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Abstract. In this work we present a framework for the convergence analysis in a measure differential inclusion sense
of a class of time-stepping schemes for multibody dynamics with contacts, joints, and friction. This class of methods
solves one linear complementarity problem per step and contains the semi-implicit Euler method, as well as trapezoidal-
like methods for which second-order convergence was recently proved under certain conditions. By using the concept of
a reduced friction cone, the analysis includes, for the first time, a convergence result for the case that includes joints. An
unexpected intermediary result is that we are able to define a discrete velocity function of bounded variation, although
the natural discrete velocity function produced by our algorithm may have unbounded variation.
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1. Introduction. The dynamic rigid multi body contact problem is concerned with predicting
the motion of several rigid bodies in contact and it is one of the fundamental paradigms in modern
computational science. It appears in the description of fuel motion in the pebble bed reactor [14], in
the compaction of nanopowders [19, 8], and in the study of biological membranes [30, 18, 39, 15]. Such
simulations are also used extensively in structural engineering [11], pedestrian evacuation dynamics [17],
granular matter [29], robotics simulation and design [12], and virtual reality [2].

The problem of multi body rigid systems involving contact and friction is a differential complemen-
tarity problem (DCP). The DCP is part of a broader class of problems known as differential variational
inequalities (DVI), which were recently introduced in [25], [26]. Approaches used in the past for the
numerical approximation of rigid multibody dynamics with contact and friction include piecewise DAE
approaches [16], acceleration-force linear complementarity problem (LCP) approaches [7, 27, 38], penalty
approaches [10, 31, 32, 24], and velocity-impulse LCP-based time-stepping methods [37, 35, 4, 6].

The DCP gives rise to event-driven time-stepping schemes that are solved in an acceleration-force
framework. These types of scheme will detect the discontinuity events; and, if these events are isolated,
they will treat the dynamics as differential algebraic equations (DAEs) on each smooth piece. For
the corresponding DAEs, numerical schemes of high accuracy may be used. This approach is natural
and appealing because it leads to high-order time-stepping schemes. The major weakness of such an
approach is that it excludes the presence of impulsive forces in the absence of an impact. One fairly
simple example where such forces occur was pointed out in 1895 by P. Painlevé [23], who argued that the
equations of classical rigid body dynamics are incompatible with the Coulomb friction model. Recently
it was shown that a solution of Painlevé’s example exists in the sense of measure differential inclusions
[33].

Time-stepping schemes that are not vulnerable to Painlevé-type examples integrate the dynamics
at a velocity-impulse level, thereby allowing for impulsive forces at any time instant. Most of the
time-stepping schemes that build a discrete model at a velocity-impulse level are based on Euler’s
method for solving ordinary differential equations (ODEs). In this context, the methods of Anitescu
and Potra [4] and Stewart and Trinkle [37] are based on a semi-implicit Euler scheme, while the model
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of [5] is based on a linearly implicit Euler scheme. All three formulations require the solution of one
linear complementarity problem (LCP) at each time step (see [9] for an extensive analysis of linear
complementarity problems).

Recently, we proposed a new time-stepping scheme based on the trapezoidal method for solving
ordinary differential equations [28]. The scheme solves one LCP at each non collisional integration step.
We have shown that the numerical velocity is uniformly bounded as the integration step approaches
0 and that the scheme has global second order of convergence under additional restrictions. In order
to globally achieve this convergence, events such as collision, take-off (contact deletion), and stick-slip
transitions have to be detected with sufficient accuracy. To do so, we have proposed detection strategies
that use information only at the position-velocity level, thereby remaining consistent with the solution
concept of measure differential inclusions. We have shown that the scheme is stiffly stable when the
stiffness originates in springs and dampers attached to pairs of bodies in the system. The scheme was
implemented in UMBRA [13] and has proved successful in industrial-scale applications.

1.1. Our Contribution. The treatment of joints in time-stepping schemes is not new [4, 3]. What
is novel in this work is that we prove that the solution produced by a class of time-stepping schemes
that solves one linear complementarity problem per step and that includes the methods presented in [4]
and [28] converges to a solution of a measure differential inclusion, in a sense to be defined in Section
6, even when joint constraints are present. The main conceptual novelty is the reduced friction cone
which allows us to reduce the treatment of bilateral constraints to one of unilateral constraints, without
altering the pointedness property. It is conceivable that a proof of convergence of linearized backward
Euler schemes can be obtained from the one in the jointless case [34] for configurations with joints if
the system is represented in relative coordinates which eliminate the joint constraints [16]. Nonetheless,
this requires a nonlinear projection at every step which may be computationally costly [16] in addition
to losing the property of having a constant mass matrix which presents several desirable numerical
properties [5].

In addition, we prove for the first time that certain trapezoid-like methods [28] converge in the
sense of measure differential inclusions. In doing that, we are able to define a discrete velocity function
of bounded variation, although the natural discrete velocity function produced by our algorithm may
have unbounded variation.

2. Notation and Model. In our analysis, we use the notation and framework from [34, 4]. We
assume that the state of the system of rigid bodies can be described by a generalized position vector
q ∈ RI s and a generalized velocity vector v ∈ RI s. We assume that the system is subject to equality,
nonpenetration, contact, and Coulomb friction.

The equality constraints arise usually from joint constraints [16] and can be described by equations
of the form

Θ(i)(q) = 0, i = 1, 2, . . . ,m , (2.1)

where Θ(i) are sufficiently smooth functions. The force exerted by joint (i) on the system is c
(i)
ν ν(i)(q),

where ν(i)(q) = ∇qΘ
(i)(q) is the gradient of Θ(i)(q) and c

(i)
ν is the appropriate Lagrange multiplier [16].

The nonpenetration constraints are generated by the rigid body hypothesis according to which the
bodies constituting the system cannot penetrate each other. We assume that for any pair of bodies we
can define a signed distance function Φ(j)(q) so that the noninterpenetration constraints can be written
as

Φ(j)(q) ≥ 0, j = 1, 2, . . . , p , (2.2)

where p is the number of pairs of bodies of the system that could get in contact, which in most
applications is substantially smaller than the number of all possible pairs of bodies. Details of how the
functions Φ(j) can be defined and calculated are presented in [2].
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The contact and frictional constraints may be introduced by means of the active set and the friction
cone. If Φ(j)(q) > 0, then the jth constraint doesn’t contribute to the dynamics of the system. When
Φ(j)(q) = 0, however, the contact impulse generated by the jth noninterpenetration constraint must lie
inside the contact friction cone:

FC(j)(q) =
{

zc = n(j)cn
(j) + D

(j)
β(j)

∣∣∣cn
(j) ≥ 0, ‖β(j)‖2 ≤ µ(j)c(j)

n

}
. (2.3)

Here the columns of D
(j)

∈ RI s×2 span the friction space, and β(j) ∈ RI 2 is the corresponding tangential
impulse due to friction. The parameter µ(j) ≥ 0, which may be different for each contact, is the friction
coefficient, and the second inequality that involves it in (2.3) is the first part of the Coulomb law. By
including the joint forces in the above multivalued map, we obtain what we call the constraint friction
cone, FC(j)(q), corresponding to the jth contact. More precisely, we have

FC(j)(q) =
{

z = ν̃c̃ν + n(j)cn
(j) + D

(j)
β(j)

∣∣∣cn
(j) ≥ 0, ‖β(j)‖2 ≤ µ(j)c(j)

n

}
. (2.4)

The total friction cones are then defined by

FC(q) =
∑

Φ(j)(q)=0

FC(j)(q) (2.5)

for the total contact friction cone and by

FC(q) =
∑

Φ(j)(q)=0

FC(j)(q) (2.6)

for the total constraint friction cone. To simplify terminology, we will refer, unless specified in advance,
to the cone in (2.6) as the total friction cone. Note that the definition above implies that the set of
active contact constraints, A, is determined by

A =
{

j ∈ {1, ..., p} : Φ(j)(q) = 0
}

for given position q. The total friction cone can be approximated by a polyhedral cone [37]. That is,

FC(j)(q) is replaced by

F̂C
(j)

(q) =
{

z = ν̃cν + n(j)cn
(j) + D(j)β(j)

∣∣∣cn
(j) ≥ 0, β(j) ≥ 0, ‖β(j)‖1 ≤ µ(j)c(j)

n

}
, (2.7)

where D(j) ∈ Rs×mC is a balanced matrix in the sense that if di
(j) is a column of D(j), then there is

another index k such that di
(j) = −dk

(j). In this way we can represent the frictional impulses by using
a nonnegative vector of multipliers β(j) =

(
β(j)

)
i
≥ 0 with the 2-norm being replaced by the 1-norm.

Here the nonnegative integer mC represents the number of edges used in the approximation of the full
cone. The polyhedral approximation of the friction cone is then given by

F̂C(q) =
∑

j∈A

F̂C
(j)

(q) =
{

z = ν̃c̃ν + ñc̃n + D̃β̃
∣∣∣c̃n ≥ 0, β̃ ≥ 0, ‖β(j)‖1 ≤ µ(j)c(j)

n , ∀j ∈ A
}

, (2.8)

where we define the block matrices ν̃, c̃ν , ñ, c̃n, D̃, and β̃ as in (4.6).
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3. Total Friction Cone and Regularity Assumptions. A regularity assumption, the point-
edness of the friction cone, is used to obtain convergence results in the contact-only case [1, 34]. We
present here an extension of the pointedness assumption to the case including bilateral constraints.

Definition 3.1. We say that

FC(q) is pointed ⇔ ∀
(
c̃ν , c̃n ≥ 0, β̃

)
6= 0 such that ‖β(j)‖2 ≤ µ(j)c

(j)
n , ∀j ∈ A

we must have that ν̃c̃ν + ñc̃n + D̃β̃ 6= 0.
(3.1)

F̂C(q) is pointed ⇔ ∀
(
c̃ν , c̃n ≥ 0, β̃ ≥ 0

)
6= 0 such that ‖β(j)‖1 ≤ µ(j)c

(j)
n , ∀j ∈ A

we must have that ν̃c̃ν + ñc̃n + D̃β̃ 6= 0.
(3.2)

This definition clearly implies that the joint-constraint matrix ν̃ is full rank. Moreover, the
pointed friction cone assumption is weaker than the linear independence of the columns of the matrix(
ν̃T , ñT , D̃T

)T

. Its name originates in the fact that, when there are no joint constraints, the condition

is equivalent to the cone’s not containing any proper linear subspace and thus being ”pointed” . An
equivalent definition of the pointed friction cone assumption is given by the following condition [1]:

FC(q) is pointed ⇔ there exists cFC > 0, such that ‖(c̃ν , c̃n, β̃)‖ ≤ cFC‖z‖

with z = ν̃c̃ν + ñc̃n + D̃β̃ ∈ FC(q).
(3.3)

F̂C(q) is pointed ⇔ there exists c cFC
> 0, such that ‖(c̃ν , c̃n, β̃)‖ ≤ c cFC

‖z‖

with z = ν̃c̃ν + ñc̃n + D̃β̃ ∈ F̂C(q).
(3.4)

We say that the total friction cone FC(q) (F̂C(q)) is uniformly pointed if the constant cFC (c cFC
)

can be taken the same for all possible configurations q. As noted in [3], the pointedness assumption is
equivalent (in the frictionless case) to the existence of a force that will dissasemble all contacts without
breaking the joints.

