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Abstract

Density functional theory can accurately predict chemaxadl mechanical properties of nanostructures, al-
though at a high computational cost. A quasicontinuum-ikenework is proposed to substantially increase
the size of the nanostructures accessible by simulatiotekes advantage of the near periodicity of the atomic
positions in some regions of nanocrystalline materialsgtaklish an interpolation scheme for the electronic
density in the system. The electronic problem embeds witgipn and coupled cross-domain optimization
techniques through a process called electronic reconsitsac For the optimization of nuclei positions, compu-
tational gains result from explicit consideration of a rexda number of representative nuclei interpolating the
positions of the rest of nuclei following the quasicontimuparadigm. Numerical tests using the Thomas-Fermi-
Dirac functional demonstrate the validity of the proposesdrfework within the orbital-free density functional
theory.

INTRODUCTION

Nanostructures have dimensions in the range-©f100 nm and typically contain0? ~ 10% atoms. Density func-
tional theory (DFT) methods within the Kohn-Sham apprdaate typically applied to systems with fewer than
100 atoms. Contemporary implementations of order-N methsdsh as SIESTA ONETEF*, and CONQUESY
that exhibit linear scaling of computation time with system size enable an indredme=number of atoms by one
to two orders of magnitude. Studies of larger systems such as quantunndata@oparticles at the electronic
structure level resort to tight-binding meth8dkp method, or empirical pseudopotential methfbdrhese meth-
ods require parameterizations to empirical or first-principles data, andtdgpically reproduce all structural and
electronic properties with high accuracy across a full range of posgdametries. Even larger system sizes are
accessible to interatomic potential methods but these methods cannot doca@pit and charge relaxation and
conjugation effects, which are important in modeling reactions, electronitaéiron, and bond breaking processes.
Therefore, new computational paradigms are needed that enabledeatgelectronic structure calculations.

A combination of methods with different fidelity is often used to reduce computtieffort if only local
information is needed with high accuracy. An example of such an appis#oa ONIOM method for computa-
tions of chemical properties. However, such schemes have an inlpeofiém with conditions at the boundaries
of different fidelity regions. Another approach to reduce computatieffiait, called the quasicontinuum method,
is based on explicit treatment of only representative atoms and on interpslédiothe rest. It has been success-
fully used in atomistic studies of mechanical properties with classical potentidlseaently with electronic-level
calculations. This type of approach is particularly suitable for many narastes because large regions of the
structures are perturbed relatively little as compared to periodic strucndesherefore, can be treated by using
interpolation schemes.

The present work proposes a quasicontinuum-like technique thatrsegldetronic structure information at the
nanoscale. The proposed methodology follows in the steps of the quisizon approacH’1112for mechanical
analysis at the nanoscale. Specifically, this is an extension of the wbrk%jrbecause, rather than considering a
potential-based interatomic interaction that has a limited range of validity and it generalize to inhomoge-
neous materials, the methodology proposed usedbanitio method. At the same time it is a generalization of the
method proposed M because, rather than considering electron density within each meshidatta element
separately, the proposed method treats the electronic density distributioeli@naéints in an overall optimization
framework.

The approach proposed does not rely on a strict periodicity assumifitimerely assumes that the material
displays a nearly periodic structure in certain regions of the nanosteudtiiowever, in order to bridge the gap
between subatomic scale associated with the electron density and the feassoaiated with the structures in-
vestigated, we have assumed that almost everywhere in the nanostthetoimized structure results in only
small deformations of periodic structure. This assumption is referredrieasperiodicity because the nonperi-
odic part of the state variables is approximated as a macroscopic smootyilygvield. As explained later, the
near-periodicityassumption enables the use of interpolation for electronic structure tagodis.



A second assumption made is that oslyall deformationsre present in most of the material. The nanos-
tructure is considered to have an initial reference configurdfidrc R3. The structure undergoes a deformation
described by a deformation mappifgr?,¢) € IR?3, which gives the locatiom in the global Cartesian reference
frame of each point® represented in the undeformed material frame. As indicated, the mappingdejsgtid on
timet. The variableg does not necessarily represent the time contemporary with the structleeaamsideration.
In a static simulation framework this variable might be an iteration index of an optimtizalgorithm that solves
for the system ground state.

The components of the deformation gradiBreire introduced as

0P,
FzJ — 87“9 )
where upper-case indices refer to the material frame, and lower-adisedrio the Cartesian global frame. Thus,
F = Vy @, whereV, represents the material gradient operator. Using the repeated index sammie, the
deformation of an infinitesimal material neighborhoad dbout a point? of D? is expressed as

d?"i = Fi] d’l“9 .

If u = r — ro, the concept of small distortion is equivalent to requiring that the speetlals of the3 x 3 matrix
F = V u(ry) be sufficiently small; that is,

o (Vou(rg)) <K

is expected to hold almost everywhere in the doniaf for a suitable chosen value &f.

