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This paper summarizes the results of numerical simulations of the interaction of a pair of
biofilaments mediated by a molecular motor. The filaments are modeled as flexible rods, and
the results are applicable to microtubules, which are relatively stiff, as well as to much softer
filaments, such as actin. The results provide insight into the effects of flexibility on cytoskeleton
formation and the rheology of semiflexible filament networks. The simulations are based on a
nonlinear elasticity equation. The results show that flexibility enhances the tendency of the filaments
to align. The enhancement in turn favors the formation of large-scale structures in multifilament
systems. Simulations for soft filaments show that the action of the motor can result in the formation
of multiple loops of the filaments as a result of buckling.

PACS numbers: 87.16.-b, 05.65.+b,47.55.+r

I. INTRODUCTION

One of the primary functions of molecular motors
is to form complex networks of long biofilaments
(microtubules, actin, and others) and organize the
cytoskeleton of daughter cells during cell division [1].
In vitro experiments of the interaction of molecular
motors and microtubules [2–7] performed in isolation
from other biophysical processes that normally occur
simultaneously in vivo have shown that, at sufficiently
large concentrations of the molecular motors and
microtubules, the latter self-organize in starlike asters

and rotating vortices, depending on the type and
concentration of the molecular motors.

This phenomenon of pattern formation in mixtures
of microtubules and molecular motors can be studied
in a multiscale framework. In [8, 9] we developed
a mesoscopic theory to explain the alignment of the
microtubules (see also Ref. [10]). The theory is based on
a stochastic master equation that governs the evolution
of the probability density of microtubules with a given
orientation at a given location. Binary interactions of
microtubules are considered as instantaneous collisions

that are mediated by uniformly distributed motors. In
this mesoscopic theory, the details of the interaction
kernel are assumed to be known and derived from a
microscopic theory. In the present paper we consider such
a microscopic theory. In particular, we are interested in
quantifying the effects of flexibility of the filaments on
the interaction kernel.

Experiments [4–7] suggest the following qualitative
picture of motor–filament interactions. If a free molecular
motor binds to a microtubule at a random position, it
marches along the filament in a fixed direction until it
unbinds, perhaps after a period of dwelling at the end
of the filament, as for ncd-type motors. The position

and orientation of the filament are essentially unchanged
by the process, since the mass of the molecular motor
is small in comparison with that of the microtubule.
However, if a molecular motor binds to two microtubules
(most molecular motors have at least two binding sites),
it can change the relative position and orientation of
the filaments significantly. The two-dimensional case
is illustrated in Fig. 1a. Before the interaction, the
microtubules are oriented at angles ϕ1,b and ϕ2,b. The
simultaneous binding of the molecular motor to the
two microtubules results in a complete alignment of
the latter; after the interaction the microtubules are
oriented at angles ϕ1,a and ϕ2,a, where ϕ1,a = ϕ2,a =
1
2 (ϕ1,b + ϕ2,b). We refer to this type of interaction as a
fully inelastic collision, by analogy with the physics of
inelastically colliding grains; see, for example, Ref. [11]..
In [8, 9] we showed that these inelastic collisions can
lead to an orientational instability and a subsequent local
ordering of filaments. The orientational instability can
be compared to the clustering instability in dissipative
granular gases [12].

While a fully inelastic collision appears to be a simple
and useful approximation, the details of the interaction
of two microtubules mediated by a molecular motor are
more complicated. A useful parameter to characterize
the inelasticity of the collision is the inelasticity factor ǫ,

ǫ = ϕf/ϕ0, (1)

where ϕf is the angle between the filaments after the
interaction, ϕf = |ϕ1,a − ϕ2,a|, and ϕ0 the angle before
the interaction, ϕ0 = |ϕ1,b −ϕ2,b|. Thus, ǫ = 0 for a fully
inelastic collision (ϕ1,a = ϕ2,a) and ǫ = 1 for an elastic
collision (ϕf = ϕ0).

A micromechanical calculation [9] shows that for pairs
of rigid filaments the interaction mediated by a molecular
motor is only partially inelastic and, in fact, depends
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on the position of the initial attachment point on the
tubule. A more meaningful concept is therefore the mean

inelasticity factor ǭ,

ǭ =
〈ϕf 〉
ϕ0

. (2)

Here the average is taken over all possible initial
attachment positions; for filaments of length L,

〈ϕf 〉 = L−1

∫ L/2

−L/2

ϕf (s)ds. (3)

Thus, ǭ = 0 for fully inelastic interactions, ǭ = 1 for fully
elastic interactions.

