
= 800 k-1 -
s 22w, T 10 §
2 700 +—————-m- XIOPerf Throughput —110 §) a) 1ane E
s % Difference in Throughput e 3 600 F— % Difference in Throughput — s &

600 - o] T
3 lg & £ 500 LW o TVTETIeET ST
< 500
F 400 0

400 T T T T T T 0 0 300 600 900 1200 1500 1800 2100

0 300 600 900 1200 1500 1800 2100 Transfer Size (MB)
Transfer Size (MB) " " "
Fig. 10. Comparison of UDT protocol’'s performance on a wideaanetwork

Fig. 7. Comparison of TCP protocol’s performance on a locehaetwork as observed with XIOPerf and the actual run of the referemqseimentation
as observed with XIOPerf and Iperf. of the protocol.

percentage is less than five percent, which means that XfOPe4]
was always within 95% of achieved throughput. As we statetf!
above, each of the drivers studied here were written onrdiffe
ent models. The variance in percent throughput differesce i
accounted for the differences in the different implemeotet (6]
Mode E has the lowest percentage. It is written using the
native GlobusXIO driver library therefore it is used in the
most efficient way possible.

TCP has the highest percentage difference in throughle.]
We believe this to be an anomaly due to how efficiently IPerf
uses the kernel's TCP stack. While we hope to increase ﬂfsﬁ
throughput of the GlobusXIO TCP driver, IPerf is strictly a
performance measurement tool and XIOPerf is much closer
to a real application. Therefore IPerf has an advantage ifll
achieving very high throughput, but XIOPerf is likely to bqlo]
closer to what an actually application will achieve, esplkbgi
if the application uses GlobusXIO,

In future work we hope to decrease the performance gaRs
substantially, especially in the case of TCP. However, evérz]
with this performance gap XIOPerf is an useful tool. Th&3l
purpose of it is to determine which protocol is best to use.
Since the achieved throughput inside of XIOPerf is very €lo$14]
to that of the reference implementation all protocols are ¢!
level ground and can be fairly compared. As part of tqge]
comparison the way the driver was created and the results
shown here can also be taken into account. (17]

ACKNOWLEDGMENTS (18]

This work was supported by the Mathematical, Informa-
tion, and Computational Sciences Division subprogram
the Office of Advanced Scientific Computing Research, U.S.
Department of Energy, under Contract W-31-109-ENG-38.

LICENSE

The submitted manuscript has been created by the Univer-
sity of Chicago as Operator of Argonne National Laboratory
("Argonne”) under Contract No. W-31-109-ENG-38 with the
U.S. Department of Energy. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up, nonesisle,
irrevocable worldwide license in said article to reproduce
prepare derivative works, distribute copies to the pubdind
perform publicly and display publicly, by or on behalf of the
Government.

REFERENCES

[1] I. Foster, “The Anatomy of the Grid: Enabling Scalablatval Organi-
zations,” in Proceedings of the 7th International Euro-Par Conference
Manchester on Parallel Processing Springer-Verlag, 2001, pp. 1-4.

[2] I. Foster and C. Kesselman, “Computational Grids,'Selected Papers
and Invited Talks from the 4th International Conference ectdr and
Parallel Processing Springer-Verlag, 2001, pp. 3-37.

[8] ——, “Computational Grids: On-Demand Computing in Saenand
Engineering,"Computers in Physi¢csol. 12, no. 2, p. 109, 1998.

——, “Computational grids,” pp. 15-51, 1999.

D. Katabi, M. Handley, and C. Rohrs, “Congestion contfol high
bandwidth-delay product networks,” iRroceedings of the 2002 con-
ference on Applications, technologies, architecturesd arotocols for
computer communications ACM Press, 2002, pp. 89-102.