With the two assumptions introduced, computational savings are due to a twddrpolation-based approach
that reduces the dimension of the problem. First, the electronic structureenédduated in some domains by
interpolation using adjacent regions in which a DFT-based approachddaaccurately solve the electronic struc-
ture problem; this procedure is calletéctronic density reconstructiosecond, the positions of the nanostructure
nuclei will be expressed in terms of the positions of a reduced set chllsdaepresentative nuclegpnuclei
The proposed approach solves only for the positions of tregzeuclej the entire deformation field (mapping)
is defined based on an appropriate representatiof® g, ). Following the quasicontinuum paradigi'?, we
define this mapping based on the displacemer¢priuclei

=) (" RY) ®(RY,1), 1)
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whereB represents the index set associated withrépauclei Once the displacements of trepnuclei®(RY, ¢)
for J € B are available, the displacement of any point in the nanostructure is obtariaterpolation using the
shape functiong.

THE IONIC PROBLEM AND QUASICONTINUUM APPROACH

Finding the stable configuration of a nanostructure (called hereaftéoieProblen) reduces to minimizing the
total energyFEiot With respect to the positions of the nuclei. More precisely, the equilibriunfigiumation of a
nanostructure is provided by that distribution of the nuclei that minimizes teeggn

EtOt = Ee + EexH— Enny

where E,,,, is the internuclear interaction energy, is the electronic ground-state energy for the corresponding
nuclear distribution, an@ext is the electron-nuclei interaction energy defined as

M
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whereVexi(r; {R;}) = Z HZAP(T)H dr is the ionic potential, which depends on the positions of the nyétei},

andZ 4 is the atomic number of nucleus

The electronic structure computation is approached here as the soluticomstaained minimization problem
according to the Hohenberg-Kohn theor&mmin,, Fiot[o(r)], subject tof p(r)dr = N, whereN. represents the
number of electrons present in the system. The solution to this problemateparametrically on the locations
of the nucleiR;, I = 1,..., M, a consequence of the Born-Oppenheimer approximation. Subsequbatly
optimization of nuclei positions in the entire system is the solutiomofig ,, Etot.

Let us consider the optimization problem

min Fiot = min E. + Eext+ Eup
{Rs} {Rr}

subject to the constrairthat for a nuclear configuratiofR;} the energyFE. is the electron ground-state energy.
Under this assumption, the first-order optimality conditions from the Hellmagnsfan theorer yield

E E
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whereFg, K = 1,..., M, is interpreted as the force acting on nucléisnd
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The Hellmann-Feynman theorem leads, for each nudiéus

R r— Rg Rs—Rg
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which thus allows one to solve the nuclear equilibrium problem by using onlgriiend state solutions of the
electron density problem to find forces on ions to the first order and aafttines and the derivatives of the kinetic
and exchange energies. Once the electron density is available, the aguildonditionsFx =0, K = 1,..., M,
can be imposed right away. The major computational consequence ofghisisghathow the actual ground state
electron density)(r) was obtained is irrelevanthere is also no need to have an explicit energy functional of the
electron density. Moreover, the gradient of the energy with respect to the atomic positidhs aurrent electron
density has the same propelty Therefore, the ground-state electron density can be computed withcaastare
software package that requires only the current atomic positions.

Since we use an iterative technique to solve the electronic density problemehiss that we compute only

an approximation of the ground state enefgy Therefore, the expression &fx, K = 1,2,..., M in (2) is
only an approximation of the gradient of the energy with respe¢Ra }, K = 1,2,..., M. Nonetheless, for
optimization algorithms of the type discussed hé&g, K = 1,2,..., M need not be calculated exactly, rather

they should only provide a search vector whose angle with the exaetgtazloounded away fror) 16 Therefore,
the approach proposed can tolerate inexact values of the grounitydens

When alocal quasicontinuum approach is used, the equilibrium conditiem®mposed only forepnuclej that
is, only for.J € B. The positions of the remaining atoms in the system is then expressed in terraposttions of
therepnuclei Therepnucleibecome the nodes of an atomic mesh, and interpolation is used to recovesitienpo
of the remaining nuclei. Concretely, if the atomic mesh is denotedhy- is an arbitrary cell in this mesh)(r)
represents the set of nodes associated withr¢elhdyp;, is the shape function associated with nddim cell 7,
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This effectively reduces the dimension of the problem fiod (the (x, y, z) coordinates of the nuclei), R,
where M,..,, is the number of nodes in the atomic mesh, which is the number of elemefts Following the
guasicontinuum paradigm, the selection and the number akfhreucleiis based on an energetic argument and
tailors the computational mesh to the structure of the deformationttielthe sum in the expression Bf; above
is most likely not going to be the simulation bottleneck (solving the electron profilegis significantly more
demanding), but fast-multipole methdd281°can be considered to speed the summation.