The mean inelasticity factor ǭ is a complicated
nonlinear function of ϕ0, but a good approximation for
rigid filaments and small ϕ0 is

ǭ ≈ 1

2
+

arcsinh(
√

κ/2)
√

κ(1 + κ/4)
. (4)

Here κ measures the ratio of the translational and
rotational viscous drag coefficients, κ = (ξ‖/ξr)L

2 for
tubules of length L. Numerically, κ is in the range of 12
to 15, so ǭ ≈ 0.63 for rigid rods at small angles [9].

The sensitivity of the inelasticity to the initial
attachment point is measured by the asymmetry

coefficient ᾱ,

ᾱ =
〈sϕf 〉
L〈ϕf 〉

. (5)

For rigid rods, ϕf (s) = ϕf (−s), so ᾱ = 0. Note that
the asymmetry coefficient differs from the collision kernel
anisotropy introduced in Ref. [9]. The latter is related
to the motor dwelling time at the end of microtubules;
however, we anticipate that a strong asymmetry ᾱ has
a similar effect on pattern formation as does the kernel
anisotropy and, for example, favors the formation of
asters over vortices. Together, the two parameters ǭ
and ᾱ determine the collision kernel in the mesoscopic
theory [9].

The purpose of this investigation is to study the
mean inelasticity factor and asymmetry coefficients of
interacting filaments with various degrees of flexibility.
Using the continuum nonlinear elasticity equations,
we show through numerical simulations that a finite
bending flexibility amplifies the inelasticity of the
collisions. While microtubules are practically unbendable
by thermal fluctuations, molecular motors can bend
them easily. Bending also increases the probability that
two motors attach themselves simultaneously to two
microtubules at different positions. When this situation
happens, the motors cross-link the microtubules, making
them exactly parallel and thus realizing a fully inelastic
collision, ǭ = 0. Further simulations for more
flexible biofilaments, such as actin, reveal an unexpected
buckling instability and the formation of multiple

loops. These results provide insight into the effects of
flexibility on cytoskeleton formation and the rheology of
semiflexible filament networks.

Section II describes details of the mathematical model
underlying the numerical simulations. Section III
summarizes the results of the numerical simulations
for both microtubules and soft filaments. Section IV
describes our conclusions. Two appendices contain
technical details about the kinematics of filament
interactions mediated by molecular motors (Appendix A)
and the discretization of the mathematical model
(Appendix B).

II. MODEL

Consider the interaction of two semiflexible rods
(microtubules or, more generally, biofilaments) mediated
by a molecular motor. We assume that the microtubules
are of equal length L, where L is constant in time.
(That is, we focus on the case where the endpoints of
the microtubules are stabilized, for example with taxol,
so that polymerization and depolymerization processes,
which may affect the lengths of the microtubules, are
insignificant.) We assume furthermore for simplicity
that the molecular motor attaches symmetrically to
the microtubules. Thus, the two attachment points
are at the same position on each rod with respect to
their respective midpoints, and the force exerted by the
motor is perpendicular to the bisector of the microtubule
pair; see Fig. 1b. The last conclusion follows from
the assumption that the motor, while moving along
the filaments with a constant speed, acts as a strong
spring bringing the two ends together. In Appendix A
we show that the motor has a tendency to orient
perpendicular to the bisector of the microtubule pair
even if the motor has a nonzero length. Since the
initial attachment may occur at a random position on
the tubule, we are interested in the properties of the
interaction (in particular, the inelasticity coefficient)
averaged with respect to the initial attachment position.
We make the natural assumption that the probability of
attachment is distributed uniformly along a microtubule.
We neglect the effects of thermal fluctuations on the
microtubule shape, since the thermal persistence length
of the microtubules is very large (several millimeters).
However, thermal fluctuations may have some effect on
the shape of much softer biofilaments such as actin,
whose thermal persistence length is of the order of a few
microns.

A. Kinematics

To describe the motion of interlinked microtubules, we
combine the theory of Refs. [13, 14] for a semiflexible
polymer with the analysis of the rigid case in Ref. [9]. We
adopt a two-dimensional setting and model a microtubule
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as a semiflexible homogeneous inextensible elastic rod of
length L and bending stiffness β. We measure locations
along the rod relative to the rod’s midpoint, using the
arclength s as the natural parameter, so − 1

2L ≤ s ≤ 1
2L;

see Fig. 1b. The inextensibility of the rod implies that
the embedding preserves arclength elements. Thus, if
r(s) is the position vector at the point s on the tubule
and rs denotes its derivative with respect to s, then we
have the local constraint rs · rs = 1.

