
 1

Attribute Based Access Control for Grid Computing

Bo Lang,
1,2

 Ian Foster,
1,3

 Frank Siebenlist,
1,3

 Rachana Ananthakrishnan,
1
Tim Freeman

1,3

1
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL

2
Beihang University, Beijing, China

3
University of Chicago, Chicago, IL

Email Addresses: langbo@buaa.edu.cn (Bo Lang, the corresponding author), foster@mcs.anl.gov(Ian

Foster), franks@mcs.anl.gov (Frank Siebenlist), ranantha@mcs.anl.gov(Rachana Ananthakrishnan),

tfreeman@mcs.anl.gov(Tim Freeman)

Abstract:

 Grid systems, which are composed of autonomous domains, are open and dynamic. In

such systems, there are usually a large number of users, the users are changeable, and

different domains have their own policies. The traditional access control models that are

identity based are closed and inflexible. The Attribute Based Access Control (ABAC)

model, which makes decisions relying on attributes of requestors, resources, and

environment, is scalable and flexible and thus is more suitable for distributed, open

systems. But no ABAC model meets the special authorization requirements of Grid

computing. This paper presents an Attribute Based Multipolicy Access Control (ABMAC)

model based on the concept of ABAC and the authorization requirements of Grid systems.

Also described is an authorization framework that was implemented in the Globus

Toolkit release 4 and supports ABMAC. This attribute-based authorization framework

supports several different policies and integrates third-party attribute-based authorization

systems. It shows great advantages in supporting Grid application access control, which

not only demonstrates the effectiveness of ABMAC model but also provides an open

architecture for Grid authorization systems.

Keywords: Attribute-Based Access Control, Grid Computing, Globus Toolkit, GT4

Authorization Framework

1. Introduction
 Access control as an important protection mechanism in computer security is evolving

with the development of applications. Since the early 1970s, several access control

models have appeared, including Discretional Access Control (DAC), Mandatory Access

Control (MAC), and Role Based Access Control (RBAC) [1][2][3]. These models are

considered identity-based access control models, where subjects and objects are

identified by unique names and access control is based on the identity of the subject,

either directly or through roles assigned to the subject. DAC, MAC and RBAC are

effective for closed and relatively unchangeable distributed systems that deal only with a

set of known users who access a set of known services.

 Recently, large-scale distributed open systems such as the Grid have been developing

rapidly. A Grid system is a virtual organization comprising several independent

autonomous domains [4].

In a Grid, the relationship between resources and users is more

ad hoc and dynamic, resource providers and users are not in the same security domain,

and users are usually identified by their characteristics or attributes rather than predefined

identities. Therefore, the traditional identity-based access control models are not effective,

and access decisions need to be made based on attributes. Also, in a Grid system,

 2

autonomous domains have their own security policies, so the access control mechanism

needs to be flexible to support different kind of policies.

Since the late 1990s, with the development of Internet-based distributed systems, a

new access control model – the Attribute Based Access Control (ABAC) – has become

increasingly important. In ABAC, access decisions are based on attributes of the

requestor and resource, and users need not be known by the resource before sending a

request. Current research and development efforts of ABAC usually focus on one kind of

policy definition, however, and cannot support multiple policies. Hence, in order to

establish an authorization mechanism suitable for Grid computing, further research is

needed.

 The paper is organized as follows. Section 2 surveys the research of attribute-based

access control models. Section 3 gives a formal definition of the ABAC model, describes

the special access control requirements of Grid computing, and presents our Attribute

Based Multipolicy Access Control Model (ABMAC). Section 4 describes the design and

implementation of the authorization framework, which is in accordance with the

ABMAC model. Section 5 analyses the advantages of the framework for Grid Computing

and summarizes our work.

2. Related Work

 Since the early 1990s, with the development of Internet and Internet-based distributed

application, public-key infrastructure (PKI) and X.509 certificates [5][6] have been

widely used for authentication [7]. In 1996, the Simple Public Key Infrastructure SPKI

was developed, which is a kind of PKI that emphasizes on authorization rather than

authentication [8]. SPKI is one of the earliest attempts to define an authorization

certificate [9]. In 1997, the Attribute Certificates (AC) was included in X.509 [10]. An

AC may contain attributes that specify group membership, role, security clearance, or

other authorization information associated with the AC holder [11]. Recent research and

development efforts in attribute-based access control are based on the X.509 ACs.

