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ABSTRACT 

 
We present a stochastic finite-element approach for characterizing parameter dependence of 
minimum eigenvalue problems encountered in neutronic calculations. Our formulation results in 
solving a nonlinear system of equations, that is K  times larger than the original problem and has 
K  constraints, where K  is the number of terms considered in the perturbative expansion of the 
solution.  This approach allows us to calculate the behavior of the eigenvalue and the eigenvector 
in the entire parameter range, as opposed to a narrow region around a nominal value calculated by   
classical sensitivity analysis.  Initial investigation for a small parameter space indicates that the 
method has the potential of substantial savings over Monte Carlo calculations that attempt to 
characterize the behavior of the eigenvector and eigenvalue over the entire parameter space.   
 
Key Words: Stochastic finite element, eigenvalue problems, constrained optimization, uncertainty 
analysis 

 
 

1 INTRODUCTION 
 
This paper is concerned with the application of stochastic finite-element methods (SFEMs) for 
determining the parametric variation of the solution to minimum eigenvalue problems. Our main 
motivator is the issue of characterizing criticality of a nuclear reactor core in the presence of 
parameter uncertainty, although the methodology extends to parameter uncertainty questions 
beyond nuclear engineering.  
 

2 BACKGROUND ON THE STOCHASTIC FINITE-ELEMENT METHOD 
 
The stochastic finite-element method has emerged with substantial prominence in the past 
decade as a versatile tool for uncertainty quantification and uncertainty analysis [2].  In virtually 
every instance this method has been applied to the problem of parametric nonlinear equations, 
specifically, the parameter dependence of the solution of a nonlinear equation ( ), 0F x ω = , 
where the function ( , )F ⋅ ⋅  is smooth in both its arguments.  Under the assumption of non-
singularity of ( , )xF x ω∇  in a sufficiently large open set that contains 0 0( , )x ω , one can determine 
a smooth mapping ( )x ω  that satisfies 0 0( )x xω =  and 0 0( ( ), )F x ω ω . The uniqueness of this 
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mapping, while crucial for classical analysis, is not addressed in this paper; we simply assume 
that this mapping also defines a unique solution to the nonlinear equation problem.  The essence 
of parametric uncertainty analysis is to characterize the mapping ( )x ω  either by approximating it 
to an acceptable degree or by computing some of its integral characteristics, such as averages 
with appropriate weighting functions. 
 
Perhaps the most widespread approach used for parametric uncertainty analysis is the Monte 
Carlo method.  The parameterω  is interpreted as a random variable with an appropriate 
probability density function, and either the probability density function of ( )x ω  is approximated 
or computed, or appropriate averages [ ]( ( ))E g xα ω  are computed for suitable expressions of the 
multidimensional merit function g . Values for ( )x ω  are produced for an appropriate set of 
sample points iω , in which case for each sample point the original nonlinear problem must be 
solved for its argument x . 
 
Recently, researchers have expressed renewed interest in carrying out the analytical computation 
as far as possible in order to characterize the mapping ( )x ω . Essentially, the mapping is 
approximated by a Fourier-type expansion with respect to a basis of polynomials  

( ) ( ) ( )1 2, , Kψ ω ψ ω ψ ω… that are orthogonal with respect to the probability density function of 

α , that is, ( ) ( )( ) , 1 ,i j ijE i j Kα ψ ω ψ ω δ= ≤ ≤ . For 1 2, , n
Kx x x R∈… , one defines the 

approximation ( ) ( )1 2
1

; , , ,
K

K i i
i

x x x x xω ψ ω
=

=∑…  , and the stochastic finite element formulation is 

obtained by determining the vectors * * *
1 2, , , Kx x x…  that satisfy the Galerkin projection conditions 

 
( )( ) ( )( )1 2; , , , , 0, 1,2, ,K kE F x x x x w k Kω ω ψ = =… … . 

 
The result is a nonlinear system of equations K  times larger than the original nonlinear system 
of equations for a given choice of the parameter ω .  The advantage over the Monte Carlo 
method is that once this nonlinear system of equations is solved, the original nonlinear problem 
no longer needs to be solved. One explicitly has an approximation of the mapping ( )x ω ; and if 
either several of its momentum or its probability density functions need to be evaluated, then a 

Monte Carlo method can be used on the explicit approximation *

1
( ) ( )

K

k k
k

x xω ψ ω
=

=∑ , without 

needing to solve any further system of nonlinear equations.  
 
As an example, we discuss the case where 1, [ 1,1]m = Ω = − , and the probability distribution 

function of the parameter α  is uniform. In this case we have that
1

1

1( ( )) ( )
2

E g g dα ω ω α
−

= ∫ . The 

appropriate polynomials are the normalized Legendre polynomial functions 
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( ) ( )21 2 1 1 1 , 0,1,2, ,
2 2 !2

k k

k k k

k dP k K
k d

ω ω
ω

+
= − = … . 