Denoting byP;, i = 1,...,M,,, the position of the representative nucleus we can group the set of
nonlinear equations of EqQ. (3) into a nonlinear system that is solved foeklweed configuration of the structure:

fl(Pl,PQ, .. 'P]\/[rep> =0

f2(P1,Py,... Py, ) =0

far,.,(P1,Ps, ... Py ) =0

wheref; is obtained based on Eq. (3). The solution of this system is found by a Ndikeomethod. Evaluating
the Jacobian information is straightforward and not detailed here. We raitetiq. (3) a connection is made
back to Eg. (1); the position of an arbitrary nucledsn cell 7 is computed based on interpolation using the
nodesY(7), one of many choices available (one could consigenucleifrom neighboring cells, for instance).
Effectively, this provides in Eq. (1) an expression (R, ¢), which depends only od € V(7) rather than

J e B.

THE ELECTRONIC PROBLEM

Theelectronic problenmefers to the computation of the ground-state electron density given thi®ps®f nuclei in
the nanostructure. Scaling considerations and accuracy requirersgaitislhed DFT as the most viable candidate
for handling this task. In a general form, the electronic contributions to tia¢ @éaergy in a density functional
framework can be written as

Ec[p] = Tlp(x)] + BT [p(r)] + E™[p(r)],

whereT[p(r)] is the kinetic energy functionalz”’"[p(r)] is the electron-electron Coulomb repulsion energy,
and E*¢[p(r)] is the exchange and correlation energy. The ground-state electrsitydsrthe functionj(r) that
minimizesE. [p]+ Fext(p(r); {R}) with respect to the electron density subject to a charge conservatiamainh)s

[ p(r)dr — N = 0, and the requirement that the density stay nonnegative.

The orbital-free DFT (OFDFT) methods (see, for instance, Ref. 28edb on the explicit approximations to
the unknown exact functional are attractive as they are numericallyréadiermulate and solve than the most
widely used Kohn-Sham approach (KS-DE®nd there is no need for orbital localization and orthonormaliza-
tion. Compared to the KS-DFT approaches that typically require the solutiamonlinear algebraic eigenvalue
problem, the OFDFT approaches result in optimization problems based on adoletlyy that scales linearly and
is relatively simple to implement. The main difficulty lies in providing good quality apipnate functionals, since
the exact functionals are not known. This is particularly true in the casieedkinetic energy functional, which
is otherwise easily obtained in traditional KS-DFT. Efforts to find accunatetionals have been quite successful
for several simple metal systems. OFDFT has recently been used in moldgundamics simulations for accurate
representation of interatomic forces in order to reproduce and promidgmanation for calorimetry results in Na
clusterg?, for the studies of several thousand atoms near a metallic grain bodAdanypredicting of the dislo-
cation nucleation during nanoindentation ofMg22 used in combination with the quasicontinuum metkod,
and for the metal-insulator transition in a two-dimensional array of metal mgstat quantum dofs.

Approximations for the exchange and correlation energy functiohals|, are discussed, for instance, in Ref.
26 and Ref. 27. Providing suitable expressions for the kinetic energtiinal remains a challenging task and,
because of reduced transferability, is the factor that prevents wiksbpse of the approach. The simplest explicit
functional is due to Thomas and Fer#if®

5

Trr [p] = CF/P3(I') dr,

5



whereCF is a constant. This crude approximation has been improved upon by the @@ieker form of the
kinetic energy functionaf,
Vo(
Towlpl = Trrlp / Volr

which has been further improved @2:33:20

Tulo] = Towlp) + Yo AaTo
T, = [[p()p () walr —v'sp(r)) drar’,

where the functionu, (r — r’; p(r)) is an electron density-dependent kernel that is formulation dependent.

Within the framework of OFDFT for electronic structure computation a modelatoh approach is pursued
that relies on the near-periodicity assumption introduced ali6e The entire domain of interest is first meshed
and divided into subdomains. Using a finite element approach one cagssxpe kinetic, exchange correlation,
Coulomb, and electron-nuclei interaction energies in terms of the value® @le¢lstron density at grid points.
Since the bulk of a nanostructure often displays quasiperiodic conditmsall the density grid point values
will be considered as “degrees of freedom”. Instead, in order toceethe overall dimension of the optimization
problem, only the density value at grid points of so-calletive subdomains are considered actual degrees of
freedom. Among the active subdomains is a subsetadnstructionsubdomains, which are used in recovering
the value of the electron density in the nonreference subdomains. Thalatealledbassivesubdomains. If there
are no passive subdomains, no reconstruction process is involketheaproposed approach becomes an OFDFT
domain partitioning scheme in which all the degrees of freedom are acddontand the subdomains are treated
in parallel.