A first attempt to provide a uniform framework for attribute based access control

specification and enforcement was proposed by Damiani et al. [12]. They presented a

uniform framework to logically formulate and reason about both service access and

disclosure constraints based on related entity attributes [13]. Wang, Wijesekera, and

Jajodia proposed a framework that models an attribute-based access control system using

logic programming with set constraints of a computable set theory [14]. Most recently,

Yuan and Tong described the attribute-based access control model in terms of its

authorization architecture and policy formulation [15]. Although these models are all

valuable to ABAC research, they are more general and not concerned about the special

access control requirements of the Grid.

Attribute-based access control systems are an active area of research in Grid

computing, and several systems have appeared, such as Akenti, PERMIS, Shibboleth, and

VOMS. Akenti, developed by Lawrence Berkeley National Laboratory [9][16],

represents the authorization policy for a resource as a set of certificates digitally signed

by unrelated stakeholders from different domains. These certificates express the attributes

a user must have in order to get specific rights to a resource. PERMIS, developed under

the EC PERMIS project, is a role-based access control infrastructure based on X.509 PMI

and using X.509 attribute certificates [17][18]. The project staff developed a policy-

 3

driven decision engine and defined a policy language using XML. Shibboleth is an

attribute authority service developed by the Internet2 community for cross-organization

identity federation; it asserts attributes about a user and can make access decisions based

on these attributes [19][20]. VOMS, developed by the European Data Grid and DataTAG

projects, runs in a virtual organization, manages authorization information about its own

members, and supplies this information as a kind of attribute certificate [21].

 Akenti, PERMIS, and Shibboleth are kinds of ABAC systems and have been used in

several Grid systems. However, these authorization systems support their own policies

and cannot support multiple different policies. A more flexible and scalable attribute-

based access control method is still needed to achieve more effective access control for

the heterogeneous Grid computing environment. Also needed are a reasonable policy

model that acts as a theory basis and an open architecture that supports the

implementation of the model.

3. An Attribute-Based Multipolicy Access Control Model for Grid Computing

 In a Grid system, each autonomous domain has its own security policy, such as the

grid-mapfile, ACL (Access Control List), CAS, SAML authorization decision assertions,

and XACML policy statements. Hence the authorization mechanism of the Grid system

needs to be flexible to support these multiple policies. To this end, we built the

Attributed-Based Multi-policy Access Control model.

In this section, the formal definition of ABMAC model is first given, followed by a

scenario that uses the model to describe a policy.

3.1 Formal Definition of ABMAC

 In ABMAC, access control decisions are made based on the attributes of the requestor,

the resource, the action, and the environment. The formal definition of ABMAC is

composed of four parts: access control related entities, attributes of entities, policy

representation, and policy evaluation.

(1) Access control-related entities

•••• Requestor

A requestor is the entity that sends requests to the Grid service and invokes actions on

the service; it is represented as Req.

•••• Service

A service is a Grid service that is a software agent with a network-addressable

interface containing some well-defined operations; it can be invoked via standard

protocols and data formats [22]. A service in ABMAC is represented as Sev.

•••• Resource

 A resource is a system entity that is acted upon by one or more Grid services. In Grid

computing context, resource is always stateful; that is, has a specific set of state data

expressible as an XML document and a well-defined lifecycle. Examples of stateful

resources are files in a file system, rows in a relational database, and encapsulated objects

such as Entity Enterprise Java beans [22]. A resource in ABMAC is represented as Res.

•••• Action

 An action is an operation provided by a Grid service that can be invoked by clients; it

is represented as Act.
•••• Environment

 4

 Environment is the context related to an invocation of a Grid service. It contains

information that is not associated with any specific entity but might be useful in the

decision process, such as the current date and time. The environment is represented as

Env.

(2) Attributes of entities

Each entity has attributes that define the identity and characteristics of the

corresponding entity. We define the attributes of the entities in ABMAC as follows:

•••• The attributes of the requestor may contain the identifier, the name, the

organization, and the other information of the requestor and are defined as

follows:

]},1[|{Re)(Re IiiqAttrqAttr ∈=

•••• The attributes of the service may include the service name and address and are

defined as follows:

]},1[|{)(Jj
j

SevAttrSevAttr ∈=

•••• The attributes of the resource may include resource name, identifier, and other

information and are defined as follows:

]},1[|{Re)(Re Kk
k

sAttrsAttr ∈=

•••• The attributes of an action can be an action name, for example, and is defined as

follows:

]},1[|{)(Ll
l

ActAttrActAttr ∈=

•••• The attributes of the environment Env may be the current date or time and are

defined as follows:

]},1[|{)(Mm
m

EnvAttrEnvAttr ∈=

 The I, J, K, L, and M in these definitions are the maximum number of attributes of

the corresponding entities and are integers.