A molecular motor attaches initially to the tubule at
the point si and moves along the tubule with the constant
velocity v, exerting a force f on the tubule. As long as
the force does not exceed a critical value, we may assume
that the velocity of the motor does not depend on the
force f . However, we emphasize that this assumption is
not essential; similar calculations can be carried out if the
motor velocity depends on the force. Since the velocity is
fixed, the movement of the attachment point sa is subject
to the kinematic constraint

sa(t) = si + vt. (6)

In a binary collision, the molecular motor attaches to
and moves along two microtubules simultaneously, and
the relative configuration of the tubules changes due to
the motor force acting on both tubules. As explained
above, we consider only symmetric interactions, where
the force is normal to the bisector. Then we can select a
Cartesian coordinate system where the y-axis is directed
along the bisector (see Fig. 1b), so f = (±f, 0), where the
magnitude f of f has to be deduced from the kinematic
constraint.

B. Governing Equations

The equations governing the motion of the
microtubules are derived from the balance of forces.
If the viscosity of the medium containing the mixture
is large (Stokes limit), then the viscous drag force is
balanced by the force acting on the tubules. The latter
is the variational derivative of the energy functional E
measuring the bending energy of the tubule, together
with the inextensibility and the motor attachment
constraints,

E =

∫ L/2

−L/2

(

g(rs·rs−1)+βrss·rss+f·r δ(s−sa)
)

ds. (7)

Here, g is the line tension, which is determined implicitly
from the length conservation constraint |rs|2 = 1. The
singular component of the energy is due to the kinematic
constraint, Eq. (6), and the choice of a moving coordinate
system that places the origin at the motor attachment
point r(sa). The equations of motion are found by taking
variations,

ηṙ = −δE

δr
, 0 = −δE

δg
, 0 = −δE

δf
. (8)

Here, η is the viscous drag coefficient (per unit length).
These equations can be interpreted as defining a gradient
flow with respect to the variables r, g, and f , where the
constraints are established instantaneously on the time
scale of the viscous force.

The solution of Eqs. (8) must satisfy the integral
relation

∫ L/2

−L/2

(

ηṙ·δr + δE
)

ds = 0,

for all admissible variations δr, δg and δf . The energy
variation is

δE =

∫ L/2

−L/2

(

grs · δrs + βrss · δrss +
1

2
δ(s − sa)f ·δr

)

ds

+

∫ L/2

−L/2

(

rs · rs − 1
)

δg ds +

∫ L/2

−L/2

rδ(s − sa)·δfds.

We obtain the weak form of the governing equations by
assuming that the variations are independent,

∫ L/2

−L/2

[

ηṙ·δr + grs ·δrs + βrss ·δrss +
1

2
δ(s − sa)f ·δr

]

ds = 0,

(9)
∫ L/2

−L/2

(rs · rs − 1) δg ds = 0,

∫ L/2

−L/2

δ(s − sa)r· δfds = 0.

(10)

In this weak formulation there is no need for a priori
assumptions on the smoothness of the solutions and
their boundary conditions. However, if the solution is
sufficiently smooth, we can integrate by parts and obtain
the strong form of the governing equations,

∫ L/2

−L/2

[

ηṙ − ∂s (grs) + β∂4
sr +

1

2
δ(s − sa)f

]

· δrds

+
[

grs · δr + βrss · δrs − βrsss · δr
]L/2

−L/2
= 0.

The vanishing of the integral is equivalent to the
equations of motion in the usual differential form (8),
while the vanishing of the boundary term determines the
natural boundary conditions,

grs · δr + βrss · δrs − βrsss · δr +
1

2
δsa,sb

f · δr = 0 (11)

at each boundary point sb = ±L/2. The Kronecker delta
symbol δsa,sb

ensures the inclusion of the force in the
boundary condition when the motor is attached at the
boundary.

In the absence of smoothness assumptions, Eqs. (9)–
(10) implicitly contain the suitable weak version of the
boundary conditions. In particular, the formulation (9)–
(10) does not change when sa = ±L/2, while for the
equation above the term f becomes part of the boundary
conditions.
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The weak formulation is amenable to discretization in
the presence of singular terms. One such term appears
in the equation of motion for r as a result of the
movable point force exerted by the motor. If an explicit
equation of motion for the tension g is derived from the
inextensibility constraint and the equations of motion for
r, an even more cumbersome singular term appears:

gss − rss ·rssg − βrs∂
5
sr +

1

2
rsfδ

′(s − sa) = 0. (12)

This equation demands even higher regularity of r than
the equation for r itself. We circumvent both problems
by solving the constraints rather than deriving explicit
equations for the forces of constraints. The result is a
well-posed discrete problem that, however, requires an
implicit time discretization; see Appendix B for details.