The value of the density in the passive subdomains is implicitly accounted thtbagnterpolation operator
acting on the reconstruction subdomains in a self-consistent manner. impigst representation, the reconstruc-
tion of the electron density in a passive subdonigi(see Figure 1) is characterized by two sets of parameters: the
reconstruction weight8® (i), and the reconstruction vectdI¥* (i), where a Greek superscript is used to indicate
the index of an active subdoma¥f,. The reconstruction vectdr“(:) takes the point in subdomairD; to its
image in the reconstruction subdomain, and¥“ () is the weight with which the subdomaif, participates in
the reconstruction of the electron density in subdonainGeneralizing this idea, if) is a function that depends
on the electron density, the proposedonstruction ansatezalls for a computation of the value 6f at a pointr
that belongs to a passive subdomBiras a linear combination of values of the functiQrevaluated at suitably
chosen points in the reconstruction subdomains, which are determinedl dragiee underlying near-periodicity
assumption of the material. Referring to Figure 1, since in this example thefeative subdomaing)(r) in

subdomairD; is expressed by interpolation in terms of valdgg®), forr® € Y,,a € {1,...,7}:
= 2. O
a€R(1)

whereR (i) represents the union of all reconstruction subdoméinsvolved in the reconstruction of subdomain
D;, and the reconstruction weightsare determined based on the type of interpolation considered. The défarma
field factors into the reconstruction scheme. Concretely, in the propesedstruction ansatg)(®(r’,t)) is
replaced in passive subdomains with a linear combination of values in thesteaction subdomains taking into
account the underlying near-periodicity of the material:

Q2 Z 0 (i v’ +T(i),1))

a€R(i

where in a perfect crystal the reconstruction vector would be chassgdlon the primitive vectors of the Bravais
lattice (see, for instance, Ref. 36). Referring back to the examplergegsén Figure 1,R(4) = R(5) =
R(6) = {3,4}; in other words, the reconstruction of the subdomddsD;, andDs is based on values of the



density in subdomaing; andY,. Similarly, R~!(«) represents the set of all the subdomains that have the values
of the density reconstructed based on values f\mfor instance,R 1(3) = {3,4,5,6}, in other words, the
reconstruction subdomaly, is implicated in the reconstruction 8§, Dy, D5, andDg. In general, the subdomains
D; may be thought to be of identical shape, in which case the interpolationasgtpioreminiscent of the gap-tooth
method’ where the reference subdomains are the “teeth”. Herein, howevagdbastruction by interpolation
of the density is also carried out in the gaps, and not only at the bounéi#ing teeth, because of the long-range
electrostatic interactions.

It is reasonable to expect that there will be parts of the nanostructueeemiine reconstruction approach is not
applicable because of the breakdown of the near-periodicity assumptitiese cases, all subdomains spanning
such volumes will be active, effectively leading to a domain decompositioroapp to OFDFT calculations.

For mulation Framework

The calculation of electron enerdy, requires the evaluation of integrals of the form

_ /@(r) dr

The integrand® is represented as the product of two componeét&:) = Q(p(r),r) L(r). Q depends on the
value of the density at the locatianand possibly on the spatial componentitself (to simplify the notation,

without any loss of generality, this component will be denoted)dy)). The componentL does not depend on
the electron density. For instance, in the case of the electron-nuclei interaction,

Qoe)x) = o)
18] = Ene = / Zur RAH‘”;‘ Iy = 3 =L

The other energies for the Thomas-Fermi-Dirac functional can be dasthis form as well, with the double
integral component being treated separately. \llith= ®(D°, t),

E. —/Q dr—/Q ¥ 1)) L(®(x%, ) J(x0, ¢) dr”

whereJ (r%,t) = |det(Vo ®(x%,¢))|. The notationQ(r?) = Q(®(x°,¢)) and L(x°) = L(®(x°,¢))J (x,t) will
be used; and although there is a time dependency involved, it will be omittdatduity. Likewise, the zero
superscript, which indicates that the integration is with respect to the initidigcwation, will be dropped to
simplify the notation. With thisF, requires the computation of quantities like

= /Q(r)L(r) dr
Do

As far as the nomenclature is concerned, at a pgjrthe Q(r) component is reconstructed according to the
proposed ansatz and thus computed as a linear combination of functituestedatremotepoints. The component
L(r) is evaluated at thivcal pointr. This partitioning is used to compute the integr&] in terms of electron
density values from the active subdomains using a suitably chosen tuaduae:

U

1e] = Z > > WijkQ(ri k) L(ri k)

i=1 7, ;e M(D;) k€Q(3,5)
= > > wipQrig)L(ri)
i=1 keQ(d)



whereu is the total number of subdomains and, ko Q(i, j), r; j x/w; j 1., represent the quadrature points/weights
in cell 7; ; of meshM (D;) for computing the integral [©] on the subdomai;. Note that in order to keep the
notation simple, thg subscript associated with the cell has been dropped. Reconstructipliesisto get)(r; 1.):

rzk Z 1904 I‘Zk—l-Ta Z 1904

a€R(i) a€R(i)

This is the case when the same subdomains are involved in the reconstrdittievalue ofr; ;. for £ € (i) and
might not be the case if the partitioning of the overall domain in subdontaiaadY,, is not done carefully.