(3) Policy representation

The authorization systems of Grid computing need to support multiple security

policies, each of which may have its own policy description method. To ensure the

integration of different policies and to make ABMAC more scalable, we encapsulated

each policy as an independent policy unit and defined the policy that ABMAC supports

as a superset of these policies:

 ABMAC_Policy = { Pi|],1[mi ∈ , Pi is a policy.}

 (4) Policy evaluation

Policy evaluation is the process of making an access decision based on the security

policy. The decision is made by the Access Control Decision Function (ADF) [23], which

applies access control policy rules to an access request. In ABMAC, we defined a

function named adf() to implement ADF; it takes the attributes of the requestor, the

service, the resource, the action, and the environment as parameters.

The evaluation function of policy Pi , called Pi_adf(), is defined as follows:

))(),(),(Re),(),(Re(_ EnvAttrActAttrsAttrSevAttrqAttradfiP

 5

 =

The request evaluation function of ABMAC, called ABMAC_adf(), is defined as

follows:

)))(),(),(Re),(),(Re(_

,......

)),(),(),(Re),(),(Re(_
2

)),(),(),(Re),(),(Re(_
1

(_

))(),(),(Re),(),(Re(_

EnvAttrActAttrsAttrSevAttrqAttradf
m

p

EnvAttrActAttrsAttrSevAttrqAttradfp

EnvAttrActAttrsAttrSevAttrqAttradfpfcombine

EnvAttrActAttrsAttrSevAttrqAttradfABMAC

=

 =

The access control decision function of ABMAC, called ABMAC_adf(), implements a

combining algorithm in combine_f(), which combines the decision results returned by

the access control decision function of each policy Pi and makes a final access decision.

3.2 Using ABMAC to Describe a Policy

 In a Grid system, an authorization system is always established to guard one Grid

service. In the following scenario, the attributes of the requestor, the resource, the action,

and the environment will be used to make an access control decision. We use a data

structure named Attribute, which contains the attribute name and attribute value to

describe an attribute.

(1)Entities and attributes definition

•••• The requestor

X.509 End Entity Certificates are widely used in Grid computing. If the X.509 End

Entity Certificate is used for the authentication of a requestor, then the requestor’s

Distinguished Name and the public key can be the following two attributes:

 ReqAttr1 = Attribute (name="x509SubjectDN", value="CN=requestor1")
 ReqAttr2= Attribute(name="publicKey", value="#$%$^&$&requestor1&*^*&#")
 theRequestor = Set(Reqattr1, Reqattr2)

•••• The resource

 According to the WSRF specification [24], a WS-Resource is composed of a Web

service and several stateful resources. A resource is associated with one or more WSDL

portTypes, by which the resource can be operated by the Web services. We define the

resource as follows:

ResAttr1 = Attribute(name="portType", value="fileTransferPortType")
ResAttr2 = Attribute(name="resourceId", value="#%%@resrcId$$%#")
theResource = Set(ResAttr1, ResAttr2)

•••• The action

 The action is the operation defined in a service porttype:

ActAttr1 = Attribute(name="operation", value="readFile")
theAction = Set(ActAttr1)

permit

deny

deny

permit

 6

•••• The environment

 The environment contains the current time as the attribute:

 EnvAttr1 = Attribute(name =" currentTime", value="21:57:05.09")
theEnvironment = set(EnvAttr1)

(2) Policy evaluation

 After all the entities and their attributes are defined, the policy evaluation function can

be called to make an access control decision. We do so by passing all the attributes of the

entities to the ABMAC_adf() function, which in turn calls the decision function of the

supported policies and combine the returned decision results by calling the combine_f()
function:

 ABMAC_decision
 = ABMAC_adf(theRequester, theResource, theAction, theEnvironment)
 = combine_f(p1_adf(theRequester, theResource, theAction, theEnvironment),
 P2_adf(theRequester, theResource, theAction, theEnvironment),
 … …
 pI_adf(theRequester, theResource, theAction, theEnvironment)).