Lemma 3.2. Assume that FC(q) is pointed. Let

z = ñc̃n + D̃β̃, where c̃n ≥ 0, c̃n 6= 0, ‖β(j)‖2 ≤ µ(j)c(j)
n , ∀j ∈ A.

That is, z is an element of the (full) friction cone obtained by excluding the bilateral constraints, with
the normal impulses not all equal to 0. Then,

z 6= 0 and z /∈ Range(ν̃).

Proof. As suggested by the claim above, consider the set

FC(q) =
{

zc = ñc̃n + D̃β̃
∣∣∣c̃n ≥ 0, ‖β(j)‖2 ≤ µ(j)c(j)

n , ∀j ∈ A
}

(3.5)

(note the difference in notation: caligraphic characters denote the friction cone that includes all con-
straint impulses, while roman letters denote the cone that containins only the contact impulses). Clearly
the pointedness of FC(q) implies the pointedness of FC(q). Therefore, by taking z ∈ FC(q) with the
normal impulses not all zero (c̃n 6= 0), we obtain z 6= 0. If z ∈ Range(ν̃) then z = ν̃u, u 6= 0, and
therefore by taking z = −ν̃u + z, we have z ∈ FC(q), z = 0 with a nonzero constraint impulse, a
contradiction to the pointedness of FC(q).
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We will use this Lemma to analyze the properties of the set

ν̃T
⊥FC(q) =

{
ν̃T
⊥z : z ∈ FC(q).

}

Here ν̃⊥ denotes the orthogonal complement of ν̃ ∈ RI s×m. More precisely, ν̃⊥ ∈ RI s×(s−m) such that
ν̃T
⊥ν̃ = 0 and ν̃T

⊥ν̃⊥ = I. It follows that for any x ∈ RI s, there exist unique vectors u ∈ RI m and
w ∈ RI s−m such that the decomposition

x = ν̃u + ν̃⊥w (3.6)

holds. We have the following simple results.
Lemma 3.3. Assume that FC(q) is pointed. Then for all j ∈ A we have

ν̃T
⊥n(j) 6= 0.

Proof. The proof follows immediately from Lemma 3.2. More precisely, assume that ν̃T
⊥n(j) = 0 for

some j ∈ A. Take z = c
(j)
n n(j), with cn

(j) > 0 (note that n(j) 6= 0). It follows that ν̃T
⊥z = 0. Therefore,

by the decomposition above, we must have z ∈ Range(ν̃), which contradicts the conclusion of Lemma
3.2.

Remark 3.4. We cannot say the same thing about ν̃T
⊥di

(j)
, where di

(j)
is a column of D

(j)
.

Actually it is possible to have ν̃T
⊥di

(j)
= 0, which shows once again that the pointedness assumption is

weaker than the linear independence of the active set (active set here includes all constraints). Let us
define

Wn
(j) = ν̃T

⊥n(j) and WD
(j)

= ν̃T
⊥D

(j)
.

As discussed above, all the Wn
(j) are nonzero vectors; thus, by adjoining all of them, we obtain a matrix

that we denote by W̃n. By taking only those WD
(j)

that are non-zero and adjoining we obtain, in a

similar fashion, a matrix denoted by W̃D. Now let us define the full reduced friction cone FCr(q) by

FCr(q) =
{

zr = W̃nc̃n + W̃Dβ̃
∣∣∣̃cn ≥ 0, ‖β

(j)
‖2 ≤ µ(j)c(j)

n , [∀j ∈ A s.t. (ν̃⊥(q))
T

D
(j)

(q) 6= 0]
}

,

(3.7)

where the matrix W̃D is assumed to have only nonzero columns. In a similar fashion we introduce the
polyhedral reduced friction cone F̂Cr(q):

F̂Cr(q) =
{

zr = W̃nc̃n + W̃Dβ̃
∣∣∣̃cn ≥ 0, β̃ ≥ 0, ‖β

(j)
‖1 ≤ µ(j)c(j)

n , [∀j ∈ A s.t. (ν̃⊥(q))
T

D(j)(q) 6= 0]
}

.

(3.8)
The active set used for the reduced friction cone is the same the one used for the nonreduced one.
However, the number of frictional contacts in the reduced cone may be smaller than the number in the
nonreduced cone. We have the following result.

Lemma 3.5. If FC(q)
(
F̂C(q)

)
is pointed for all q, then the full (polyhedral) reduced friction cone

FCr(q)
(
F̂Cr(q)

)
is pointed for all q.

Proof. Let q be any possible system configuration, and let zr be an arbitrary element of FCr(q).
Then zr can be written as

zr = ν̃T
⊥ñc̃n + ν̃T

⊥D̃β̃,
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where we have already eliminated those columns of D̃ that are in the range of ν̃. This new matrix

is denoted by D̃, and the corresponding frictional impulses are given by the vector β̃. Note that, as
shown above, all the columns of ñ have nonzero components outside the range of ν̃. The normal and

tangential impulses (c̃n, β̃) satisfy c
(j)
n ≥ 0 for all j ∈ A and ‖β

(j)
‖2 ≤ µ(j)c

(j)
n for all j ∈ A such that

(ν̃⊥(q))
T

D
(j)

(q) 6= 0.

Assume now that zr = 0 with c̃n 6= 0 (a necessary condition for (c̃n, β̃) 6= 0). We want to reach a
contradiction to the pointedness of the nonreduced cone. This immediately follows from the fact that

zr = 0, c̃n 6= 0 ⇒ zc = ñc̃n + D̃β̃ ∈ FC(q) satisfies zc = ν̃u, u 6= 0.

Here β̃ is obtained from β̃ by adding zeros to the columns of D̃ missing in D̃. By taking c̃ν = −u, we
obtain that z := −ν̃u + zc ∈ FC(q) is zero, but (c̃ν , c̃n, β̃) 6= 0, which contradicts the pointedness of
FC(q). Given that the argument can be carried out for any q for which FC(q) is pointed, we obtained
the pointedness for FCr(q). Following the same argument, one proves the pointedness of the polyhedral

reduced friction cone F̂Cr(q).
Remark 3.6. The pointedness of the reduced cones is equivalent to the usual notion of pointedness,

that is, ”a cone K is pointed ⇔ K ∩ (−K) = {0}” .

Now let z = ν̃c̃ν + ñc̃n + D̃β̃ ∈ FC(q). From the pointedness of the reduced cone there exists [34] a

unitary vector, u0 := u0(q), such that for any z = ν̃c̃ν + ñc̃n + D̃β̃ ∈ FC(q) we have

u0
T ν̃T

⊥z ≥ C2‖zr‖ ≥ C3‖c̃n‖, (3.9)

where zr = ν̃T
⊥z. This estimate is one of the main ingredients that will be later used in proving the

uniform bound on the variation of the velocities.
We can visualize the friction cones FC(q) and F̂C(q) as mappings from RI s to the subsets of RI s,

that is, FC(q), F̂C(q) : RI s → P(RI s). The graph of FC(·) is defined by

graph(FC) = {(q, z(q)) | z(q) ∈ FC(q)} , (3.10)

and similarly for F̂C(q). Clearly, from the constructions above, FC(q) and its approximation F̂C(q) are
convex sets for each fixed q. Under the uniform pointedness assumption we obtain that these mappings
have closed graphs.

Lemma 3.7 (Closed Graph Property of the Friction Cones). Assume that FC(q)
(
F̂C(q)

)

is uniformly pointed. Then the graph of FC(·)
(
F̂C(·)

)
is closed.

Proof. We will prove the result for FC(·). A similar argument is used for the polyhedral ap-

proximation F̂C(·). Consider a sequence (qn, zn) ∈ graph(FC(qn)), where zn has the form: zn =

ν̃(qn)cn
ν + ñ(qn)c̃n

n + D̃(qn)β̃n. Assume that qn → q and zn → z as n → ∞. We want to show that
z ∈ FC(q). From the uniform pointedness of FC(·) we obtain that

‖(c̃n
ν , c̃n

n, β̃n)‖ ≤ CFC‖z
n‖,

where CFC is independent of qn. Given that zn → z, it follows from the above inequality that
‖(c̃n

ν , c̃n
n, β̃n)‖ is bounded, and therefore we can extract convergent subsequences c̃nk

ν → c̃∗ν , c̃nk
n → c̃∗n,

and β̃nk → β̃∗, where c̃∗n ≥ 0 and ‖β(j),∗‖2 ≤ µ(j)‖c
(j),∗
n ‖ due to the similar inequalities satisfied by the

corresponding subsequence. Using the fact that ν̃(·), ñ(·) and D̃(·) are continuous, we have that the

subsequence znk converges to z∗ = ν̃(q)c∗ν + ñ(q)c̃∗n + D̃(q)β̃∗ ∈ FC(q). Given that znk , with znk → z∗,
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is a subsequence of the convergent sequence zn, with zn → z, we conclude that z = z∗ ∈ FC(q), which
proves our claim.

Note that the closed graph property implies that the values of the multivalued mappings are closed.
This can be easily seen by taking qn = q and zn ∈ FC(q). An immediate consequence of the above
lemma is the following corollary.

Corollary 3.8. Assume that FC(q)
(
F̂C(q)

)
is uniformly pointed. Then the graph of FCr(·)(

F̂Cr(·)
)

is closed.

Proof. Consider a sequence (qn, zn
r ) such that zn

r ∈ FCr(q
n) and qn → q, zn

r → zr, as n → ∞. By

definition zn
r = (ν̃⊥(qn))

T
zn, for some zn ∈ FC(qn). Taking the limit, as n → ∞, we conclude that

zn → z. The fact that FC(·) has a closed graph implies that z ∈ FC(q), which immediately leads to

zr = (ν̃⊥(q))
T

z ∈ FCr(q).

4. The Time-Stepping Scheme. We are interested in convergence properties for a family of lin-
early implicit time-stepping schemes that accommodate methods based on semi-implicit Euler methods
[4, 33] as well as various instances of the trapezoidal method from [28]. The time-stepping scheme solves
at each integration step a linear complementarity problem. We will assume that only inelastic collisions
are solved. In terms of the collision rule given in [4], which in general involves a compression phase
followed by a decompression phase, for inelastic collisions only the former LCP needs to be solved,
and therefore the algorithm will solve only one LCP per time-step. The main difference between a
noncollisional and a collisional integration step is that the latter uses a zero time-step to get out of the
compression phase.

To write the integration step as a mixed linear complementarity problem, we use the following
approximations. The joint constraints are written at the velocity level and approximated by

(
ν(i)(ql)

)T (
αvl+1 + (1 − α)vl

)
= 0, i = 1, ...,m,

where α is a scalar parameter, α ∈ (0, 1].

The nonpenetration and frictional constraints are approximated in the same fashion. We can write
these as the following complementarity conditions

0 ≤ ρ(j),l+1 :=
(
n(j)(ql)

)T (
αvl+1 + (1 − α)vl

)
⊥ c

(j),l+1
n ≥ 0, j ∈ A,

0 ≤ σ(j),l+1 := λ(j),l+1e(j) +
(
D(j)(ql)

)T (
αvl+1 + (1 − α)vl

)
⊥ β(j),l+1 ≥ 0, j ∈ A,

0 ≤ ζ(j),l+1 := µ(j)c
(j),l+1
n − e(j)T

β(j),l+1 ⊥ λ(j),l+1 ≥ 0, j ∈ A .