In what follows theclout C¢(i) of a noden in the meshM(Y,,) relative to the subdomaib; represents
the set of indices: for which the associated quadrature patp, € D;, when subjected to the reconstruction
translation, falls within a cell aM (Y,,) for whichn is a node. Using this notation and linear shape function-based
interpolation, we obtain

Yo wik L(rig) Q(rik)

keQ(3)

p
= > wi,kL(ri,k)[z V(i) > Q(ry) i ()
keQ(q) a=1 neN (7(ry k)
= 3 S Q) 0(i) Y wik Lrik) o (x8),
a€R(i) neM(Yq) keCy(d)

wherer“(r; ;) is a function that returns the cell in the mes#(Y,,) in which the quadrature poimt ;, € D; falls
when subjected to the reconstruction translation, &fd) returns the set of node points associated with the cell
7. Typically, a noden has several cells that it belongs to, and a shape function is associatathtpaér (node,

cell it belongs to). This aspect is acknowledged, but for simplicity the notatbes not reflect this dependency.
Defining

et = 0% D win Llrak) @R (),
keCe (i)

KAL) = > kYT

1ER~1(a)

the dependency of the kernel at node the subdomairy,, is explicitly indicated to depend on the expression of
the local function componerit: & = k%[L]. The integral and its derivative with respect the value of the electron
density at a node of the meshM(Y,,) are expressed as

0] = Z > K2Q(ry) = &[L]- Q]

a=1 neM(Yq)
o1[e] Q.
— arp] Z¥ (pa
S = Rl 50,
where
RILL = [KIEL. kb [ /RIL, ,ng(p)[L]},

Herey(a) represents the number of nodes in the reconstruction subddrpaiand Q(r?) is the value of the
function ) evaluated at the node of the meshM(Y,,). The notationQ[p] emphasizes that this vector depends
on the value of the density but only at a discrete set of locations, that is, the nodes of the meghi¥s,), for

a = 1,...,p. The kernel vector is constant and evaluated once; the védfiirchanges with the value of the
density and in an iterative process should be evaluated at each iteration.
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A matrix-vector notation describes the above procedure more concisetya Bubdomairb; and a recon-
struction subdomaitY,,, o € R (i), a quadrature matrix is defined to capture the concept of a clout assbciate
with a noden in Y,, relative to the subdomaiB;. Thus,Q* ¢ e R4(E9)xu¥(®) has as many rows as there are
quadrature pointg(i; O) in the subdomai;, and a number of columns equal to the number of nades in
the reconstruction subdomaffy, for o« € R(i). The superscrip® is necessary to differentiate between different
guadrature types in the case of a double integral, as will be the case shbglgpotation suggests that this matrix
refers to the outermost integral; for a double integral a supersCigptised to refer to a quantity defined in relation
to the innermost integral. Note also that the number of quadrature pgint®) depends on what quadrature
rule is considered for integration and that the faaté(:) that indicates the weight of the subdomaip in the
reconstruction of the subdoméiy is also rolled into the expression f@* . For a quadrature poimt 5, € D,
the entry(k, n) is nonzero provided € C¢(i). Therefore, the clout of a nodeis the set of rows with nonzero
entries in the column associated with this node. A nonzero entry assumesnthe fo

Q™ HOlk, n] = V(i) wi g Ly (x04)-
Defining ~
Lo — [ L(x9) ... L(rfq(i;o)) ’

then, fori € R~!(a), we have o ‘
KO — L? Qa%z;O‘ (4)

Approximation of a double integral will now be established for the Coulomb iateg

J[p]:;//fm dr dr'.

L) = [ A o

v —

Defining first

we can approximate the Coulomb integral as

T=53 X X 0 Y wik L) ).

a=1 neM(Ys) i€R-1(a) keCy (i)

Furthermore,

Lrig) =Y Y wmli K o,

/=1 mEM(Y@)

where the notationﬁl[z', k] indicates that the kerneﬁl[i,k] corresponds to the local functign’ — r; x| 1. Using
the notation

Kgpho= > > 0%() wig s li, k] @i (xd)
iER1(a) keC2(4)

leads to
1 T
Tl = 5, Kp
K1 K2 .. K
21 22 2p
K — K2l K22 .. K
KPl KP2 . K
K7 - Y Y K‘“—W‘—j:[Kgﬂ} n=1,...,y(a), m=1,...,y(8)

i€ER™ o) JERTH(B)



with K*—%7J yet to be defined. Corresponding to the quadrature point associatethevititer integrahrlok, a
row vector is defined as

f,jI[z, k] = |r20k — ril|_1 |r20k — riq(j;z)]_l . (5)
Then, ‘ . ‘
KPIi, k) = LE[i, k] Q77 € RPV(),
Define .
o Ly[i. 1]
LoO0T — .
AT
L] [Z7 Q(Zv O)]
and 4
w0, 1]
KA = — [HO9T QBT
kP i, q(3; O)]
Then,
Koc<—i,ﬂ<—j _ [Q&«—i;O]T []:i,@;j,I] |:Qﬁ<—],l’:| ) (6)

Note thatx®—7[i] € RIEO)*¥(B) andK>—4/—7 ¢ R¥(®)*¥(8) Implementation details for the parallel evaluation
of the method’s associated kernels are discussed in Ref. 38.