III. NUMERICAL EXPERIMENTS

Symmetric interactions of pairs of microtubules are
simulated numerically by integrating the equations of
motion (9)–(10). In this section we present the results
of two types of such simulations, first for (relatively stiff)
microtubules and then for (fairly soft) actin filaments.

Physical parameters. The viscous drag coefficient
per unit length, η, is related to the effective dynamic
viscosity of the solvent, µ; in a thin layer of solvent
the approximate relation is η ≈ 2πµ/ ln(L̃/d), where

L̃ is a characteristic cut-off size of the problem (for
example, the average filament length or the depth of the
container), typically of the order 5 microns. This models
the proximity of the container walls above and below the
tubules (see also Refs. [5, 15, 16]). The bulk dynamic
viscosity coefficient for water, the assumed solvent, is
µ = 10−3 pN sµm−2. Moreover, viscosity can increase
significantly as a result of the presence of various organic
additives, such as motors and adenosine triphosphate.
To account for these effects, we use the effective drag
coefficient η = 3µ = 3 × 10−3pN s µm2.

We use a microtubule bending stiffness strength β =
2.0×10−23Nm2 = 20 pNµm2, as calculated in [15]. The
motor velocity is set to v = 1 µm/s [5]. Note that by
scaling space (hence the microtubule length) by λ, the
effective bending stiffness is scaled by λ−4, while the
tension g and the force f (Lagrange multipliers) remain
unchanged. Thus, we normalize space so that each tubule
is of unit length. Time is normalized by using T , the
length of time needed for the motor to traverse 1 µm
(T = 1 s in our case), resulting in a nondimensional
motor velocity v̂ = vT/L.

Effective bending stiffness. The introduction of an

effective bending stiffness, β̂ = βL−4η−1T , enables us to
study the interactions of a range of tubules of different
lengths by means of a single tubule of unit length but
with different values for the effective bending stiffness
and motor velocity. Thus there is no need to change

the spatial discretization of the microtubule to maintain
accuracy.

Discretization parameters. In all simulations, we
discretized the normalized tubule of length 1 with ∆s =
0.03125 or smaller and time with ∆t = 0.01. Simulations
of tubules of different lengths (L = 15, 30, 45, 60 µm)
were accomplished by adjusting the effective bending

stiffness (as explained in the previous paragraph), β̂ =
1.32 × 10−1, 8.23 × 10−3, 1.63 × 10−3, 5.14 × 10−4; the
effective drag coefficient, η̂ = 1.0; and the effective motor
velocity, v̂ = 0.067, 0.033, 0.022, 0.017.

After the interaction, the tubule is allowed to relax
until the mean relative deviation of the tangent from the
mean is less than 10−2. This process was done in two
different ways, with the motor sliding off the tubule and
with the motor dwelling at the end of the tubule, until
the relaxation is complete. The dwelling was introduced
to model different types of motors. It is known that
some motors, such as kinesin, have almost zero dwelling
time, whereas the NCD-type motor complexes used in
experimental works (see Refs. [4, 5]) appear to have a
very large dwelling time at the microtubule ends.

A. Bending of Microtubules

Figure 2 shows two typical examples of the time
evolution of the interaction of a pair of relatively stiff
microtubules mediated by a molecular motor. In both
cases, the motor induces significant deformation of the
filament shape. The tubules curve in such a way that
the segments of microtubules behind the moving motor
become more aligned than if the tubules were straight.
This curvature increases the probability of attachment
of additional motors and, therefore, the probability of
cross-linking of the tubules in several places. Multiple
cross-linking is expected to quickly align the two tubules;
however, a consideration of the action of multiple motors
is well beyond the scope of the present work.

Figure 3 shows the evolution of the filament tension
g(s) in the course of the interaction. The filaments
become stretched (g > 0) ahead of the motor attachment
point (s > sa) and slightly compressed (g < 0) behind
the attachment point (s < sa). In the limit of zero
motor size, the tension exhibits a discontinuity at the
attachment point (s = sa) because of the δ-function
character of the motor force f . In our numerical
procedure this discontinuity is regularized as a result of
the finite discretization mesh (equivalently, the finite size
of the motor). The negative tension g is a precursor of the
Euler buckling instability for elastic rods [17]. However,
the buckling of microtubules does not occur because of
the very large value of the stiffness coefficient β.