Here e(j) is a vector, of dimension m
(j)
C , whose every entry is 1. The equations of motion in implicit

form can be written as

M
(
vl+1 − vl

)
− zl+1 = hk(tl+1, q

l+1, vl+1). (4.1)

Here M is the mass matrix, which is assumed to be a constant symmetric positive definite matrix, zl+1

represent the contact and joint impulses, and k(tl+1, q
l+1, vl+1) are the inertial and applied forces acting

at time tl+1. Since the goal is to formulate the integration step as a linear complementarity problem,
we will linearize (4.1) as follows. The term

zl+1 = ν̃(ql+1)c̃l+1
ν + ñ(ql+1)c̃l+1

n + D̃(ql+1)β̃l+1

is replaced by

zl+1 = ν̃lc̃l+1
ν + ñlc̃l+1

n + D̃lβ̃l+1,
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where ν̃l = ν̃(ql), ñl = ñ(ql) and D̃l = D̃(ql). To linearize the term k(tl+1, q
l+1, vl+1) in (4.1), we

first introduce the position update formula. Given a parameter γ ∈ [0, 1] (fixed at the beginning of the
simulation), we obtain the position at time tl+1 by the formula

ql+1 = ql + h
(
(1 − γ)vl + γvl+1

)
.

For the term k(tl+1, q
l+1, vl+1) we have

k(tl+1, q
l+1, vl+1) = fC(vl+1) + k1(tl+1, q

l+1, vl+1) = F (vl+1)vl+1 + k1(tl+1, q
l+1, vl+1),

where fC(vl+1) = F (vl+1)vl+1 are the Coriolis forces and k1(tl+1, q
l+1, vl+1) are the external forces. A

discussion related to this representation of the Coriolis forces is given at the end of this section. We
replace the Coriolis term by

F (vl+1)vl+1 ≈ F (vl)
(
(1 − α)vl + αvl+1

)
= F (vl)vl + αF (vl)

(
vl+1 − vl

)
. (4.2)

The term k1(tl+1, q
l+1, vl+1) is approximated as follows:

k1(tl+1, q
l+1, vl+1) ≈ (1 − α)k1(tl, q

l, vl) + αk1(tl+1, q
l+1, vl+1),

≈ (1 − α)k1(tl, q
l, vl) + αk1(tl+1, q

l, vl) + α
(
k̃1q(q

l+1 − ql) + k̃l
1v(vl+1 − vl)

)
,

≈ (1 − α)k1(tl, q
l, vl) + αk1(tl+1, q

l, vl) + αhk̃l
1qv

l + α
(
k̃l
1v + γhk̃l

1q

)
(vl+1 − vl),

(4.3)
where

k̃l
1q ≈ k1q(tl+1, q

l, vl) k̃l
1v ≈ k1v(tl+1, q

l, vl)

are approximations of the Jacobians k1q and k1v. Combining the equations of motion with the joint
constraints described at the velocity level and the frictional contact constraints, we obtain the following
time-stepping scheme:

ql+1 = ql + h
(
(1 − γ)vl + γvl+1

)
(4.4a)

M̃ lvl+1 −
m∑

i=1

ν(i),lc(i),l+1
ν −

∑

j∈A

(n(j),lc(j),l+1
n + D(j),lβ(j),l+1) = M̃ lvl + k̃l (4.4b)

(
ν(i),l

)T (
αvl+1 + (1 − α)vl

)
= 0 , i = 1, 2, . . . m (4.4c)

0 ≤ ρ(j),l+1 :=
(
n(j),l

)T (
αvl+1 + (1 − α)vl

)
⊥ c(j),l+1

n ≥ 0, j ∈ A (4.4d)

0 ≤ σ(j),l+1 := λ(j),l+1e(j) +
(
D(j),l

)T (
αvl+1 + (1 − α)vl

)
⊥ β(j),l+1 ≥ 0, j ∈ A (4.4e)

0 ≤ ζ(j),l+1 := µ(j)c(j),l+1
n − e(j)T

β(j),l+1 ⊥ λ(j),l+1 ≥ 0, j ∈ A , (4.4f)

where ν(i),l = ν(i)(ql), n(j),l = n(j)(ql), D(j),l = D(j)(ql) and

M̃ l =
(
M − αh

(
F (vl) + k̃l

1v

)
− αγh2 k̃l

1q

)
,

(4.5)

k̃l = h
(
(1 − α)k1

(
tl, q

l, vl
)

+ αk1

(
tl+1, q

l, vl
))

+ (1 − α)hF (vl)vl + αh2k̃l
1qv

l.
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We note that the equations (4.4) represent a mixed linear complementarity problem (MLCP). If at
time-step l the index set of active contact constraints is given by A = {j1, j2, . . . , ja}, and if we denote

ν̃ = [ν(1), ν(2), . . . , ν(m)], c̃ν = ⌈c
(1)
ν , c

(2)
ν , . . . , c

(m)
ν ⌋, D̃ = [D(j1),D(j2), . . . ,D(ja)]

c̃n = ⌈c
(j1)
n , c

(j2)
n , . . . , c

(ja)
n ⌋, ñ = [n(j1), n(j1), . . . , n(ja)], β̃ = ⌈β(j1), β(j2), . . . , β(ja)⌋T

λ̃ = [λ(j1), λ(j2), . . . , λ(ja)], ζ̃ = [ζ(j1), ζ(j2), . . . , ζ(ja)], Ẽ = diag(e(j1), e(j2), . . . , e(ja))
σ̃ = [σ(j1), σ(j2), . . . , σ(ja)], ρ̃ = [ρ(j1), ρ(j2), . . . , ρ(ja)], µ̃ = diag(µ(j1), µ(j2), . . . , µ(ja)),

(4.6)

then the matrix form of the integration step is given by



M̃ l −ν̃l −ñl −D̃l 0(
ν̃l
)T

0 0 0 0(
ñl
)T

0 0 0 0(
D̃l
)T

0 0 0 Ẽ

0 0 µ̃ −ẼT 0







vl+1

c̃l+1
ν

c̃l+1
n

β̃l+1

λ̃l+1



−




M̃ lvl + k̃l

0
0
0
0


 =




0
0

ρ̃l+1

σ̃l+1

ζ̃l+1


 (4.7)

0 ≤ ⌈c̃l+1
n , β̃l+1, λ̃l+1⌋ ⊥ ⌈ρ̃l+1, σ̃l+1, ζ̃l+1⌋ ≥ 0 . (4.8)

Here we have used [·, ·, . . . , ·] to denote a block matrix with the same number of rows as its blocks and
⌈·, ·, . . . , ·⌋ to denote a block matrix with the same number of columns as its blocks. We denote by

L(ql, vl, k̃, h, α, γ) the solution set of the MLCP (4.7).
We note that the choice α = γ = 1 results in the scheme from [4, 5] (the former is obtained once

we choose k̃1q = 0 and k̃1v = 0) and the choice α = γ = 1
2 results in a variant of the scheme from

[28]. The time-stepping scheme in [28] detects (behind collisions) other type of events such as stick-slip
transitions, take-off transitions and changes in the active friction components. If the number of such
changes is uniformly bounded as h → 0, these transitions could be resolved in the same fashion in which
collisions are here dealt with. For simplicity we restrict ourselves to collision detection only.

A collision occurs in the interval (lh, (l + 1)h] if Φ(j)(ql) > 0 and Φ(j)(ql+1) ≤ 0, where ql+1 is the
position computed by the time-stepping scheme without including j in the active set at time tl+1. The
active set at tl+1 is taken as

A(tl+1) = Al+1 =
{
j : Φ(j)(ql) ≤ 0

}
.

Whenever a collision is encountered, cubic interpolation is used to determine the precollision velocity
and the position at which the collision occurs [28]. The detected position q− and the precollision velocity
v− are used in the compression phase to obtain the new velocity. A mixed linear complementarity
problem of the same type as (4.7) is solved in the compression phase. More precisely, the solution set
of the MLCP modeling the compression phase is L(q−, v−, 0, 0, 1, 1).

Collision detection may result in a nonuniform partition of the simulation interval [0, T ]. More
precisely, a collision may be detected at time t∗ such that, for a given time-step h, t∗ 6= lh for any
integer l. To make the upcoming proofs easier to follow, we enforce a uniform partition of [0, T ]. When
collision is detected at time t∗,l+1 ∈ ((lh, (l + 1)h], the collision is solved, resulting in the collision
position q−,l+1 and postcollision velocity v+,l+1 ∈ L(q−,l+1, v−,l+1, 0, 0, 1, 1). Instead of introducing the
collision time t∗ in the time partition of [0, T ] or solving another MLCP in the interval (t∗, (l +1)h], we
take

tl+1 = (l + 1)h, ql+1 = q−,l+1 and vl+1 = v+,l+1.

Assuming that we do this for every collision and that the first integration step is not a collisional one,
we have tl = lh, for all l, and the scheme will keep a fixed time-step throughout the integration process.
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Note that, while this simplification possibly affects the accuracy of the scheme, our choice essentially
represents only a notation convention. Indeed, if the external force k1 does not depend on time, then
the sequence of velocities and positions is identical to the one with the normal convention (where the
collision time is considered one of the time points). If the force does depend on time, then the change
in its value is only order O(h), since from Assumption (H7), which will be defined shortly, the number
of collisions is bounded above and does not affect the convergence proofs.

We extend the numerical solution to time instants different from the ones given by the discrete
solution, as follows. The velocity sequence vh,α(t) is defined by

vh,α(t) =

{
vl+1,α if t ∈ (lh, (l + 1)h] and no collision in (lh, (l + 1)h],
vl+1 := v+,l+1 if t ∈ (lh, (l + 1)h] and collision detected in (lh, (l + 1)h],

(4.9)

where v+,l+1 denotes the velocity at the end of the compression phase and where

vl+1,α = (1 − α)vl + αvl+1. (4.10)

The velocity function that uses no weighting is denoted by vh(·) and defined in a similar fashion:

vh(t) =

{
vl+1 if t ∈ (lh, (l + 1)h] and no collision in (lh, (l + 1)h],
vl+1 := v+,l+1 if t ∈ (lh, (l + 1)h] and collision detected in (lh, (l + 1)h].

(4.11)

For the position sequence, we take qh,α(t) to be

qh,α(t) =
1

h

(
(t − tl)q

(l+1) + (tl+1 − t)ql
)

, whenever t ∈ (tl = lh, tl+1 = (l + 1)h], (4.12a)

where ql+1 =

{
q(l) + hvl+1,α if t ∈ (lh, (l + 1)h] and no collision in (lh, (l + 1)h],
q−,l+1 if t ∈ (lh, (l + 1)h] and collision detected in (lh, (l + 1)h].

(4.12b)

Here ql+1 is computed by the position update formula (4.4a), except for collisional instants (that
is, a collision occurred in the (lh, (l + 1)h] interval), in which case ql+1 := q−,l+1, where q−,l+1 is the
estimated collision position. Since the collision time t∗,l+1 is detected by solving

Φ(j)(q̃(t)) = 0,

where q̃ : [lh, (l + 1)h] → RI s is the cubic interpolant of the data q̃(lh) = ql,
dq̃

dt
(lh) = vl, q̃((l + 1)h) =

ql+1,
dq̃

dt
((l + 1)h) = vl+1 (ql+1 and vl+1 are obtained by applying a regular step with j /∈ A) and

ql+1 = q−,l+1 = q̃(t∗,l+1), we can guarantee that

Φ(j)(ql+1) = Φ(j)(q−,l+1) ≥ −Cch
2. (4.13)

for a fixed constant Cc.