3.3 Characteristics of ABMAC

Policy representation and evaluation are the most important parts in attribute-based

access control models. ABMAC defines a hierarchical policy structure basing on the

abstraction and encapsulation concepts. The policy of ABMAC is a policy set composed

of different kinds of policies that need to be supported. The policies are encapsulated;

that is, they use their own definitions and decision-making algorithms. Compared with

other ABAC models, ABMAC does not use a unified method to describe each policy. A

unified description method would force the policies to change their descriptions, a

situation that is difficult to achieve and is impractical in a heterogeneous real system.

ABMAC can support each policy without any change.

Hence ABMAC is a policy framework. The encapsulation of the heterogeneous

policies enables ABMAC to support multiple policies effectively and makes the model

more flexible and scalable.

4. GT4 Attribute-Based Authorization Framework

 In this section we present the authorization framework in the Globus Toolkit.

4.1 Design Concepts of the GT4 Authorization Mechanism

As a fundamental enabling platform for Grid, the authorization mechanism of Globus

should have the following properties:

•••• Supporting attribute based access control.

•••• Being flexible and scalable for supporting multiple policies.

•••• Being open for integrating existing authorization systems.

For building such an authorization system, we used the same ideas of ABMAC model,

namely, policy abstraction and encapsulation, and used the same policy description.

Based on this policy model, we designed the authorization mechanism architecture using

Web services specifications.

 7

The Globus Toolkit release 4 (GT4) implements the WSRF specification, which is a

convergence of Grid and Web services technology. Several Web services standards are

introduced into Grid computing. XACML (eXtensible Access control Markup Language)

and SAML (Security Assertions Markup Language) are access control-related Web

services standards that support attribute-based access control [25][26]. XACML provides

a basic authorization architecture; and SAML, which defines a framework for exchanging

security information such as authentication and authorization decisions in XML format, is

the technology for integrating existing authorization systems. Thus, we built the GT4

authorization framework based on the multipolicy model, XACML, and SAML.

4.2 XACML Authorization Architecture

XACML defines a policy language using the attributes of requestors, resources, and

environment. The authorization architecture supports attribute-based access control [25],

as shown in Fig. 1.

The access control framework mainly contains PEP (Policy Enforcement Point), PDP

(Policy Decision Point), PIP (Policy Information Point), and PAP (Policy Administration

Point). The PEP intercepts the access requests from users and sends the requests to the

PDP. The PDP makes access decisions according to the security policy or policy set

written by PAP and using attributes of the subjects, the resource, and the environment

obtained by querying the PIP. The access decision given by the PDP is sent to the PEP.

The PEP fulfills the obligations and either permits or denies the access request according

to the decision of PDP.

Fig. 1: XACML Data Authorization Framework

4.3 Multipolicy Framework in GT4

The PDP is the entity that implements the policy evaluation function of a policy model.

It is the core of the authorization framework that makes access control decisions. In

XACML, PDP is supposed to implement only one kind of policy, and the multipolicy

supporting methods are not provided. Based on the concepts described in ABMAC, we

define a scalable multipolicy framework, shown in Fig. 2.

Each policy, such as Grid map file and access control list, is the policy Pi in ABMAC.

These policies essentially need their own decision functions that understand the intrinsic

semantics of the policy expressions. Hence we encapsulate each policy in an independent

PDP. At the same time, we define an abstract PDP that has the common characteristic of

PEP

PDP

PAP

PIP

Obligation Service

Subject Resource Environment

1.Access Request

2.Request
7.Response

3.Policy

4.Attribute
Query

5a.Subject
Attributes

5b.Resource
Attributes

5c.Environment
Attributes

6.Attribute

8.Obligations

 8

the policies. In accordance with the policy evaluation function ABMAC_adf() in

ABMAC, the PDP abstraction (the PDP class in Fig. 2) defines a common evaluation

interface canAccess() that can be used to interact with the PEP or with other PDPs. This

common interface presents the decision request as a collection of attribute values for the

subject, resource, and action. Each specific policy is a subclass of the PDP abstraction,

which implements the common interface canAccess() inherited from PDP with its own

policy and evaluation mechanism.

Fig. 2: GT4 Authorization Policy Framework

In the implementation of the framework, a separate Master PDP is created that

implements the ABMAC_Policy in ABMAC. The Master PDP first collects information

about the request and calls the PDPs, then combines the decisions from all the different

PDP instances, and renders a single decision reflecting the overall evaluated policies.