Figures 4–7 show the results for the inelasticity factor ǭ
and asymmetry coefficient ᾱ. There is an overall
tendency for ǭ to decrease with the length L of the tubule
(and, therefore, increase with the bending stiffness β,
since in the rescaled variables β is proportional to L−4).
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As β → ∞, ǭ approaches the stiff limit value 0.63; see
Eq. (4). In contrast, dwelling of the motors at the tubule
ends has a relatively small effect on the inelasticity if the
tubules are sufficiently stiff, although it may affect other
properties of the interaction [9].

A decrease of the stiffness induces a significant
asymmetry of the inelasticity with respect to the location
of the initial attachment point si, as measured by the
asymmetry coefficient ᾱ. However, our calculations
show that ᾱ remains relatively small for typical filament
lengths used in the majority of experiments (ᾱ < 0.03).
This result suggests that the kernel anisotropy related to
dwelling of the motors [9] is the dominant factor affecting
the large-scale pattern selection.

The dependence of the mean inelasticity ǭ and its
asymmetry ᾱ on the tubule length and, hence, the
effective stiffness are illustrated in Figs. 8–9.

For very large rod lengths, ǭ approaches the value 0.42.
Surprisingly, the dependencies are not monotonic for the
no-dwelling case. This observation is likely related to the
buckling of the rods when the filament length exceeds a
certain critical value.

B. Bending of Actin Filaments

The same approach can be applied to much softer
filaments, such as actin. The stiffness of actin is
about 1000 times smaller than that of microtubules
(β = 7.3 × 10−2 pNµm2). Preliminary simulations
indicate that the interaction of the motor with two actin
filaments results in the creation of complex multilooped
structures shown in Fig. 10. These loops are the result
of an Euler bending instability of the elastic rods. As
loops form, the tension g becomes negative and exhibits
oscillating behavior; see Fig. 11. After the motor
reaches the end of the filaments, buckling slowly relaxes
because of the filament flexibility. Moreover, dwelling
can have a significant effect on the inelasticity factor
because of very slow straightening of the filaments; see
Fig. 10. Complex structures shown in Fig. 10 may
appear in the course of cytoskeleton formation and should
affect the rheological properties of the filament networks.
Note that actin filaments take significantly longer to
relax back to the unbent configuration because of their
much smaller stiffness. Thus, the notion of inelastic
collision, which was introduced for stiff microtubules,
is essentially inapplicable to actin. The formation of
loops in actin filaments should facilitate multiple motor
bindings and thus the creation of bundles. Dynamics
of actin filaments will be examined in more detail in a
forthcoming publication.

IV. CONCLUSIONS

In this paper we have investigated the interaction of a
pair of biofilaments (microtubules, actin) mediated by

a molecular motor. Our main result is that bending
effects significantly amplify the tendency of microtubules
to align and, consequently, to form structures with
large-scale ordering, such as asters and vortices. Our
results support the observations made in Refs. [4, 5] that
bending effects are important for the explanation of self-
organization processes in molecular motor–microtubule
mixtures. Our preliminary studies indicate that
molecular motors have a very strong effect on the shape
of much softer filaments like actin, resulting in surprising
Euler buckling instabilities and the formation of multi-
loop structures. Presumably, these effects have a strong
influence on the rheological properties of interconnected
actin networks interacting with myosin motors.

We thank Jacques Prost, Francois Nédélec, Frank
Jülicher, and Karsten Kruse for useful discussions. This
work was supported by the U.S. Department of Energy,
grants DE-AC02-06CH11357 (DK,HGK,IA) and DE-
FG02-04ER46135 (LT).

APPENDIX A: SYMMETRIC ATTACHMENT

LIMIT

In this appendix we show that the tendency for a
pair of stiff filaments (microtubules) to orient themselves
perpendicular to their bisector persists even in the case
of non-zero length motors. The filaments are assumed
to be of the same length, with the motor attached at
an equal distance from the minus end of each filament
(even attachment) and oriented transversally to the
bisector of the filament pair (symmetric attachment).
The general idea of symmetrization of motor attachment
is captured in the case of rigid tubules connected by a
stiff (but flexible) motor of length h where h ≪ L. The
motion then reduces to a system of ordinary differential
equations governing the overdamped motion of a system
of two rigid rods (microtubules) connected by flexible
inextensible link of the length h (motor) as depicted in
Fig. 12.

In a fixed coordinate system the centers of mass of the
tubules are at c

(1) and c
(2), respectively, while the motor

attachment points are at c
(1) + t

(1) and c
(2) + t

(2). In
terms of the distances from the respective centers s1,2 we

have t
(1,2) = s1,2 t̂

(1,2). The motor is represented by the

vector τ ; n
(1), n

(2), and ν are normal to t
(1), t

(2), and
τ respectively; and hats denote unit vectors.