To obtain the convergence results, we use the following assumptions.
(H1) The nonpenetration constraints are twice-continuously differentiable, and there exists BH such

that

‖∇qqΦ
(j)(q)‖ ≤ BH , for all q and j = 1, ..., p. (4.14)

(H2) The functions Θ(i)(q), i = 1, ...,m are sufficiently smooth functions.
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(H3) The generalized mass matrix, M , is constant, symmetric, and positive definite.
(H4) The total friction cone FC(q) is uniformly pointed with respect to all configurations q.
(H5) The norm of the external force increases at most linearly with the position and the velocity.

That is,

‖k1(t, q, v)‖ ≤ c1 + c2‖q‖ + c3‖v‖. (4.15)

Here k1(q, v) denotes the external and inertial forces.

The Coriolis force is given by a bilinear operator

[fC(v)]i =
∑

jk

fijkvjvk .

This is certainly true if the system is described by Newton-Euler equations in body coordinates
[21, Section 2.4], where the matrix F (v) of entries

[F (v)]ij =
∑

k

fijkvk

is antisymmetric in the sense that

uT F (v)u = 0, ∀u .

We also assume that the approximations k̃1q and k̃1v are bounded. More precisely,

‖k̃1q‖ ≤ c4, ‖k̃1v‖ ≤ c5. (4.16)

(H6) The contact data given by ñ(q), D̃(q) are globally Lipschitz continuous functions.
(H7) The number of collisions solved by the algorithm is uniformly upper bounded as h → 0.

(H8) The external forces k1(t, q, v) are linear in v, and the approximation k̃1v is constant.

Remark 4.1.
• Assumption (H4) implies that ν̃(q) has uniform full rank. That is, there exists a constant

κ > 0 such that

σmin(ν̃(q)) ≥ κ ∀ q,

where σmin(A) denotes the smallest singular value of the matrix A.
• Assumption (H8) is not needed to prove all the results. More precisely, uniform boundedness of

the numerical velocities as well as a uniform bound on the variation of the numerical velocities
can be obtained without this assumption. We note that this assumption is satisfied when external
forces include linear damping terms, by far the prevailing type of external velocity-dependent
passive force.

The MLCP (4.7) has the same structure as the ones in [4, 28], and therefore the same solvability results

can be used to show that the solution set L(ql, vl, k̃, h, α, γ) is not empty whenever the matrix M̃ is
positive definite. Since the mass matrix M is positive definite, the matrix F (·) is antisymmetric, and the

approximations used are bounded, it follows from (4.5) that M̃ will be positive definite for sufficiently
small values of h and for any value of the velocity.

Note also that in the presence of stiff forces the use of exact Jacobians k1q and k1v may force the
simulation to choose a very small time-step h in order to ensure the positive definiteness of the matrix
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M̃ . In order to allow the simulation to proceed by using moderate values of the time-step h, appropriate
negative semi-definite Jacobian approximations k̃1q and k̃1v may be used [28].

It is convenient for the proofs of the upcoming sections to separate the terms involving Coriolis
forces in (4.4b). To this end, we introduce the following notation:

M
l

=
(
M − αhk̃l

1v − αγh2 k̃l
1q

)
,

k
l

= h
(
(1 − α)k1

(
tl, q

l, vl
)

+ αk1

(
tl+1, q

l, vl
))

+ αh2k̃l
1qv

l.
(4.17)

In terms of the new notation, equation (4.4b) is rewritten as

M
l
vl+1 −

m∑

i=1

ν(i),lc(i),l+1
ν −

∑

j∈A

(n(j),lc(j),l+1
n + D(j),lβ(j),l+1) = Mvl + k

l
+ hF (vl)vl+1,α. (4.18)

5. Kinetic Energy Estimates. The following result establishes a uniform bound for the numer-
ical velocities, as h → 0. Since we are dealing only with inelastic collisions and the friction cone is
uniformly pointed, the compression phase guarantees that the postcollision kinetic energy will be less
than the precollision kinetic energy. Therefore we restrict the proof of the next result to the noncolli-
sional case.

Theorem 5.1. If (H1)–(H8) are satisfied and
1

2
≤ α ≤ 1, then there is a constant c such that

(vl)T Mvl ≤ max
{
(v0)T Mv0, ‖q0‖ + 1

}
ectl , l = 0, 1, . . . , ⌊T/h⌋ ,

for all sufficiently small h.

Proof. Suppose that no collisions are detected in the interval [tl, tl+1]. The new velocity vl+1 will
be determined by solving the LCP (4.4b)–(4.4f).

Left multiplying (4.18) by
(
vl+1,α

)T
and using the fact that F (vl) is a skew-symmetric matrix, we

get that

(
vl+1,α

)T
M

l
vl+1 =

∑m
i=1 c

(i),l+1
ν

(
ν(i),l

)T
vl+1,α +

∑
j∈A

{
c
(j),l+1
n

(
n(j),l

)T
vl+1,α

+
(
β(j),l+1

)T (
D(j),l

)T
vl+1,α

}
+
(
vl+1,α

)T
k

l
+
(
vl+1,α

)T
M

l
vl.

(5.1)

Using (4.4c), we deduce that
(
ν(i),l

)T
vl+1,α = 0, i = 1, 2, . . . ,m. Also, using the contact constraints

(4.4d), we obtain c
(j),l+1
n

(
n(j),l

)T
vl+1,α = 0, j ∈ A. Finally, from the frictional constraints (4.4e) and

(4.4f) we get that

(
β(j),l+1

)T (
D(j),l

)T

vl+1,α = −λ(j),l+1
(
β(j),l+1

)T

e(j) = −µ(j)c(j),l+1
n λ(j),l+1 ≤ 0,∀j ∈ A.

Then (5.1) implies

(
vl+1,α

)T
M

l
vl+1 ≤

(
vl+1,α

)T
M

l
vl +

(
vl+1,α

)T
k

l
. (5.2)
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By expanding the left- and right-hand sides of the above inequality, we obtain

(
vl+1,α

)T
M

l
vl+1 = αvl+1T

Mvl+1 + (1 − α)vlT Mvl+1

−hα2vl+1T
(
k̃l
1v + γhk̃l

1q

)
vl+1

−hα(1 − α)vlT
(
k̃l
1v + γhk

l

1q

)
vl+1, (5.3)

(
vl+1,α

)T (
M

l
vl + k

l
)

= (1 − α)vlT Mvl + αvl+1T
Mvl

−hα2vl+1T
(
k̃l
1v + (γ − 1)hk̃l

1q

)
vl

−hα(1 − α)vlT
(
k̃l
1v + (γ − 1)hk̃l

1q

)
vl

+h
(
vl+1,α

)T (
(1 − α)k1(tl+1, q

l, vl) + αk1(tl, q
l, vl)

)
. (5.4)

Using Assumption (4.15) (H5) we are led to

(
vl+1,α

)T
M

l
vl+1 ≥ α(1 − C6h)‖M1/2vl+1‖

2
− C7h‖M

1/2vl+1‖‖M1/2vl‖

+(1 − α)vlT Mvl+1, (5.5)

(
vl+1,α

)T (
M

l
vl + k

l
)
≤ α

(
−1 +

1

α
+ C8h

)
‖M1/2vl‖

2
+ C9h‖M

1/2vl‖‖M1/2vl+1‖

+C10h
(
α‖M1/2vl+1‖ + (1 − α)‖M1/2vl‖

) (
‖M1/2vl‖ + ‖ql‖ + 1

)

+αvl+1T
Mvl (5.6)

Let us denote

ρl = ‖M1/2vl‖, σl = ‖ql‖ + 1.

Note that α ≥
1

2
gives

2α − 1 ≥ 0 ⇒ (2α − 1)
(
vl+1

)T
Mvl ≤ (2α − 1)ρl+1ρl. (5.7)

Dividing by α both sides of the inequality (5.2) and using the symmetry of the matrix M , the estimates
(5.5)-(5.6), the implication (5.7), as well as the notation above, implies that

(1 − C11h)ρ2
l+1 ≤

(
−1 +

1

α
+ C11h

)
ρ2

l + C11hσl(ρl + ρl+1) +

(
2 −

1

α

)
ρlρl+1 (5.8)

for an appropriately defined constant C11.
Consider now the case for which ρl < ρl+1. Dividing by ρl+1 in (5.8) and using that ρl/ρl+1 < 1

gives

(1 − C12h)ρl+1 ≤ (1 + C12h)ρl + C12hσl, (5.9)

for some constant C12 ≥ 0 and all sufficiently small h. We can rewrite (5.9) in the form

ρl+1 ≤ (1 + C13h)ρl + C13hσl, (5.10)

with C13 apropriatelly chosen. It is straigthforward to see that for the remaining case, ρl+1 ≤ ρl,
inequality (5.10) immediatelly follows. On the other hand, from (4.4a), we have

‖ql+1‖ ≤ ‖ql‖ + ‖M−1/2‖
(
(1 − γ)‖M1/2vl‖ + γ‖M1/2vl+1‖

)
. (5.11)
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Substituting the overestimate for ρl+1, (5.10), into (5.11) gives

σl+1 ≤ h‖M−1/2‖ (1 + γC13h) ρl +
(
1 + γC13h

2‖M−1/2‖
)
σl. (5.12)

It follows that there is a constant C14 such that

ρl+1 ≤ (1 + C14h)ρl + C14hσl

σl+1 ≤ C14hρl + (1 + C14h)σl.

By taking c = 2C14, we have that for all sufficiently small h, the following holds:

∣∣∣
∣∣∣
[

ρl
σl

]∣∣∣
∣∣∣
∞

≤
∣∣∣
∣∣∣
[

1 + C14h C14h
C14h 1 + C14h

]∣∣∣
∣∣∣

l

∞

∣∣∣
∣∣∣
[

ρ0
σ0

]∣∣∣
∣∣∣
∞

= ectl

∣∣∣
∣∣∣
[

ρ0
σ0

]∣∣∣
∣∣∣
∞

,

which conludes the proof of our theorem.
Remark 5.2. The conclusion of Theorem 5.1 implies that both vh(·) and vh,α(·) are uniformly

bounded on [0, T ], as h → 0.

6. Measure Differential Inclusions. In the following we use the setup and some of the results
of [34]. Formally, we are looking at complementarity systems of the following form.

dq

dt
= v (6.1)

M
dv

dt
= k(q, v) + ρ (6.2)

Θ(i)(q) = 0, i = 1, 2, ...,m (6.3)

Φ(j)(q) ≥ 0, j = 1, ..., p (6.4)

ρ(t) = ρ(t) +

p∑

j=1

ρ(j)(t) ∈ FC(q) (6.5)

ρ(t) ∈ span{ν(i)(q(t)) : i = 1, ...,m} (6.6)

‖ρ(j)‖Φ(j)(q) = 0, j = 1, 2, ..., p (6.7)

The differences between the above formulation and the one corresponding to the contact-only case
consists in a different friction cone being used and the additional bilateral constraints enforced by (6.3).
Here FC(q) is the total friction cone (it includes all constraint forces, bilateral and unilateral) as defined
in the previous section. In what follows, we specify what we mean by a solution of (6.1)-(6.7). This is
motivated by the fact that a strong solution may not exist in general [33].

In contact mechanics, measures appear as a result of the presence of impulsive forces, while in-
clusions appear as a result of the presence of Coulomb friction. Because of possible impulsive forces
the velocity of the system is no longer required to be an absolutely continuous function, but rather a
function of bounded variation.