Since the policy framework is object oriented, it is scalable and flexible, which

means that new policies can be added to the framework just by inheriting the PDP class

and that the existing policies can be removed and modified at any time. Also, since PDP

instances are queried through the same interface and since the mechanism-specific details

of the PDPs are all hidden behind the public interface, a change to the policy framework

has no effect on the Master PDP: it can cooperate with any specific PDPs designated by

the security configuration files. This multipolicy framework thus provides users of GT4

with an authorization mechanism that is flexible and scalable and can support multiple

different policies.

4.4 Architecture of GT4 Authorization Framework

Based on the GT4 authorization policy framework and on the XACML and SAML

standards, we built the GT4 authorization framework, which is shown in Fig. 3. The

framework is composed of a PEP, PDPs, and PIPs.

 Grid systems have several frequently used simple authorization policies or mechanisms.

We provided PDPs, such as AccessControlListPDP and GridMapAuthorizaionPDP,

which implement these policies. Four types of decision may be returned by each PDP:

permit, deny, not applicable, and indeterminate. In order to integrate the authorization

systems developed by others into the authorization framework, such as Shibboleth,

VOMS and PERMIS, a SAMLAuthorizationCalloutPDP is established that integrates

these systems through the SAML assertions.

PDP

CanAccess()

GridMapPDP

CanAccess()

SAMLCalloutPDP

CanAccess()

IdentityPDP

CanAccess()

AccessControlListPDP

CanAccess() …

 9

Fig. 3: GT4 Authorization Framework

 The Master PDP uses a combining algorithm, such as Deny override, Permit override,

and First applicable, to combine the decisions returned by each PDP. The algorithm can

be configured in various ways.

 The PEP intercepts the user’s request and executes the authorization decision received

from the Master PDP. The Master PDP and the PEP are collectively called the

authorization engine of the framework.

The PIPs are information collection points that collect attributes about various entities

related to the authorization evaluation. The attributes-collecting process is shown in Fig.

4.

Fig. 4: Attributes Collection in GT4

When collecting the authorization information, the Container PIP is first invoked to

collect attributes inherent to the framework, such as the service name and the operation

Container PIP

Bootstrap PIP

SAML Authorization Assertion

PIP

PIP List

… …

… …

Attributes Grouping

Attributes Set Per Entity

… …

Entity n

Entity 3

Entity 2

Entity 1

The PDP Chain

SAMLCallout PDP

GridMapAuthorizaion PDP

AccessControlList PDP

… …

MasterPDP

(Policy Decision Point)

… …

Request

Grid Service

Client

Request

PEP

Decision

Request
Decision

Result

Authorization

Engine

Security Configuration

file

GridMapAuthorizaion

PDP

AccessControlList

PDP

SAMLAuthorizationCallout

 PDP

SAMLAuthzAssertionPIP

X509BootstrapPIP

… …

… …
PIPs

PDPs

Shibboleth PERMIS … …

SAML SAML SAML

 10

name. Next, the Bootstrap PIPs are invoked to collect information about the request;

usually the X509 Bootstrap PIP is invoked before any other Bootstrap PIP configured.

Then, other PIPs are invoked in the configured order. Each PIP might return a normalized

representation of the collected attributes. The attributes then are grouped as a single set of

attributes per entity and are stored, so that the PDPs in the PDP chain can access them

when evaluating their policies.

In the authorization framework, the collection of Bootstrap PIPs, PIPs, and PDPs is

referred to as an authorization chain. An authorization chain can be configured through

the security configuration file (shown in Fig. 3) or programmatically at the resource,

service, and container level.

4.5 GT4 Authorization Framework Decision-Making Algorithm

When a request of the Grid resource comes, it is intercepted by the PEP in the

authorization engine and sent to the Master PDP to begin evaluation. The evaluation

algorithm implemented by the authorization framework is expressed by the following

pseudo codes:

 CALL master_PDP_decision() with the request RETURNING decision

 IF decision = ‘permit’ THEN

 Forward the request to the Grid resource

 ELSE

 Deny the request

 END IF

 Master_PDP_decision(request)

 Input PIP subchain, PDP subchain

 CALL BootstrapPIP_attribute_collection() RETURNING attributes of the requestor

 Add the attributes to the request-attribute-storage

 FOR each PIPi in PIP subchain

 CALL PIPi_attribute_collection() RETURNING attributesi

 Add the attributesi to request-attribute-storage

 ENDFOR

 Group the attributes in request-attribute-storage into entities

 Associate the entities with resource, action, environment.