W. T. Strayer, M. Lewis, and R. E. Cline, Jr, “XTP
as a transport protocol for distributed parallel procagsinin
Proceedings of the USENIX Symposium on High-Speed Nehgorki
oakland, CA, August 1994 pp. 91-101. [Online]. Available:
citeseer.nj.nec.com/strayer94xtp.html

Y. Gu and R. Grossman, “UDT (UDP based Data Transfer Ra}oAn
Application Level Transport Protocol for Grid Computingri Second
International Workshop on Protocols for Fast Long-Distaridetworks,
Argonne, IL, 2004

H. Sivakumar, R. L. Grossman, M. Mazzucco, Y. Pan, and Qari,
“Simple available bandwidth utilization library for higpeed wide area
networks,” Journal of Supercomputing004.

D. Clark, M. Lambert, and L. Zhang, “NETBLT: A Bulk Data ansfer
Protocol. IETF, RFC 998,” March 1987.

E. He, J. Leigh, O. Yu, and T. A. DeFanti, “Reliable blastp:
Predictable high performance bulk data transferCIUSTER '02: Pro-
ceedings of the IEEE International Conference on Clustem@ating
Washington, DC, USA: IEEE Computer Society, 2002, p. 317.
“Iperf web page,htt p: / / dast . nl anr. net/ Proj ects/ | perf/.
J. Postel, “RFC 793: Transmission Control Protocof81.

R. L. Grossman, Y. Gu, X. Hong, A. Antony, J. Blom, F. Gijka,
and C. de Laat, “Teraflows over gigabit wans with udiyiture Gener.
Comput. Systvol. 21, no. 4, pp. 501-513, 2005.

“Teragrid web page/http://wwv t eragri d. org.

V. Jacobson, R. Braden, and D. Borman, “RFC 1323: TCRefisibns
for High Performance,” 1992.

M. Allman, V. Paxson, and W. Stevens, “RFC 2581: TCP Gastipn
Control,” 1999.

X. R. Wu, “Evaluation of rate-based transport protec@r lambda-
grids.” [Online]. Available: citeseer.ist.psu.edu/6885html

K. Kumazoe, Y. Hori, M. Tsuru, and Y. Oie, “Transport poools for
fast long-distance networks: Comparison of their perfaroes in jgn,”
saint-w vol. 00, p. 645, 2004.

] W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link, & globus

striped gridftp framework and server,” i8C '05: Proceedings of the
2005 ACM/IEEE conference on SupercomputingWashington, DC,
USA: IEEE Computer Society, 2005, p. 54.

APPENDIX
GLOBUS_XIO_EXAMPLE.C

#i ncl ude "gl obus_xi 0. h"

int
mai n(
int argce,
char * argv[])
{
gl obus_resul t _t res;
char * driver_nare;
gl obus_xi o_driver_t driver;
gl obus_xi o_stack_t st ack;
gl obus_xi o_handl e_t handl e;
gl obus_si ze_t nbytes;
char * contact _string = NULL;
char buf [256] ;
contact_string = argv[1];
driver_nane = argv[2];
gl obus_nodul e_acti vat e(GLOBUS_XI O_MODULE) ;
res = gl obus_xio_driver_|oad(
driver_nane,
&driver);
assert(res == GLOBUS_SUCCESS) ;
res = gl obus_xi o_stack_init(&stack, NULL);
assert(res == GLOBUS_SUCCESS);
res = gl obus_xi o_stack_push_driver(stack, driver);
assert(res == GLOBUS_SUCCESS) ;
res = gl obus_xi o_handl e_creat e(&handl e, stack);
assert(res == GLOBUS_SUCCESS);
res = gl obus_xi o_open(handl e, contact_string, NULL);
assert(res == GLOBUS_SUCCESS) ;
do
{
res = gl obus_xi o_read(
handl e, buf, sizeof(buf) - 1, 1, &nibytes, NULL);
if(nbytes > 0)
{
buf [nbytes] = '\0";
fprintf(stderr, "9%", buf);
}
} while(res == GLOBUS_SUCCESS) ;
gl obus_xi o_cl ose(handl e, NULL);
gl obus_nodul e_deact i vat e(GLOBUS_XI O_MODULE) ;
return O;
}

Fig. 11. A example GlobusXIO user program