We are going to replace the forces, as they are understood in general, by vector measures. A vector
measure is defined in terms of its action on a continuous function. Assume now that v : [0, T ] → RI s is

a function of bounded variation. That is, the total variation of v,
T∨

0

v(·), is finite. Here
T∨

0

v(·) is the

supremum of the sums
∑N−1

i=0 ‖v(ti+1 − v(ti)‖ over all finite partitions a = t0 < t1 < ... < tN−1 < tN =
b. We denote this by v ∈ BV ([0, T ]). It follows that the measure induced by v can be understood as a
linear and continuous operator defined from C([0, T ]) with values in RI s. More precisely,

< dv, φ >=

∫ T

0

φ(t)dv(t), (6.8)
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where φ : [0, T ] → RI is continuous. The Riemann-Stieljes integral in (6.8), which exists because of v(·)
being of bounded variation, can be approximated by finite Riemann sums:

N−1∑

i=0

φ(τi)[v(ti+1) − v(ti)],

where a = t0 < τ1 < t1 < ... < τN−1 < tN = b. Discontinuities in the velocity may lead to atoms of the
measure dv. Therefore dv is not in general absolutely continuous with respect to the Lebesgue measure

dt, and thus
dv

dt
(·) cannot be defined, in the usual sense, as a Radon–Nykodim derivative. To give a

meaning to inclusions of the form

dv

dt
(t) ∈ K(t), for t ∈ [0, T ], (6.9)

we adopt the following definition [34].
Definition 6.1 (Measure Differential Inclusion). If v ∈ BV ([0, T ]) and K(·) is a convex-set valued

mapping we say that (6.9) holds if, for all continuous φ : [0, T ] → RI , φ ≥ 0 and φ not identically zero,
we have that

∫ T

0
φ(t)dv(t)

∫ T

0
φ(t)dt

∈
⋃

τ :φ(τ) 6=0

K(τ).

Definition 6.2 (Weak Solution of (6.1)-(6.7)). We say that q(t), v(t) is a weak solution of (6.1)-
(6.7) on [0, T ] if

1. v(·) is a function of bounded variation on [0, T ].
2. q(·) is an absolutely continuous function that satisfies

q(t) = q(0) +

∫ t

0

v(τ)dτ, for t ∈ [0, T ]. (6.10)

3. The measure dv(t) must satisfy

M
dv

dt
− k(q, v) ∈ FC(q). (6.11)

4. Θ(i)(q) = 0, i = 1, ...,m
5. Φ(j)(q) ≥ 0, j = 1, ..., p.

7. Uniform Bound in Variations. For the rest of the paper we consider (γ, α) satisfying:

γ = α ∈

[
1

2
, 1

]
. (7.1)

Since γ = α and the number of collisions solved is uniformly upper bounded as h → 0, we have, from
(4.4a), that

qh,α(t) = qh,α(0) +

∫ t

0

vh,α(τ)dτ.

The uniform boundedness of the velocities implies that the sequence
{
qh,α(·)

}
is equicontinuous and

equibounded. Therefore by the Arzela-Ascoli theorem, there exists a uniformly convergent subsequence,
which we also denote by qh,α(·), that converges qh,α(·) → q(·) uniformly in [0, T ].
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Theorem 7.1.

T∨

0

vh,α(·) is uniformly bounded as h → 0, and there exists v∗(·) of bounded variation

such that vh,α → v∗ pointwise and dvh,α → dv∗ weakly.
We break the proof in five subsections, along the lines given in [34], with some modifications due

to the presence of joint constraints.

7.1. Use the regularity assumption on the reduced friction cone to obtain a bound on
the sums

∑
l
‖c̃l,h

n ‖. Let q(·) be the limit of a uniformly convergent subsequence qh,α(·). Let t be a
time instant in the interval (0, T ]. From (3.9) it follows that there exist a unit vector u0(t) and a scalar

ζ(t) > 0, such that for any z = ν̃(q(t))c̃ν + ñ(q(t))c̃n + D̃(q(t))β̃ ∈ FC(q(t)) we have

u0
T (t)ν̃T

⊥(q(t))z ≥ ζ(t)‖c̃n‖. (7.2)

By the closed-graph property of the FC(q(t)) it follows that there is η(t) > 0 and h0 > 0 such that, for
any t′′ satisfying |t′′ − t| ≤ η(t) and any h ≤ h0, we have

u0
T (t)ν̃T

⊥(qh(t′′))z ≥
1

2
ζ(t)‖c̃n‖, (7.3)

for any z ∈ FC(qh(t′′)). Provided that both lh and (l + 1)h lie in the interval [t − η(t), t + η(t)], the
numerical scheme gives

(
M − αhk̃l,h

v − αγh2k̃l,h
q

) (
vl+1,h − vl,h

)
= k̃l,h + zl+1,h, (7.4)

with zl+1,h ∈ F̂C(q(l),h). Let us denote

ν̃l,h
⊥ := ν̃⊥(ql,h) and ν̃l,h := ν̃(ql,h).

From the joint constraint enforced at the velocity level, we have
(
ν̃l,h
)T (

αvl+1,h + (1 − α)vl,h
)

= 0, for
all l. By using the orthogonal decomposition we are led to

vl+1,h = ν̃l,h
⊥ wl+1,h + ν̃l,hul+1,h

vl,h = ν̃l−1,h
⊥ wl,h + ν̃l−1,hul,h. (7.5)

Multiplying both equations in (7.5) on the left by
(
ν̃l,h
⊥

)T

M gives

(
ν̃l,h
⊥

)T

Mvl+1,h =

((
ν̃l,h
⊥

)T

Mν̃l,h
⊥

)
wl+1,h +

(
ν̃l,h
⊥

)T

Mν̃l,hul+1,h

(
ν̃l,h
⊥

)T

Mvl,h =

((
ν̃l−1,h
⊥

)T

Mν̃l−1,h
⊥

)
wl,h +

(
ν̃l−1,h
⊥

)T

Mν̃l−1,hul,h + O(h). (7.6)

For the last equation in (7.6) we have used that ν̃l,h
⊥ = ν̃l−1,h

⊥ + O(h), which holds because of suffi-
cient smoothness of the joint gradients and the uniform boundness of the velocities. Thus, by using

ωi+1,h :=

((
ν̃i,h
⊥

)T

Mν̃i,h
⊥

)
wi+1,h and ωi+1,h,⊥ :=

(
ν̃i,h
⊥

)T

Mν̃i,hui+1,h, we have, with respect to the

new notation,

(
ν̃l,h
⊥

)T

Mvl+1,h = ωl+1,h + ωl+1,h,⊥ and
(
ν̃l,h
⊥

)T

Mvl,h = ωl,h + ωl,h,⊥ + O(h). (7.7)



CONVERGENCE RESULTS IN NONSMOOTH RIGID BODY DYNAMICS 17

We multiply (7.4) on the left by ν̃l,h
⊥ to obtain

ωl+1,h − ωl,h + ωl+1,h,⊥ − ωl,h,⊥ = ν̃l,h
⊥ zl+1,h + O(h), (7.8)

where we have used the fact that k̃l,h
q , k̃l,h

v ,
1

h
k̃l,h are uniformly bounded. It follows from (7.3) that

u0
T (t)

(
ωl+1,h − ωl,h + ωl+1,h,⊥ − ωl,h,⊥

)
+ O(h) ≥

1

2
ζ(t)‖c̃l+1,h

n ‖. (7.9)

Set lmin = ⌈(t − η(t))/h⌉ and lmax = ⌊(t + η(t))/h⌋. Then

lmax−1∑

lmin

u0
T (t)

(
ωl+1,h − ωl,h + ωl+1,h,⊥ − ωl,h,⊥

)
+ O(h(lmax − lmin)) ≥

1

2
ζ(t)

lmax−1∑

lmin

‖c̃l+1,h
n ‖.

The sum on the left-hand side in the above inequality telescopes to

lmax−1∑

lmin

u0
T (t)

(
ωl+1,h − ωl,h + ωl+1,h,⊥ − ωl,h,⊥

)
=

u0
T (t)(ωlmax,h − ωlmin,h + ωlmax,h,⊥ − ωlmin,h,⊥) ≤

‖ωlmax,h‖ + ‖ωlmin,h‖ + ‖ωlmax,h,⊥‖ + ‖ωlmin,h,⊥‖.

Using that h(lmax− lmin) ≤ η(t) and that ωl,h, ωl,h,⊥ are uniformly bounded (the uniform boundedness
of the ω components results from the uniform boundedness of the velocities and the uniform linear
independence of the columns of ν̃) by a constant Bω, we obtain

lmax−1∑

lmin

‖c̃l+1,h
n ‖ ≤

2

ζ(t)
(2Bω + C1η(t)) uniformly as h → 0, (7.10)

where the constant C1 above corresponds to the term O(h(lmax − lmin)).

7.2. Show that all the other constraint impulses are bounded by the normal contact
impulses. A bound on the tangential impulses β̃l+1,h is immediately obtained from the conic constraint:

‖β(j);l+1,h‖1 ≤ µ(j)cn
(j);l+1,h.

Thus, for the combined frictional impulses fT
l+1,h := D̃l,hβ̃l+1,h, we obtain

lmax−1∑

lmin

‖fT
l+1,h‖ ≤ C2

lmax−1∑

lmin

‖c̃l+1,h
n ‖ ≤

2C2

ζ(t)
(2Bω + C1η(t)) , (7.11)

with the last estimate holding uniformly as h → 0. The constant C2 above depends on the bounds on

the frictional directions d
(j)
i (q(·)), the friction coefficients, and the number of generators used in the

polyhedral approximation of the friction cone.
To obtain a bound on

∑lmax−1
lmin

‖fJ
l+1,h,α‖ :=

∑lmax−1
lmin

‖ν̃l,h
(
αc̃l+1,h + (1 − α)c̃l,h

)
‖, we go back

to
(

M −
h

2
k̃l,h

v −
h2

4
k̃l,h

q

)(
vl+1,h − vl,h

)
= k̃l,h + ν̃l,hc̃l+1,h

ν + ñl,hc̃l+1,h
n + D̃l,hβ̃l+1,h,
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which, together with the uniform bounds we have so far, implies

vl+1,h − vl,h = M−1ν̃l,hc̃l+1,h
ν + M−1ñl,hc̃l+1,h

n + M−1D̃l,hβ̃l+1,h + O(h). (7.12)

Equation (7.12), together with the uniform boundedness of the velocity sequence and the uniformly

pointed friction cone assumption, implies that the impulse multipliers c̃l+1,h
ν , c̃l+1,h

n , and β̃l+1,h are
bounded uniformly with respect to l. We define, for all indices l for which it makes sense, the following
quantities.

vl+1,h,α := αvl+1,h + (1 − α)vl,h,

c̃l+1,h,α
ν := αc̃l+1,h

ν + (1 − α)c̃l,h
ν

c̃l+1,h,α
n := αc̃l+1,h

n + (1 − α)c̃l,h
n

β̃l+1,h,α := αβ̃l+1,h + (1 − α)β̃l,h

We note that the definition of our time-stepping scheme (4.4c) implies that

(
ν̃l,h
)T

vl+1,h,α = 0 (7.13)

and that the triangle inequality implies that

‖c̃l,h,α
n ‖ ≤ α‖c̃l+1,h

n ‖ + (1 − α)‖c̃l,h
n ‖, ‖β̃l+1,h,α‖ ≤ α‖β̃l+1,h‖ + (1 − α)‖β̃l,h‖. (7.14)

We multiply (7.12) by α and (7.12) with l → l − 1 by (1 − α). We add the results and obtain, by the
uniform boundedness of the force multipliers and the uniform Lipschitz continuity of ν̃(q), ñ(q), and

D̃(q), that

vl+1,h,α − vl,h,α = M−1ν̃l,hc̃l+1,h,α
ν + M−1ñl,hc̃l+1,h,α

n + M−1D̃l,hβ̃l+1,h,α + O(h). (7.15)

We multiply equation (7.15) on the left by
(
ν̃l,h
)T

and use equation (7.13) at steps l + 1 and l together
with the fact that ν̃l−1,h = ν̃l,h + O(h). The result is

O(h) =
(
ν̃l,h
)T

M−1ν̃l,hc̃l+1,h,α
ν + M−1ñl,hc̃l+1,h,α

n + M−1D̃l,hβ̃l+1,h,α.