The Optimization Problem

The formalism introduced for the computation of an intedi&] = [ ©(r) dr hinges on the partitioning(r) =
Q(r) L(r) and has been applied to the Thomas-Fermi-Dirac DFT, leading to the followiimgieation problem:

: ! .5 N
min Fiot = —Cxli'pg-i-CF/i pg-i-line p+§pTKp
0 = k-p—N,
0 < p
- A1 A1 ~p 2 17
wherep = pl,...,py(l),...,pl,...,pz(p)} and

Mo

k= K[1] Kne = K R
Ao Ir— Ryl

Defining for an exponent € R, a diagonal matrix

C

,...,(p;))cw"’ (P§<p>>c)’

D[p°] = diag ((p%)c e (pll,(l))
we obtain the gradient of the cost function

2 1

9 4 1
V Etot = g[p| = KT <3CFD[ﬁ3] — 3CXD[[)3]> + Ii,j;e + 5/3T (K + KT) .

The Hessian is evaluated as .
H[p] = Hylp] + 5 (K+K"),

10



where
Hilp] = diag (H'[p),.... B 2
H[)) = diag (r§ ( (3)7% = 5Cx (99)75) .

s Fyla >< CF( y<a>>_l CX( y<a>>_§)>-

The value of the electron density should always remain positive, andfdheithe minimization is best ap-
proached in the framework of bound constrained optimization. Boundb@ined optimization problems (BCOPSs)
have the form

min{f(z) : l <z < wu},

wheref : R™ — R is a nonlinear function with continuous first- and second-order deregtihe vectors and
u are fixed, and the inequalities are taken componentwise. A classical'Peshuitvs that the bound-constrained
optimization problem has a unique solution on the feasible region

Q={zeR": 1<z <u}

when the functiory : R™ — R is strictly convex. This result holds for unboundedand the components 6aind
u are allowed to be infinite. For the projection operator

max{di, 0} if Ty = Ug

x* is a solution of the BCOP if and only if the projected gradiéntV f(z*) = 0. Given a tolerance-, an
approximate solution to the BCOP is anye €2 such that

[TV f(2)|| < 7.

Note that this holds whenever is sufficiently close tar*. Algorithms for solving these problems are usually
generalizations of well-known methods for unconstrained optimization. faonstrained optimization, Newton’s
method, for example, solves a linear system involving the Hessian matrix aidelerivatives and the gradient
vector. Each iteration of active-set methods fixes a set of variablesetofotheir bounds and solves an uncon-
strained minimization problem using the remaining variables. A set of threethlygsrused in conjunction with
the electronic structure computation problem is presented and discussed Ti@&se algorithms are part of the
Toolkit for Advanced Optimization (TAO) library®4%. TAO provides optimization software for the solution of sci-
entific applications on high-performance architectures. These applisatidiide minimizing energy functionals
that arise in differential equations and molecular geometry optimization. \éfasioftware packages are available
for solving these problems, but TAO provides the portability and scalabilitgseary for parallel optimization on
high performance computers (Linux clusters, IBM BGIL, etc.).

PROPOSED COMPUTATIONAL SETUP

Given a nanostructure the goal is to determine the electron density distriagiorell as the positions of the
nuclei, that is, the mapping. Here we do not consider dynamics of the nuclei. As indicated in Fig. 2, the
proposed computational approach has three principal modulegrepeocessingtage, theelectronic problem
and theionic problem Preprocessings carried out once at the beginning of the simulation. A dondafnis
selected to include the nanostructure investigated. The partitionid2f ohto v subdomain®d;,i = 1,...,u,

is done to mirror the underlying periodicity of the structure. The subdonfajps throughD, ) become the
active subdomains and, as in Figure 1, they are denoted liyroughY,,. A set of values of the electron density

is required at the nodes of the discretization mesh; the initial guess for ttteoaleensity could be an overlap
of isolated atom electron densities throughout the nanostructure or, pvhetical, could be obtained based on
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periodic boundary conditions assumption by computing it in a doraiand then cloning for the remaining
domainsDy. Preprocessingoncludes with the initialization of the deformation mao identity.

With a suitable norm, the new electron densitif is compared tg", and the computation restarts the
electronic problemafter settingp™ = p"¢* unless the corrected and initial values of the electron density are
close. This iterative process constitutes the first inner loop of the algorithm.

The ionic problemuses the newly computed electron density to reposition the nuclei. The nordiystam
in Eq. (3) provides the position of theepnuclej the other nuclei are positioned based on the quasicontinuum
paradigm according to Eq. (1). The nonlinear system is solved by ativiieraethod that leads to the second
inner loop, which has four steps: (a) evaluate the integral of Eq. (BEmwnecessary, evaluate its partial with
respect toP;; (b) evaluate the double sum of Eq. (3), which is based on a partitionirigeo$tructure, and,
when necessary, evaluate its partial derivative with respect to the positithe representative atoms; (c) carry
out a quasi-Newton step to update the positibn®f the M,.,, representative nuclei; and (d) go back to (a) if no
convergence results.