The dynamics of the system are determined as in
the semiflexible case by the balance of forces and the
kinematic constraint d

dts1,2 = v,

d

dt
c
(1,2) = ±f

(

ξ−1
|| (̂t(1,2), τ̂ ) t̂(1,2) + ξ−1

⊥ (n̂(1,2), τ̂ )n̂(1,2)
)

,

d

dt
t
(1,2) = v t̂

(1,2) ± fξ−1
r s1,2

2 [̂t(1,2), τ̂ ] n̂(1,2), (A1)

where ξ−1
|| , ξ−1

⊥ , and ξ−1
r denote the inverses of tangential,

transversal, and rotational viscosities; the motor force of
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magnitude f is directed along τ̂ , the sign depending on
the direction from the tubule.

To obtain the force f and the motor motion, observe
the geometric constraint τ = (c(2) − c

(1)) + (t(2) − t
(1))

(Fig. 12). Since the motor is rigid, its velocity must be
directed along the normal ν̂. Since the motor is rigid, its
velocity is directed along the normal: τ̇ = hθ̇ν̂. Here θ̇
denotes the angular velocity, which is independent of the
choice of an orthonormal coordinate system. We obtain
the relations

hθ̇ν̂ = −fξ−1
||

(

(̂t(1), τ̂ ) t̂(1) + (̂t(2), τ̂ ) t̂(2)
)

− fξ−1
⊥

(

(n̂(1), τ̂ ) n̂(1) + (n̂(2), τ̂ ) n̂(2)
)

+ v(̂t(2) − t̂
(1))

− fξ−1
r

(

s2
1 [̂t

(1), τ̂ ] n̂(1) + s2
2 [̂t

(2), τ̂ ] n̂(2)
)

. (A2)

Denote by vû = (v, û) û the component of a vector v

along the unit vector û. Projecting the constraint (A2)

onto the motor furnishes an equation for f independent
of the motor size [18],

0 = f
(

ξ−1
||

(

|τ̂
t̂(1)

|2 + |τ̂
t̂(2)

|2
)

+ ξ−1
⊥

(

|τ̂
n̂(1) |2 + |τ̂

n̂(2) |2
)

+ξ−1
r

(

s2
1|τ̂ n̂(1) |2 + s2

2|τ̂ n̂(2) |2
)

)

+ v
(

t̂
(2) − t̂

(1), τ̂
)

.

The coefficient of f vanishes only if τ is normal to both
tangential and both normal vectors of the tubules, a
condition that is clearly impossible even in the case of
alignment. Hence, the force f is uniquely determined
from the above relation and is O(1) relative to the motor
size.

To determine the relative position of the motor and the
tubules, we project the constraint (A2) onto t̂

(1) + t̂
(2),

which is along the tubule bisector. This eliminates the
term with v (a rhombus has orthogonal diagonals),

f−1hθ̇
(

ν̂, t̂(2) + t̂
(1)
)

= ξ−1
||

(

1 +
(

t̂
(1), t̂(2)

)

)(

t̂
(1) + t̂

(2), τ̂

)

+ ξ−1
⊥

(

t̂
(2)

n̂(1) + t̂
(1)

n̂(2) , τ̂

)

+ ξ−1
r

(

s2
1t̂

(2)

n̂(1) + s2
2t̂

(1)

n̂(2) , τ̂

)

(A3)

For finite h this relation determines the rotation rate
of the motor θ̇ in terms of f . However, in the limit
h → 0 the motor becomes slaved to the tubules, with
its orientation determined from the above relation with
a zero left-hand side and irrespective of the force.

As discussed above, in this paper we consider the case
of even attachment of the motor, where s1 = s2 = s =

(s1 +s2)/2. Simple algebra [19] shows that t̂
(2)

n̂(1) + t̂
(1)

n̂(2) =
(

1 − (̂t(1), t̂
(2))
)

(̂t(1) + t̂
(2)), and in the limit h → 0 we

obtain the condition
(

t̂
(1) + t̂

(2), τ̂

)

= 0 (A4)

which means that τ̂ is orthogonal to the bisector of the
tubules—that is, the attachment becomes symmetric.
Moreover, for h 6= 0, even if the motor initially was
not perpendicular the bisector, Eq. (A3) describes the
relaxation of the motor orientation toward the angle
given by condition (A4).

APPENDIX B: DISCRETIZATION

We apply the finite element method (FEM) [20] to the
weak form of the governing equations (8). This allows
us to treat the singular terms arising from the motor
force and automatically generates appropriate natural
boundary conditions.