Using the fact that the matrix
(
ν̃l,h
)T

M−1ν̃l,h is uniformly positive definite in the sense that its
eigenvalues are bounded away from 0 uniformly with respect to ql,h as well as (7.14), we obtain a bound
for the joint multipliers in terms of the normal contact impulses. More precisely, we have

‖c̃l+1,h,α
ν ‖ ≤ C3‖c̃

l+1,h,α
n ‖ + O(h) ≤ C3

(
α‖c̃l+1,h,α

n ‖ + ‖c̃l,h,α
n ‖

)
+ O(h),

where the constant C3 can be chosen independent of l and h. Adding the above inequalities, we obtain

lmax−1∑

lmin

‖fJ
l+1,h,α‖ :=

lmax−1∑

lmin

‖ν̃l,hc̃l+1,h,α
ν ‖ ≤ C4

lmax−1∑

lmin

‖c̃l+1,h,α
n ‖ ≤

2C4

ζ(t)
(2Bω + C1η(t)) + C5η(t).

(7.16)

7.3. Obtain the bound for the variation of velocities on [t−η(t), t+η(t)]. As we have done
in equation (7.4), denote by zl+1,h,α the total constraint weighted impulse (combine total joint, normal,
and tangential impulses) corresponding to step l + 1, that is, zl+1,h,α = ν̃l,hc̃l+1,h,α

ν + ñl,hc̃l+1,h,α
n +

D̃l,hβ̃l+1,h,α. From the derivations above we have that

lmax−1∑

lmin

‖zl+1,h,α‖ ≤
2C6

ζ(t)
(2Bω + C1η(t)) + C7η(t), (7.17)
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where the constants above can be chosen independent of h. Now from (7.12) we have

‖vl+1,h,α − vl,h,α‖ ≤ ‖M−1zl+1,h,α‖ + O(h),

and by adding, we obtain

lmax−1∑

lmin

‖vl+1,h,α − vl,h,α‖ ≤
2C6

ζ(t)
(2Bω + C1η(t)) + C8η(t),

which shows that

t+η(t)/2∨

t−η(t)/2

vh,α(·) is uniformly bounded as h → 0.

7.4. Obtain the bound for the variation velocities on the entire time interval. Since
(t − η(t)/2, t + η(t)/2) is a covering of [0, T ], there is a finite subcovering

{(ti − η(ti)/2, ti + η(ti)/2 | i = 1, ...,mT } .

Therefore, by summing the contributions corresponding to this finite set of subintervals, we obtain a

uniform bound on

T∨

0

vh,α(·) as h → 0. If we use the fact that vh,α(·) has bounded variation, then,

by Helly’s selection theorem, there exists a subsequence of vhk,α(·) of vh,α(·) that converges pointwise
to v(·) and has bounded variation. Since the limiting velocity v(t) may not be well defined for every
t ∈ [0, T ], we assume without loss of generality, [34], that v(·) is right–continuous, i.e. v(t) = v+(t)
for all t ∈ [0, T ]. The corresponding functions qhk,α(·) converge to the indefinite integral of v(·) by the
pointwise convergence theorem for Lebesgue integrals. We assume for simplicity that this is the entire
sequence and therefore qh,α(·) → q(·) and vh,α(·) → v(·).

7.5. Weak ∗ convergence. . Since
∨T

0 vh,α(·) are uniformly bounded as h → 0 and vh,α(0) = v(0)
and since vh,α(·) → v(·) pointwise, it follows that dvh,α → dv weakly *, that is,

∫ T

0

φ(t)T dvh,α(t) →

∫ T

0

φ(t)T dv(t)

for all continuous functions φ(t). Therefore, dvh,α(·) → dv(·) weak ∗ as Borel measures. The proof of
Theorem 7.1 is complete.

8. Limits are Solutions to the Measure Differential Inclusion. In this section we will use
Assumptions (H1)–(H8) to prove that the limits are solutions to the rigid body MDI. Assume (q, v)
is a solution of the measure differential inclusion of Definition (6.2). We write

v = ν̃(q)u + ν̃⊥(q)w. (8.1)

It follows that the Borel measure dv (which is well defined since v is a function of bounded variation
on [0, T ]) can be written as dv = d (ν̃(q)u) + d (ν̃⊥(q)w) . Since from the joint constraints the velocity v

satisfies (ν̃(q))
T

v = 0, we must have u = 0 which implies d (ν̃(q)u) = 0. This leaves dv = d (ν̃⊥(q)w) .
We can expand further to obtain, as detailed in Appendix A, that

dv = d (ν̃⊥(q)w) = ν̃⊥(q)dw +
∂

∂q
(ν̃⊥(q)w) dq

= ν̃⊥(q)dw +
∂

∂q
(ν̃⊥(q)w) vdt = ν̃⊥(q)dw +

(
∂

∂q
(ν̃⊥(q)w)

)
ν̃⊥(q)wdt

(8.2)
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where for the second last equality we have used (6.10) and for the last one we have used the fact that
u from (8.1) is zero. Note that the second term in the last equality of (8.2) is a measure which is
absolutely continuous with respect to the Lebesque measure dt. Motivated by the analysis above we
introduce the following definition which gives the measure differential inclusion on the reduced cone.

Definition 8.1 (Reduced Weak Solution of (6.1–6.7)). We say that q(t), w(t) is a reduced weak
solution of (6.1–6.7) on [0, T ] if

1. w(·) is a function of bounded variation on [0, T ].
2. q(·) is an absolutely continuous function that satisfies

q(t) = q(0) +

∫ t

0

ν̃⊥(q(τ))w(τ)dτ, for t ∈ [0, T ]. (8.3)

3. The measure dw(t) must satisfy

(
(ν̃⊥(q))

T
Mν̃⊥(q)

) dw

dt
− kw,⊥(t, q, w) ∈ FCr(q), (8.4)

where

kw,⊥(t, q, w) = (ν̃⊥(q))
T

kw(t, q, w) (8.5)

and

kw(t, q, w) = k(t, q, ν̃⊥(q)w) − M

((
∂

∂q
(ν̃⊥(q)w)

)
ν̃⊥(q)w

)
(8.6)

4. Φ(j)(q) ≥ 0, j = 1, ..., p.

Lemma 8.2. If (q, w) is a reduced weak solution of (6.1–6.7) on [0, T ] in the sense of Definition
8.1 and Θ(q(0)) = 0, then (q, v) = (q, ν̃⊥(q)w) is a weak solution of (6.1–6.7) on [0, T ] in the sense of
Definition 6.2

Proof. By construction (q, v) = (q, ν̃⊥(q)w) and from conditions 1, 2 and 4 of Definition 8.1 it
immediately follows that conditions 1, 2 and 5 of Definition 6.2 are satisfied. To prove that condition
4 of Definition 6.2 is satisfied, we use (8.3) to obtain

Θ(q(t)) = Θ(q(0)) +
∫ t

0
(ν̃(q))

T
v(τ)dτ

= Θ(q(0)) +
∫ t

0

(
(ν̃(q))

T
ν̃⊥(q(τ))

)
w(τ)dτ

= Θ(q(0))

Since Θ(q(0)) = 0, we have Θ(q(t)) = 0 for all t ∈ [0, T ] and therefore condition 4 of Definition 6.2 is
satisfied.

8.1. The MDI for the Limit. To prove that (6.11) holds we mainly reverse the derivations in

(8.2). That is, if (q, w) satisfies (8.4), then there exist z ∈ FC(q) and a vector measure d̃ν ∈ RI m such
that

Mν̃⊥(q)
dw

dt
− kw(t, q, w) = z + ν̃d̃ν .

Since z ∈ FC(q) implies that z + ν̃d̃ν ∈ FC(q) for any d̃ν ∈ RI m, we can write

Mν̃⊥(q)
dw

dt
− kw(t, q, w) ∈ FC(q).
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Using (8.2) together with (8.6) in the above inclusion gives

M
dv

dt
− k(t, q, w) ∈ FC(q)

and therefore also condition 4 of Definition 6.2 is satisfied. This completes the proof.
We start by writing (4.18) at step (l + 1) and step (l) as follows:

M
l (

vl+1 − vl
)
−
(
k

l
+ hF (vl)vl+1,α

)
= zl+1, (8.7)

M
l−1 (

vl − vl−1
)
−
(
k

l−1
+ hF (vl−1)vl,α

)
= zl, (8.8)

where zk+1 ∈ F̂C(qk) and M
l
, k

l
are given by (4.17).

Since the approximation k̃1q, is uniformly bounded, we have that

M
k

= M − αhk̃1v + O(h2).

We now multiply (8.7) by α and (8.8) by (1 − α) and add them up. We obtain

M
(
vl+1,α − vl,α

)
−
(
αk

l
+ (1 − α)k

l−1
)

−hαk̃1v

(
vl+1,α − vl,α

)
− h

(
αF (vl)vl+1,α + (1 − α)F (vl−1)vl,α

)
+ O(h2) = zl+1,α, (8.9)

where we have used the fact that by Assumption (H8) k̃l
1v is constant, i.e., k̃l

1v = k̃1v for all l.
Using the fact that F (·) is a linear map we have that

(1 − α)F (vl−1)vl,α = F ((1 − α)vl−1)vl,α

= F (vl,α)vl,α − αF (vl)vl,α.

Then the Coriolis terms in (8.9) become

αF (vl)vl+1,α + (1 − α)F (vl−1)vl,α = F (vl,α)vl,α + αF (vl)
(
vl+1,α − vl,α

)
(8.10)

Since the sequence vh(·) is uniformly bounded, vh,α(t + h) → v+(t) and vh,α(t) → v(t) = v+(t) a.e. on
[0, T ], it follows that

F (vh(t))
(
vh,α(t + h) − vh,α(t)

)
→ 0 as h → 0,

for t ∈ [0, T ]−N , where N is a set of Lebesque measure zero. The same reasoning applies for the term

k̃1v

(
vl+1,α − vl,α

)
, giving

k̃1v

(
vh,α(t + h) − vh,α(t)

)
→ 0 pointwise a.e. in [0, T ]. (8.11)

Now by using the fact that k1(t, q, v) is linear in v, as well as the fact that k̃1q is bounded and ql =
ql−1 + O(h) we get that

k
h
(t) := k

h
(t, qh,α(t), vh,α(t)) → k1(t, q(t), v(t)) pointwise a.e. in [0, T ]. (8.12)

Here

k
h
(t) := k

h
(t, qh,α(t), vh,α(t)) = (1−α)k1(t, q

h,α(t), vh,α(t))+αk1(t+h, qh,α(t), vh,α(t))+αk̃1q(t, q
h,α(t), vh,α)
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is the function equivalent to the quantity
1

h
k

l
from (4.17). Equation (8.12) implies that

αk
h
(t) + (1 − α)k

h
(t − h) → k1(t, q

h,α(t), vh,α(t)) pointwise a.e. in [0, T ]. (8.13)

Using Assumptions (H2) and (H6) we can write zl+1,α in (8.9) as

zl+1,α = zl+1 + O
(
h‖vl+1,α − vl,α‖

)

with zl+1 ∈ F̂C(ql). This implies that for all h sufficiently small

M
dv

dt

h,α

− k̂h(t) ∈ F̂C(qh,α(t) ⊂ FC(qh,α(t), (8.14)

where

k̂h(t) = αk
h
(t) + (1 − α)k

h
(t − h) +

(
k̃1v + F (vh(t))

) (
vh,α(t + h) − vh,α(t)

)

+ F (vh,α(t))vh,α(t) + O(h) + O
(
h‖vl+1,α − vl,α‖

)
.