The precision in determining the positions of the nuclei is directly influencetthdoaccuracy of the electron
densityp(r). Thus, an important issue, not addressed by this work, is the sensifitity solution of the nonlinear
system in Eq. (3) with respect {gr). It remains to be determined what level of approximation of the electron
density suffices for solving the ionic problem at a satisfactory level ofi@cy. After determining the position of
the nuclei, the algorithm computes the new deformation mappiagcording to Eqg. (1). If the overall change in
the position ofrepnucleiat the end of the ionic problem is smaller than a threshold value, the computiatis s
otherwise the new distribution of the nuclei is the input to a new electronidgrrofsecond stage of the algorithm).
In summary, the algorithm passes through the preprocessing stagdtdhee.solves the electronic problem (the
first inner loop) and proceeds to the ionic problem (the second innej.lddpe outer loop (electronic problem,
followed by ionic problem) stops when there is no significant change in thiéiquo of therepnuclei

PRELIMINARY NUMERICAL RESULTS

The fact that quasicontinuum method represents a meaningful reductidel moproach has already been es-
tablished®11:1224 The focus of the numerical experiments presented here is on modeticedas applied
to the electronic problem. The approach proposed for the solution of therale problem has been inves-
tigated in the context of undeformed topologies. In other words, for tfiermation gradientvVy ®(r°,t),
J(r%t) = det(Vo ®(x%,¢)) = 1.

String of Atoms Example

Our first example is a three-dimensional variation of the one dimensionalacesyzed in the previous section.
The size of each of the 3D subdomains surrounding a hydrogen atbm 3sx 3 (all units henceforth are atomic
units). A full simulation with no reconstruction is provided as the refereobgisn. Two scenarios with seven
and five active subdomains were subsequently considered; all mesines mumerical experiment are uniform.
In the first scenario, the subdomaibs, D,, D3, D;, Di1, D12, andD;3 were active; onlyDs, D;, andD;; were
used for reconstruction. In the second scenario, the subdoain®, D;, D2, andD;3 were active; onlyD,,

D;, andD;s were used for reconstruction. For this test, the number of nodes/cells attire subdomains is as
follows: 28561/22464 for the nonreconstruction case (13/13), 142096 for the 7/13, and 10985/8640 for the
5/13 case. All meshes considered herein, uniform or variable, are upaoiehexahedrons. Figure 3 displays the
relative errors; shown are only the regions where the relative ertargser than 5%. The results show a slight
improvement in the seven-subdomain case; as the number of active subslomeeases, the quality of the results
improve. Because of the dimension reduction, the size of the optimization praldereases, thereby leading
to a reduction in the number of iterations. Moreover, each iteration is commaHyidess expensive. The large
relative errors are explained by the small values assumed by the eleetnsitydaway from the nuclei where in
practice it is expected to be zero. This and the boundary artifacts expéearctiumulation of the 5% relative error
isosurfaces far away from the nuclei and close to the boundary obthtta domain. While an exact quantitative
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Active Subdomains 13 7 5
Number of Iterations 605 245 221
Total Energy -14.257 -14.256 -14.256

Table 1: Uniform mesh summary of the results. TAO-BLMVM optimization comstsaare10~° for absolute and
10~° for relative convergence tolerance.

characterization of the boundary artifacts remains to be produced, tbdyaaed back to at least two sources.
First, the small pockets of nonzero electron density are explained by acelovergence rate of the optimization
algorithm that currently does not use Hessian information and stopslséaring these pockets in remote corners
of the nanostructure. Second, and more important, the assumption ofyumgi@eriodicity of the solution when
used in conjunction with a small number of reconstruction subdomains (fgreeleof freedom) limits the capacity
of the electron density to relax due to these periodicity constraints that masinberically satisfied. As expected
and illustrated in the results corresponding to the 5 active subdomainglrasiuation is exacerbated as fewer
degrees of freedom are available in the energy minimization step of the méthspmite of these boundary artifact,
it should be noted that the differences in total energy are small for bothaine 5 active subdomain cases (about
0.007%; see Table 1). The results reported were obtained by runnirayaligb with 13 processes on a Linux
cluster.

Slab of Atoms Example

Figure 4 shows the results obtained for the % subdomain 3D slab. Of the 25 subdomains considered for this
simulation, one subdomain per nucleus of a hydrogen atom, only nine submoshdarker color were considered
active and used for reconstruction purposes. Figure 4a displaysetiteoa density distribution on a mid-Z slice
for the reconstructed domain (9/25). Figure 4b displays the subdomaitustwf the slab, and Fig. 4c shows the
relative error produced through reconstruction. Compared to theerefe case, the relative error in the total value
of the electronic energy was 0.03%. The number of nodes/cells fér the case with all subdomains active was
33275/25000. For the 9/25 reconstruction scheme, the number of unkneas reduced from 33275 to 11979.
The 3D simulation was run in parallel using 25 processes on a Linux cluster.