 FOR each PDPj in PDP subchain

 CALL PDPj_decision() with the requestor, the resource, the action, the environment

 RETURNING decisionj

 CALL master_PDP_combinaton_algorithm() with the decisionj

 RETURNING decision

 IF decision = ‘permit’ or decision = ‘deny’ THEN

 Break

 ENDIF

 ENDFOR

RETURN with decision

 When the Master PDP received the evaluation request from PEP, it first collects

information needed by calling the Bootstrap PIPs and other PIPs and then invokes the

corresponding PDPs with the request and the information collected. The PIPs and the

PDPs used are all specified in the security configuration file. When the Master PDP

receives the decisions returned by each PDP, it combines the decisions, using a policy

 11

combination algorithm to render a final decision, and returns the decision to the PEP. The

PEP then executes the decision, either denying or permitting the request.

4.6 Integration of Third-Party Authorization Systems

 As shown in Fig. 3, the GT 4 authorization framework uses a

SAMLAuthorizationCallout PDP to integrate a third-party authorization system, such as

Shibboleth and PERMIS. This PDP uses SAML to interact with these authorization

systems.

 The SAML specification defines a number of elements for making assertions and

queries regarding authentication, authorization decisions, and attributes [26]. As for

authorization, SAML defines messages exchanged between a PEP and a PDP: the

AuthorizationDecisionQuery element is used to send request to the PDP, and an

Assertion returned from the PDP contains some number of

AuthorizationDecisionStatements.

 Both the SAMLAuthorizationCallout PDP in the GT4 authorization framework and

the third-party authorization systems need to support SAML standard. The

SAMLAuthorizationCallout PDP sends a SAML AuthorizationDecisionQuery to an

outside authorization service. The service evaluates the request against its policy and

returns a response encoded as a SAML Assertion, which includes one or more

AuthorizationDecisionStatements.

 The AuthorizationDecisionQuery contains a Subject, Resource, and any number of

Action elements, while the Assertion returned by an outside authorization service

includes the following elements [27]:

• A Conditions element specifying the conditions for use of the assertion

• An Advice element specifying advice for use of the element

• Any number of AuthorizationDecisionsStatements specifying capabilities, which

contains the same elements as the AuthorizationDecisionQuery

• An optional Signature element allowing the Assertion to be verified

 The SAMLAuthorizationCallout PDP will analyze the assertion returned. If the

assertion contains a positive decision, the request will be permitted; otherwise it will be

denied.

5. Conclusion

 Attribute-based access control, making access decisions based on the attributes of

requestors, resources, and the environment, provides the flexibility and scalability that are

essential to large-scale distributed systems such as the Grid. To support the special

authorization requirements of Grid computing, we developed an attribute-based

multipolicy access control model ABMAC and described the GT4 authorization

framework that supports the model. The authorization framework provides the needed

features for Grid computing, which makes decisions based on attributes of related entities,

supports multiple policies, and can integrate third-party attribute-based authorization

systems. Our results show that the ABMAC model and the architecture for implementing

multipolicy attribute-based access control provided in the GT4 authorization framework

are effective.

Acknowledgments

 12

 Work on GT4 GSI has been funded in part by NSF, by IBM, and by the U.S.

Department of Energy under Contract W-31-109-Eng-38.

References

[1] Butler W. Lampson. Protection. In Proc. 5th Princeton Conference on Information

Sciences and Systems, Princeton, 1971, pp. 437-443.

[2] D. E. Bell, L.LaPadula, Secure Computer Systems: A Mathematical Model. Mitre

Corporation, Bedford, Mass., January 1973.

[3] R. S. Sandhu and P. Samaratiy. Access Control: Principles and Practice. IEEE

Communications, 32(9):40-48, 1994.

[4] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable

Virtual Organizations. International J. Supercomputer Applications, 15(3):200-222,

2001.

[5] ITU-T Recommendation X.509. Information technology - Open systems

Interconnection - The Directory: Authentication Framework, ISO/IEC 9594-8, 1993.

[6] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key Infrastructure

Certificate and CRL Profile, September 1998.