From (8.11–8.13) we can easily see that

k̂h(t) → k(t, q(t), v(t) = F (v(t))v(t) + k1(t, q(t), v(t)) pointwise a.e. in [0, T ].

We now write:

vh,α(t) = ν̃⊥
(
qh,α(t)

)
wh,α(t) + ν̃

(
qh,α(t)

)
uh,α(t),

which gives

uh,α(t) =
((

ν̃
(
qh,α(t)

))T
ν̃
(
qh,α(t)

))−1 (
ν̃(qh,α(t)

)T
vh,α(t). (8.15)

Using a Taylor expansion together with Assumption (H2) we obtain

(
ν̃(qh,α(t)

)T
vh,α(t) =

(
ν̃(qh,α(tl)

)T
vh,α(t) +

(
∂
∂q

(
ν̃T (q)vh,α(t)

)∣∣∣
q=qh,α(tl)

)(
qh,α(t) − qh,α(tl)

)

+ O
(∣∣∣∣qh,α(t) − qh,α(tl)

∣∣∣∣2
)

(8.16)

Since the definition of the time-stepping scheme enforces
(
ν̃(qh,α(tl)

)T
vh,α(t) = 0 for all t ∈ (tl, tl+1]

and since qh,α(t) − qh,α(tl) = (t − tl)v
h,α(t) for all t ∈ [tl, tl+1], we have

(
ν̃(qh,α(t)

)T
vh,α(t) = (t − tl)

(
∂

∂q

(
ν̃T (q)vh,α(t)

)∣∣∣∣
q=qh,α(tl)

)
vh,α(t) + O

(
h2
)

(8.17)

Combining (8.15) and (8.17) gives

(
ν̃⊥(qh,α(t)

)T
M
(
ν̃(qh,α(t))uh,α(t) − ν̃(qh,α(t − h))uh,α(t − h)

)
= O

(
h
∣∣∣∣vh,α(t) − vh,α(t − h)

∣∣∣∣)

+ O(h2)
(8.18)
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Using a similar methodology one also gets

ν̃⊥(qh,α(t))wh,α(t) − ν̃⊥(qh,α(t − h))wh,α(t − h)
= ν̃⊥(qh,α(t))

(
wh,α(t) − wh,α(t − h)

)

−

(
∂

∂q

(
ν̃T (q)wh,α(t − h)

)∣∣∣∣
q=qh,α(t)

)
(
qh,α(t) − qh,α(t − h)

)
+ O(h2)

= ν̃⊥(qh,α(t))
(
wh,α(t) − wh,α(t − h)

)

+ h

(
∂

∂q

(
ν̃T (q)wh,α(t − h)

)∣∣∣∣
q=qh,α(t)

)
vh,α(t) + O(h2)

= ν̃⊥(qh,α(t))
(
wh,α(t) − wh,α(t − h)

)

+ h

(
∂

∂q

(
ν̃T
⊥(q)wh,α(t − h)

)∣∣∣∣
q=qh,α(t)

)
ν̃⊥(qh,α(t))wh,α(t) + O(h2),

(8.19)

where for the last equality we have used (8.17) which give hν̃
(
qh,α(t)

)
uh,α(t) = O(h2). We use (8.19)

to write

(
ν̃⊥(qh,α(t))

)T
M

(
ν̃⊥(qh,α(t))wh,α(t) − ν̃⊥(qh,α(t − h))wh,α(t − h)

)

=
((

ν̃T
⊥Mν̃⊥

)
(qh,α(t)

) (
wh,α(t) − wh,α(t − h)

)

+ h
(
ν̃⊥(qh,α(t))

)T
M

(
∂

∂q

(
ν̃T
⊥(q)wh,α(t − h)

)∣∣∣∣
q=qh,α(t)

)
ν̃⊥(qh,α(t))wh,α(t)

+ O(h2).
(8.20)

Multiplying equation (8.14) on the left by
(
ν̃⊥(qh,α(t)

)T
and using (8.18), (8.20) we obtain

(
ν̃⊥(qh,α(t))

)T
Mν̃⊥(qh,α(t))

dw

dt

h,α

−
(
k̂h

w,⊥(t) + O
(∣∣∣∣vh,α(t) − vh,α(t − h)

∣∣∣∣)+ O(h)
)

∈ F̂Cr(q
h,α(t))

⊂ FCr(q
h,α(t)),

(8.21)
where

k̂h
w,⊥(t) =

(
ν̃⊥(qh,α(t))

)T
(

k̂h(t) − M

(
∂

∂q

(
ν̃T
⊥(q)wh,α(t − h)

)∣∣∣∣
q=qh,α(t)

)
ν̃⊥(qh,α(t))wh,α(t)

)
(8.22)

Given that qh,α(·) → q(·) uniformly on [0, T ], vh,α(·) → v(·) a.e. on [0, T ] and uh,α(·) → 0 on [0, T ] we
have

(
ν̃⊥(qh,α(t))

)T
Mν̃⊥(qh,α) → (ν̃⊥(q(t))

T
Mν̃⊥(q(t) uniformly in [0, T ] (8.23)

k̂h
w,⊥(t) → kw,⊥(t, q(t), w(t)) pointwise a.e. on [0, T ] (8.24)

To obtain the measure differential inclusion for the limits (q, w) we invoke [36, Theorem 4], stated in
Appendix B, taking into account that (8.21), (8.23) and (8.24) are satisfied. In our case, the requirement
of [36, Theorem 4] that min {‖z‖|z ∈ K(w)} is uniformly bounded is immediately satisfied because K(w)
are cones and always contain the zero element. Given also (8.23–8.24) as well as the fact that, from
Lemma 3.5, FCr(q) is uniformly pointed, we can apply the above result directly to obtain that the
limits (q, w) satisfy the inclusion (8.4).

To complete this subsection, we note that for any t ∈ [0, T ], we have that

qh,α(t) − qh,α(0) =
∫ t2

t1
vh,α(τ)dτ

=
∫ t2

t1
ν̃⊥(qh,α(τ))wh,α(τ) + ν̃(qh,α(τ))uh,α(τ)dτ
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Since uh,α(·) → 0 = u(·) (this results from equation (8.15) and (8.16) together with
(
ν̃(qh,α(tl)

)T
vh,α(t) =

0) as h → 0 pointwise on [0, T ] and qh,α(0) = q(0) we obtain that

q(t) = q(0) +

∫ t

0

ν̃⊥(q(τ))w(τ)

as required by (8.3).

8.2. Feasibility of the Limiting Trajectories.
Lemma 8.3. Assume that

Θ(i)(q0) = 0, Φ(j)(q0) ≥ 0, i = 1, ...,m, j = 1, ..., p.

Then the limit q(·) is feasible in the sense that

Θ(i)(q(t)) = 0, Φ(j)(q(t)) ≥ 0, i = 1, ...,m, j = 1, ..., p, for all t ∈ [0, T ].

Proof. To prove the first part we note that by using the definition of the time-stepping scheme, the
fact that the numerical velocities vl are uniformly bounded as well as the fact that the algorithm solves
a finite number of collisions in [0, T ], we obtain:

∣∣∣∣
∣∣∣∣
(
ν(i)(qh,α(t))

)T

vh,α(t)

∣∣∣∣
∣∣∣∣ ≤ C1h, almost everywhere in [0, T ].

Taking the limit as h → 0 gives:

(
ν(i)(q(t))

)T

v(t) = 0 almost everywhere in [0, T ].

The last statement implies that for all t ∈ [0, T ] and all i = 1, ...,m, we have

Θ(i)(q(t)) = Θ(i)(q0) +
∫ t

0

(
ν(i)(q(τ))

)T
v(τ)dτ

= Θ(i)(q0)
= 0.

To prove the second part, assume first that Φ(j)(q0) = 0, for some j ∈ {1, ...,m}. This implies that
j ∈ A and therefore

(
n(j)(q0)

)T (
αv1 + (1 − α)v0

)
= 0.

Using this we obtain that Φ(j)(q1) = Φ(j)(q0) + O(h2) which implies, by assumption (H1), that

Φ(j)(q1) ≥ −C2h
2,

where the constant C2 depends on the uniform bound for the velocities and the constant BH in (4.14).
Assuming Φ(j)(q1) ≤ 0, i.e., j ∈ A at step 2, we can bound (in the same fashion as we did above) the
negative part of Φ(j)(·) at the next step by Φ(j)(q2) ≥ −2C2h

2. We can continue this process until the
first k for which Φ(j)(qk) ≤ 0 and Φ(j)(qk+1) > 0. We obtain the estimate:

Φ(j)(ql) ≥ −lC2h
2 ≥ −(C2 · T )h, l = 0, ..., k, (8.25)
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where to obtain the last inequality we have used that k ≤ lmax =

⌊
T

h

⌋
.

If Φ(j)(q0) > 0, the only way to obtain Φ(j)(qk) < 0, for some k is to have at least one collision
occurring. Assume that this k–th time-step is the first collisional time-step. We can guarantee by the
collision-detection algorithm that Φ(j)(qk) ≥ −C3h

2 (for a fixed constant C3), where qk is the detected
position for the collision. When computing the solution at step (k + 1), the index j is a component of
the active set. We have two possibilities, for step (k + 1):

• The non–penetration constraint (j) leaves the active set , i.e., Φj(qk+1) > 0, in which case we
can restart recursively, or,

• The non–penetration constraint (j) remains in the active set , i.e., Φ(j)(qk+1) ≤ 0. In this case,
we have Φ(j)(q(k+1)) ≥ −(C3 + C2)h

2. Continuing like this until step (k + r + 1) where either

take-off occurs or (k + r + 1) ≥
T

h
, we obtain the estimate:

Φ(j)(qk+l) ≥ −(C3 + lC2)h
2 ≥ −C4h, l = 0, ..., r, (8.26)

Since the number of changes in the active set is uniformly upper bounded as h → 0, we can
separate the two cases above and combine equations (8.25–8.26) to obtain

Φ(j)(ql) ≥ −Ch, 0 ≤ l ≤

⌊
T

h

⌋
.

It follows that Φ(j)(qh,α(t)) ≥ −Ch for h sufficiently small and all t ∈ [0, T ]. Taking the limit
as h → 0 we obtain Φ(j)(q(t)) ≥ 0, t ∈ [0, T ].