At any time t the components of the radius vector
r(t) and its variation δr(t) are written as linear
combinations of continuously differentiable functions

φj,k, j = 0, . . . , N − 1, k = 0, 1. The basis functions
φj,k vanish outside the segments [sj−1, sj+1], j =
0, . . . , N centered at the nodes of a one-dimensional mesh
discretizing the normalized tubule [−1/2, 1/2] with the
mesh size ∆s = sj+1 − sj = 1/N . We construct
the basis from the standard Hermite cubics: φj,k are
piecewise cubic polynomials on each mesh interval and
φj,0 interpolate function values while φj,1 interpolate
derivative values. On the interval [−1, 1] the standard

Hermite functions φ̂k, k = 0, 1 have the form (see [20])

φ̂0(s) = (|s| − 1)2(2|s| + 1), φ̂1(s) = s(|s| − 1)2,

from which the basis functions are obtained by shifting
and scaling:

φj,k(s) = φ̂k ((s − sj)/∆s) .

Similarly, the tension g(t) and its variation δg(t) are
expanded by using the basis of piecewise linear “hat”
functions ξj centered at the mesh nodes obtained from
the standard hat function on [−1, 1]:

ξ̂(s) = 1 − |s|, ξj(s) = ξ̂ ((s − sj)/∆s) .

For the end nodes j = 0, N both ξj and φj,k are the
suitable one-sided restrictions.

The Galerkin procedure requires that the approximate
solution

r̂(s, t) =
∑

j,k

r̂j,k(t)φj,k(s), ĝ(s, t) =
∑

j

ĝj(t)ξj(s)
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and f̂ (t) satisfy Eqs. (9)–(10) for all piecewise cubics δr̂,

all piecewise linear functions δĝ, and all scalars δf̂ . As
discussed in Section II B, this choice of the discretization
space contains a suitable weak form of the boundary
conditions (11). The resulting discrete equations can be
viewed as the application of D’Alembert’s principle to the
energy functional (7) restricted to this finite-dimensional
function space of piecewise cubic tubule conformations
and piecewise linear tension profiles. The gradient flow
and constraints thus generated are well-posed ordinary
differential equations with discrete inextensibility and
motor attachment constraints.

To write down these equations explicitly, we introduce
the familiar mass and bending matrices M and B, as well
as a nonlinear version of the stiffness matrix K(ĝ):

Mj,k;j′,k′ =

∫ L/2

−L/2

φj,kφj′,k′ds,

Bj,k;j′,k′ =

∫ L/2

−L/2

(

∂2
sφj,k

) (

∂2
sφj′,k′

)

ds,

Kj,k;j′,k′(ĝ) =
∑

i

ĝiKi;j,k;j′,k′ =

∫ L/2

−L/2

φj,kφj′,k′ ĝiξids.

With these, the implicit Euler’s scheme at a succession
of times tn produces a system of discrete equations,

∑

j′, k′

2

(

ηMj,k;j′,k′(r̂n+1
j′,k′ − r̂

n
j′,k′)(tn+1 − tn)

+ Kj,k;j′,k′(ĝ)r̂n+1
j′,k′ + Bj,k;j′,k′ r̂

n+1
j′,k′

)

+ f̂
n+1φj,k(sa(tn+1)) = 0, (B1)
∑

j, k;j′, k′

Ki;j,k;j′,k′ r̂j,kr̂j′,k′ = 0, (B2)

∑

j′, k′

r̂j′,k′φj′, k′ (sa(t)) = 0, (B3)

which are solved numerically for all i, j, k,

For our numerical studies we start with the initial state
of a relaxed tubule forming a given angle 1

2ϕ0 with the

vertical axis. For a given motor attachment point s0
a ∈

[− 1
2 , 1

2 ] the following discrete conformation determines a
normalized symmetric tubule pair with the initial angle
ϕ0 and the intersection point at the origin:

r̂j,0 =
(

cos(ϕ0/2), sin(ϕ0/2)
)

(j∆s − s0
a),

r̂j,1 =
(

cos(ϕ0/2), sin(ϕ0/2)
)

.

Initially the tension and the motor force are absent, ĝ0
i =

0, f
0 = 0.

The conformation r̂
n
j,k along with the tension ĝn

i and
the force f

n at a later time tn are determined by solving
the nonlinear equations (B1)–(B3) recursively. At each
time tn+1 these equations are solved by using Newton’s
method with the state at time tn serving as the initial
guess. The corresponding linearized system is sparse
and can be efficiently solved using any Krylov subspace
method. For modest N the standard LU -factorization is
also feasible.

[1] J. Howard, Mechanics of Motor Proteins and the
Cytoskeleton, Springer, New York, 2000.