[7] J. S. Park and R. Sandhu. RBAC on the Web by Smart Certifcates. In Proc. 4th ACM

Workshop on Role-Based Access Control. ACM, Fairfax, VA, October 28-29 1999.

[8] R. L. Rivest and B. Lampson. SDSI - A Simple Distributed Security Infrastructure.

Presented at CRYPTO '96 Rumpsession, April 1996.

[9] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackson, and A. Essiani.

Certificate-based Access Control for Widely Distributed Resources. In Proc. Usenix

Security Symposium, Aug. 1999.

[10] Joon S. Park and R. Sandhu. Smart Certificates: Extending X.509 for Secure

Attribute Service on the Web, NISSC 1999.
[11] S. Farrell and R. Housley. An Internet Attribute Certificate Profile for Authorization,

IETF — RFC 3281, 2002.

[12] E. Damiani, S. De Capitani di Vimercati, and P. Samarati. New Paradigms for

Access Control in Open Environments. In Proc. 5th IEEE International Symposium

on Signal Processing and Information, Athens, Greece, December 18-21, 2005.

[13] P. Bonatti and P. Samarati. A Unified Framework for Regulating Access and

Information Release on the Web. J. Computer Security, 10(3):241–272, 2002.

[14] L. Wang, D. Wijesekera, and S. Jajodia. A Logic-based Framework for Attribute

based Access Control. In Proc. 2004 ACM Workshop on Formal Methods in

Security Engineering, Washington, D.C., October 2004.
[15] E. Yuan and J. Tong. Attributed Based Access Control (ABAC) for Web Services.

In Proc. IEEE International Conference on Web Services (ICW’05), 2005.7.

[16] M. Thompson, A. Essiari, and S. Mudumbai. Certificate-based Authorization Policy

in a PKI Environment. ACM Transactions on Information and System Security

(TISSEC), 6(4):566-588, November 2003.

[17] D. Chadwick. Authorization in Grid Computing. Information Security Technical

Report, 10(1):33-40, 2005.

 13

[18] D. Chadwick and A. Otenko. The PERMIS X.509 Role based Privilege Management

Infrastructure. Future Generation Computer Systems, 19(2):277-289, February

2003.

[19] V. Welch, T. Barton, K. Keahey, and F. Siebenlist. Attributes, Anonymity, and

Access: Shibboleth and Globus Integration to Facilitate Grid Collaboration. In 4th

Annual PKI R&D Workshop, April 2005.

[20] T. Barton, J. Basney, T. Freeman, T. Scavo, F. Siebenlist, V. Welch, R.

Ananthakrishnan, B. Baker, M. Goode, and K. Keahey. Identity Federation and

Attribute-based Authorization through the Globus Toolkit, Shibboleth, Gridshib, and

MyProxy. In 5th Annual PKI R&D Workshop, April 2006.

[21] R. Alfteri, R. Cecchini, V. Ciaschini, L. Dellagnello, A. Frohner, A. Gianoli, K.

Lorentey,and F. Spataro VOMS, An Authorization System for Virtual Organizations,

In 1st European Across Grids Conference, Santiago de Compostela, February 13-14,

2003.

[22] I. Foster, J. Frey , S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson, F. Leymann,

M. Nally, T. Storey, and S. Weerawaranna. Modeling Stateful Resources with Web

Services. Globus Alliance, 2004.

[23] ISO/IEC 10181-3:1996, Information Technology - Open Systems Interconnection -

Security Frameworks for Open Systems: Access Control Framework.

[24] K. Czajkowski, D. F Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D.

Snelling, S. Tuecke, and W. Vambenepe. The WS-Resource Framework ,Version 1.0,

March 5, 2004

[25] OASIS, Extensible Access Control Markup Language (XACML), V2.0, February

2005.

[26] OASIS, Security Assertion Markup Language (SAML) , V2.0, March 2005.

[27] V. Welch, R. Ananthakrishnan, S. Meder, L. Pearlman, and F. Siebenlist. Use of

SAML for OGSA Authorization (work in progress), Global Grid Forum, May 14,

2004.

The submitted manuscript has been created by the University of Chicago as Operator of

Argonne National Laboratory (“Argonne”) under Contract No. W-31-109-ENG-38 with

the U.S. Department of Energy. The U.S. Government retains for itself, and others acting

on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to

reproduce, prepare derivative works, distribute copies to the public, and perform publicly

and display publicly, by or on behalf of the Government. This government license should

not be published with the paper.