Nonuniform Mesh Results

Our third test investigated the effect of mesh adaptivity. An example coristia string of five hydrogen atoms
was run in parallel on IBM BlueGene/L using five processes with no itaaction. The solution on a uniform
mesh is plotted in Fig. 5a; the variable mesh solution is presented in Fig. 5b. glthodoth cases the number
of mesh points is comparable, the total energy in the nonuniform case hgistly smaller value, which indicates
that it corresponds to a more relaxed distribution of the electron densigypdék electron density values are also
higher for the variable mesh case because of a refined mesh capabfwing fast variations in the vicinity of
the nuclei. The energy values are slightly different in the two situationsf@elifce of 12%, from -5.8 to -5.2). In
Fig. 5 a “smearing” effect is noticed in the constant-size mesh, where lditevedy higher values of the electron
density occupy larger volumes but with lower peaks. Both simulations usaite @ptimization settings (absolute
and relative convergence tolerance). In each of the five subdonth@éaumber of nodes/cells was 10999/7712
for the variable mesh and 11661/9216 for the uniform mesh.

The number of iterations in the nonuniform mesh case is much larger (21fipased to 212). However, the
nonuniform mesh results were obtained without using any acceleratidegstra he poor convergence speed can
be addressed by a better mixing metibt?, multigrid approach and by providing Hessian information, which,
while straightforward in the proposed approach, is not implemented yet.

When one brings into the picture the reconstruction component, the trenddhatiove persists. For the 13-
atom example run with 7 active subdomains, the uniform mesh size scenatmdedenergy of -14.257 in 245
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iterations. The variable mesh case led to -15.54 in 3299 iterations, which rslanaf magnitude increase in the
number of iterations.

Conclusions

Density functional theory can accurately predict chemical and mechamimgerties of nanostructures, although
at a high computational cost. A quasicontinuum-like framework is proposedistantially increase the size of
the nanostructures accessible by simulations. The approach combineshbrethdttion paradigm and parallel
computation capabilities to increase the size and reduce the simulation time asbeiiatarge simulations. The
entire domain of interest is first meshed and divided into subdomains. Tétckiaxchange correlation, Coulomb,
and electron-nuclei interaction energies are expressed in terms ofajuielsvof the electron density in a subset
of so-called active subdomains. The resulting form of the energy is mininsizieigct to the charge conservation
constraint. The implementation leverages a domain-decomposition paradigfior gdallel simulation support
it builds on top of the MPICH2 library and the Toolkit for Advanced Optimizatiddne salient feature of the
proposed approach is that the function and gradient evaluations, laasabe optimization stage, are run in
parallel. The reconstruction errors were shown to depend on the @ftemdel reduction. For a test problem
consisting of a three-dimensional string of one-electron atoms, the mopgproach led to a threefold reduction
in the number of iterations for convergence, while maintaining small valuedaifwe error for the total energy and
the electron density in the regions of interest (boundary artifacts led terlaafues in these boundary regions).

The method could be improved in three ways. First, and most importantly, moae@et/forms of the kinetic
and exchange and correlation energy functionals need to be chaskthgzeffective core potentials for many elec-
tron atoms have to be implemented. Second, for larger problems, cut-afigeels and fast-multipole methdts
need to be considered. These would ease memory limitations and allow the simolddiae reconstruction tests
that go beyond the current proof-of-concept applications. Thilrélconstruction approach should be extended
to the DFT Kohn-Sham approach because it has a significantly largebase than OFDFT.
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Figure 1: Partitioning of the computational domai®, D; andDy; reconstruction subdomainB;, D», D;2, and
D5 active subdomaing)y, D5, Dg, Ds, Dy, andDyg passive subdomains.
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Figure 2: Computational flow. Proposed approach has three stageraivétdoop spans the last two stages: the
ELECTRONIC and IONIC PROBLEMS.
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(a) Relative error for 13/7 (245)
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Figure 3: Relative error surface for the 13-subdomain scenariog @gjn7 and (b) 5 active subdomains. In
parentheses we show the number of optimization iterations. The numberva& sghidomains considered in the
algorithm reflects in the quality of the numerical solution: more active subd@mesult in a larger number of

degrees of freedom, which positively impacts ability to relax to lower enexgydeand reduces boundary artifacts.
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Figure 4:5 x 5 three dimensional slab simulation scenario results. The reconstructiooaapgdeads to good
results in spite of topology dominated by large boundary to volume ratio.
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(a) fixed mesh (-5.1829/212) (b) nonuniform mesh (-5.8705/2181)

Figure 5: Density distribution for the 5-subdomain example using (a) a umifoesh and (b) an adaptive mesh.
Above each result we show the associated mesh. In parenthesesawbagiotal energy/number of iterations. As
anticipated, an adaptive mesh shows higher electron density peakserGemee speed if very slow though, and
either Hessian information, or multigrid approach will have to be employed teasdhis issue.
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