We summarize the analysis above in the following result

Theorem 8.4. Assume that γ = α ∈

[
1

2
, 1

]
and conditions (H1)–(H8) hold. Then there exists a

subsequence hk → 0 such that
1. qhk,α(·) → q(·) uniformly.
2. vhk,α(·) → v(·) pointwise a.e.
3. dvhk,α(·) → dv(·) weak * as Borel measures in [0,T], and every such subsequence converges to

a solution (q(·), v(·)) of the measure differential inclusion (6.10–6.11).
Therefore, q(t), v(t) is a weak solution of our model.

9. Examples. In this section we present two numerical examples that illustrate some of the the-
oretical points made in this work.

9.1. A simple joint example. As an introductory example, consider the dynamics of the system
q̈ = 0, subject to the joint constraint q = 0, to which we apply the scheme (4.4) with parameters α = 1

2
and γ = 1

2 . If the initial conditions are q = 0 and q̇ = 0 then the exact solution satisfies q(t) = 0.
To model the effect of errors on initial conditions, we start with q = 0, q̇ = ǫ. Our scheme produces

ql,α = 0 and vl = (−1)lǫ. The total variation of the velocity for the time interval T is 2ǫT
h , where h

is the time step. Therefore, no matter how small the initial error, the total variation is unbounded,
and the resulting velocity function does not converge pointwise as h → 0. On the other hand, we can
immediately see that vl,α = 0 and that the velocity function defined in our main result has bounded
variation and is convergent pointwise. This also validates the fact that our bounded variation for vl,α

result holds irrespective of the initial error in constraint satisfaction, and that the same result cannot
be proved for vl (though for the case with exact satisfaction of the initial constraints we could neither
prove nor disprove bounded variation of the velocity sequence).
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Of course, this difficulty will disappear if we make ǫ = 0. But on one hand, in practical examples
exact satisfaction of the constraints is difficult to guarantee. And on the other hand, this example is
indicative of the fact that vl,α has a more stable behavior than vl.

9.2. An example with stick-slip behavior. We want to further motivate our choice for the
velocity sequence by looking at a very simple example, [28], with stick–slip behavior. In that example,
a block of mass m = 1 is subjected to an exterior force k(t) = 8 cos(t) and is sliding on a flat table
with friction coefficient µ = 0.8. The initial position of the block is q0 = (3, 0)T and the initial velocity
is v0 = (0, 0)T . The gravity G = (0,−mg)T is calculated with g = 9.81. We compare the weighted

numerical velocity sequence vh,α(t) to the sequence vh(t), for α = γ =
1

2
. The positions qh,α(tl) and

velocities vh(tl), v
h,α(tl) with α = γ =

1

2
are shown in Figure 9.2, and they indicate a typical stick-slip

behavior. We note that the numerical velocities exhibit a quite different behavior, in line with our
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Fig. 9.1. Numerical position and velocities for T = 10 (s), α = γ = 1/2 and h = 0.01. The plot on the left shows

positions qh,α
1

(tl), while the two plots on the right show the velocity sequences vh,α
1

(tl) at the top and vh
1
(tl) at the bottom.

observations from the preceding sections. We see that, starting with the onset of sticking, the velocity
sequence vl exhibits oscillations that are not present in the sequence vl,α, which has the value 0 during
the sticking phase. As opposed to the previous example, we do not obtain unbounded variation, though
the total variation of the two velocity solutions is different. Nonetheless, the example illustrates the
difficulty in obtaining a good behavior of the total variation of the velocity solution vl, as opposed to
vl,α, and justifies our choice of the latter for our convergence result.
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10. Conclusions. In this work, we have defined a convergence framework for a class of time-
stepping schemes for multi-rigid-body dynamics with joints, contact, and friction. In our framework
the numerical solution is shown to converge to the solution of a measure differential inclusion. The
novelty of our approach resides in the fact that convergence in an MDI sense of an LCP time-stepping
scheme is proved, for the first time, for the case that involves joint constraints as well. We note that
such a proof does not directly follow from representing a joint constraint (an equality constraint) as
two opposite inequality constraints (contact constraints) and applying previous convergence results
[33, 34], because the resulting system cannot possibly have a pointed friction cone, since any action
can be realized with infinite multipliers by cancellation. The situation is analogous to the loss of the
Mangasarian-Fromovitz constraint qualification in nonlinear programming when one equality constraint
is represented as two inequality constraints [22]. In this work, results for cases involving joints are proved
by defining the measure differential inclusion with respect to an appropriately defined reduced friction
cone.

The convergence framework presented here accommodates time-stepping methods based on semi-
explicit Euler methods [4, 33] as well as various instances of the trapezoidal method that have been
shown to have second-order convergence under certain assumptions [28]. An important step in the
convergence proof, following the technique developped in [34], is the proof of the bounded variation
of the discrete velocity sequence. We show that, although this may not hold for most trapezoidal-like
methods for the natural discrete velocity sequence (v(t) = v(l+1), for t ∈ (tl, tl+1], which is the one used
in the seminal work [34]), it does hold for the modified velocity sequence v(t) = αv(l+1) +(1−α)v(l) for
t ∈ (tl, tl+1] where α it the parameter used in the enforcement of the linearization of the geometrical
constraints (contact and joint constraints). This point is reinforced by numerical examples.
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[23] P. Painlevé, Sur le lois du frottement de glissemment, Comptes Rendus Acad. Sci. Paris, 121 (1895), pp. 112–115.
[24] J.-S. Pang, V. Kumar, and P. Song, Convergence of time-stepping method for initial and boundary-value frictional

compliant contact problems, SIAM J. Numer. Anal., 43 (2005), pp. 2200–2226.
[25] J.-S. Pang and D. Stewart, Differential variational inequalities, Math. Program., (2003), p. submitted.
[26] , Solution dependece on initial conditions in differential variational inequalities, Set-Valued Analysis, (2004),

p. submitted.
[27] J.-S. Pang and J. C. Trinkle, Complementarity formulations and existence of solutions of dynamic multi-rigid-

body contact problems with coulomb friction, Math. Program., 73 (1996), pp. 199–226.
[28] F. A. Potra, M. Anitescu, B. Gavrea, and J. Trinkle, A linearly implicit trapezoidal method for integrating

stiff multibody dynamics with contact and friction, International Journal for Numerical Methods in Engineering,
66(7) (2006), pp. 1079–1124.

[29] F. Radjai, M. Jean, J.-J. Moreau, and S. Roux, Force distributions in dense two-dimensional granular systems,
Physical Review Letters, 77(2) (1996), pp. 274–277.

[30] M. Saraniti, S. Aboud, and R. Eisenberg, The simulation of ionic charge transport in biological ion channels:
an introduction to numerical methods, Reviews in Computational Chemistry, 22 (2006), pp. 229–293.

[31] P. Song, P. Kraus, V. Kumar, and P. Dupont, Analysis of rigid-body dynamic models for simulation of systems
with frictional contacts, Journal of Applied Mechanics, 68(1) (2001), pp. 118–128.

[32] P. Song, J.-S. Pang, and V. Kumar, A semi-implicit time-stepping model for frictional compliant contact problems,
International Journal of Numerical Methods in Engineering, 60 (2004), pp. 267–279.

[33] D. E. Stewart, Existence of solutions to rigid body dynamics and the Painlevé paradoxes, C. R. Acad. Sci. Paris,
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Appendix A. The Details in the Derivation of (8.2). In this section we present the details of
obtaining equation (8.2). The main result that we use can be found in [20], page 9 and it is listed below:
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Lemma A.1 ([20], pp. 9). If u1, u2 ∈ BV
(
[0, T ], RI k

)
then d

(
uT

1 u2

)
is a real Borel measure on

[0, T ], which we write d
(
uT

1 u2

)
∈ B([0, T ], RI ) and

d
(
uT

1 u2

)
=

(
u−

2

)T
du1 +

(
u+

1

)T
du2

=
(
u+

2

)T
du1 +

(
u−

1

)T
du2,

(1.1)

where for a function f ∈ BV
(
[0, T ], RI k

)
, f+ (f−) denotes the right–limit (left–limit) of f . More

precisely f+(t) = lims→t, s>t f(s) (f−(t) = lims→t, s<t f(s)) with the convention that if t is the right
(left) endpoint of [0, T ] we take f+(t) = f(t) (f−(t) = f(t)). Note that since f is of bounded variation
these limits exist for all t in [0, T ].

Proving (8.2). We recall that q : [0, T ] → RI s is a Lipschitz continuous function , v = ν̃⊥(q)w ∈
BV ([0, T ], RI s) and ν̃⊥ : RI s → RI s×(s−m) is sufficiently smooth. We further assume that v(·) = v+(·)
(Note that since q(·) is continuous and ν̃⊥(·) is uniformly full column rank this also implies that w(·) is
equal to its right limit). To prove (8.2) the steps itemized below are followed.

• Chain rule: d (ν̃⊥(q)w) = ν̃⊥(q)dw +
∂

∂q
(ν̃⊥(q)w) dq

For every i ∈ {1, ..., s} we apply (1.1) with

u1 = (ν̃⊥(q))i and u2 = w.

Here if A is a given matrix Ai denotes its i–th row written in column format. Since q(·) is
Lipschitz continuous and ν̃⊥(·) is sufficiently smooth it follows that u1 ∈ BV ([0, T ], RI s−m) and
u+

1 (t) = u−
1 (t) = u1(t), for all t ∈ [0, T ]. We also have u2 = w ∈ BV ([0, T ], RI s−m). Using (1.1)

we obtain

(dv)i = (d (ν̃⊥(q))i)
T

w + ((ν̃⊥(q))i)
T

dw, (1.2)

where we have used the continuity of u1 and right continuity of u2. Since ν̃⊥(·) is sufficiently
smooth we can write

d (ν̃⊥(q))i =

(
∂

∂q
((ν̃⊥)i) (q)

)
dq, (1.3)

where the (s−m)× s matrix in the right–hand side is the Jacobian of (ν̃⊥(q))i. Using (1.3) in
(1.2) for all i gives the desired result, i.e.,

d (ν̃⊥(q)w) = ν̃⊥(q)dw +
∂

∂q
(ν̃⊥(q)w) dq. (1.4)

• The differential vector measure induced by q: dq = vdt.
Since

q(t) = q(0) +

∫ t

0

v(τ)dτ,

for all t ∈ [0, T ] and v is bounded on [0, T ] it follows that dq is absolutely continuous w.r.t. the
Lebesque measure dt and the Radon-Nicodym derivative is

v =
dq

dt
.

and therefore we may write dq = vdt. Note that the Radon-Nicodym derivative (with respect
to the Lebesque measure) is uniquely determined up to a set of (Lebesque) measure 0.
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Appendix B. Theorem 4, [36]. Suppose that qn̂(·) are continuous, vn̂(·) have uniformly bounded
variation and kn̂(·) are uniformly bounded, all on [0, T ], and qn̂(·) → q(·) uniformly, vn̂(·) → v(·)
pointwise a.e. and kn̂(·) → k(·) pointwise a.e. Suppose also that K : RI n ⇒ C(RI n) has closed graph,
min {‖z‖|z ∈ K(w)} is uniformly bounded and K(w) is pointed for all w ∈ RI n. Then if

dvn̂

dt
(t) ∈ K(qn̂(t)) − kn̂(t)

for all n̂, the limit satisfies

dv

dt
(t) ∈ K(q(t)) − k(t).

Here C(RI n) denotes all the closed and convex subsets of RI n.
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