[2] K.Takiguchi, J.Biochem. (Tokyo) 109, 250 (1991)
[3] R. Urrutia, M.A. McNiven, J.P. Albanesi, D.B. Murphy,

B. Kachar, Proc. Natl. Acad. Sci. USA 88, 6701 (1991).
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FIG. 1: (Color online) (a) A fully inelastic collision
of two microtubules mediated by a molecular motor.
(b) Schematic representation: The molecular motor is
attached symmetrically to two flexible microtubules at a
distance s along the tubule from the midpoint.
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FIG. 2: (Color online) Two sequences of images illustrating
the bending and alignment of microtubules by molecular
motors, with dwelling of the motor at the end of the
microtubules. (a–c) Initial angle ϕ0 = 14◦, (d–f) Initial angle
ϕ0 = 90◦. The shaded region indicates the motor location; the
motor moves upward. For comparison purposes, the image (f)
also shows the configuration of the two microtubules if the
dwelling time is zero (shown by semitransparent colors). The
sequence shows the configurations at times t = 3 (a,d), t = 33
(b,e), and t = 180 (c,f) for β = 20 pNµm2, L = 60 µm,
motor velocity v = 1µm/s, and initial attachment offset 6µm
from the tubule end. After the interaction with the motor,
the initial angle is reduced from 14◦ to 8.7◦ with dwelling and
from 90◦ to 58.3◦ with dwelling and to 62.2◦ without dwelling
(shaded). More detailed images can be found in [21, Movies
1 and 2].
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FIG. 3: (Color online) Tension in the tubule configurations of
Fig. 2 at times t = 3 (a,d) and t = 33 (b,e); β = 20 pNµm2,
L = 60µm, v = 1µm/s. At the final stages (e,f), the tension is
zero (not shown). The tension g changes sign and varies very
rapidly near the motor attachment point. A smaller initial
angle (ϕ0 = 14◦) results in a tension that is approximately
10 times smaller than the larger initial angle (90◦).
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FIG. 4: (Color online) Inelasticity factor ǭ with dwelling, for
different lengths of microtubules; β = 20 pNµm2.
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FIG. 5: (Color online) Asymmetry coefficient ᾱ with dwelling,
for different lengths of microtubules; β = 20 pN µm2.
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FIG. 6: (Color online) Inelasticity factor ǭ without dwelling
as a function of the tubule length; β = 20 pNµm2.
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FIG. 7: (Color online) Asymmetry coefficient ᾱ without
dwelling as a function of the tubule length; β = 20 pNµm2.
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FIG. 8: (Color online) Inelasticity factor for ϕ0 = 4◦ as
a function of the tubule length (and, by implication, as a
function of the effective bending stiffness of a unit tubule);
β = 20 pNµm2.
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FIG. 9: (Color online) Asymmetry coefficient ᾱ for ϕ0 = 4◦ as
a function of tubule length (and, by implication, as a function
of the effective bending stiffness of a unit tubule); β = 20
pNµm2.

FIG. 10: (Color online) Two sequences of images illustrating
the bending and alignment of actinlike filaments by molecular
motors: (a–d) with motor in motion, (e) with motor dwelling
at the end of the filaments after interaction, and (f) filaments
freely relaxing after interaction. The shaded region indicates
the motor location; the motor moves upward. Images are
shown at times t = 1.5 (a), t = 9 (b), t = 12.5 (c) t = 13.5
(d), and t = 100.0 (e,f); β = 7.3 × 10−2 pN µm2, L = 15µm,
and v = 1µm/s. The images (e,f) illustrate the difference
between dwelling and nondwelling interactions. In both cases,
the initial angle is ϕ0 = 90◦ and the initial attachment offset is
1µm from the end of the filament. After the interaction with
the motor, the initial angle is reduced to 19.9◦ with dwelling
and to 32.7◦ without dwelling. More detailed images can be
found in [21, Movies 3 and 4].
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FIG. 11: (Color online) Tension in the tubule configurations
of Fig. 10 at times t = 1.5 (a), t = 9 (b), t = 12.5 (c) t = 13.5
(d); β = 7.3 × 10−2 pN µm2, L = 15µm, v = 1µm/s.
With the motor attached near the very end (t = 13.5),
the tension has an oscillatory profile which decays rapidly
to an essentially tension-free profile (g ≈ 0, not shown),
regardless of whether the motor is still attached (dwelling)
or not (without dwelling).
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FIG. 12: Initial state of a symmetric microtubule pair:
force acts on the microtubules perpendicular to bisector,
attachment point equidistant from centers of mass (a);
inflexible tubules connected by a finite-size motor (b); a vector
in an orthonormal frame (c).