Because the polynomials are used as the generators of the space over which the approximation is 
carried out, given the stochastic interpretation of the parameterω , has led to the expansion 
defined by this approximation is called the chaos polynomial expansion.  
 
Of course, the success of this method resides in the ability to choose a suitable set of polynomials 

iψ ahead of time so that the residual decreases rapidly for relatively small values of K , before 
the size of the Galerkin projected problem explodes.  A good way of choosing such polynomials 
is far from being settled for a very large value of m , the dimension of the parameter ω . 
Nonetheless, for cases where n  is huge (e.g., cases originating in the discretization of partial 
differential equations) and m  is relatively moderate, the successes of the stochastic finite-
element method have been spectacular compared to the Monte Carlo approach [2]. 
 
The object of this paper is to analyze some of the particularities of the stochastic finite-element 
method and new extensions of it when the original problems are optimization problems. In this 
work we are interested not in the stochastic aspect of the method per se, but in possible ways of 
generating the approximation ( )x ω  and in the properties of the resulting nonlinear problems. As 
an application we consider the eigenvalue problem associated to the solution of the neutron 
diffusion equation in a nuclear reactor. 
 

3 STOCHASTIC FINITE-ELEMENT FORMULATION OF EIGENVALUE 
PROBLEMS 

 
We consider the following structure of a generalized eigenvalue problem, depending on a 
parameter vector ω∈Ω .  
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 1 2 2 3 3

5 2 4 1

3 1

1 1 1T

Q x Q x Q x

Q x Q x

x x

x x

ω ω ω ω ω ω

ω ω ω ω

ω λ ω ω

ω ω

+ =

=

=

=

 (3.1) 

 
 
The goal of the SFEM parametric analysis is to approximate ( )x ω and ( )λ ω , where ( )λ ω is the 
maximum eigenvalue mapping. At a first glance, one may think that the problem can be further 
reduced by explicitly replacing ( ) ( )2 3,x xω ω in the first equation and inverting ( ){ } 13Q ω

− . 

However, this approach would involving applying ( ){ } ( ){ }1 13 5,Q Qω ω
− − . The typical case of 

interest is the one in which ( ) ( )3 5,Q Qω ω are linearly dependent on ω , which is easy to represent 
efficiently in the spectral space, whereas ( ){ }3Q ω  has a rational function dependence that is much 
harder to represent in the spectral space.  
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We can immediately use the ansatz above in order to obtain a set of nonlinear equations. Once 
we carry out this formulation, however, it is not clear  how to extend to this problem some of the 
very useful algorithms of eigenvalue calculations, in particular, power methods. In order to 
derive an algorithm similar to the power method, we interpret the normalizing step of the power 
method as a projection onto the space of the constraint 1Tx x = , and rewrite the problem above as  
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

1 1 2 2 3 3

5 2 4 1

1 3 3
, 1

arg min .T

T

z z z

Q x Q x Q x

Q x Q x

x x z x z
ω ω

ω ω ω ω ω ω

ω ω ω

ω ω ω ω ω
=

+ =

=

= − −

 

  
 
Indeed, rewriting the optimality conditions for the optimization problem below, we obtain that  

( ) ( ) ( ) ( )3 1 1x x xω ω θ ω ω− =  which in turn results in ( ) ( )1λ ω θ ω= + . 
 
Using the SFEM decomposition presented above, we approximate the mappings ( ) ,ix ω   

1, 2,3,i = ( ) ( ), zλ ω ω  by a Fourier type expansion with respect to a basis of polynomials 

( ) ( ) ( )1 2, , Kψ ω ψ ω ψ ω…  that are orthogonal with respect to the probability density function of 

ω . The mapping coefficients satisfy , , , 1, 2,3, 1, 2, ,i n n
j j jx R z R R i j Kλ∈ ∈ ∈ = = … , and we 

define the approximations in the K -dimensional space as 

( ) ( )

( ) ( ) ( ) ( )

1

1 1

, 1, 2,3

,

K
i i

j j
j

K K

j j j j
j j

x x i

z z

ω ψ ω

ω ψ ω λ ω λ ψ ω

=

= =

= =

= =

∑

∑ ∑
 

 

3.1 Expressing the Lower-Level Optimization Problem in SFEM 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

3 3
1 , , ,

1 1

1 1

arg min

s.t. 1, 2, , .

k

TK K

z z z i i i i i i
i i

TK K

i i i i k k
i i

x E x z x z

E z z E k K

ω

ω ω

ω ψ ω ψ ω

ψ ω ψ ω ψ ω ψ ω

= =

= =

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤= =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑

…

…

 (3.2) 
 
 
 
The Lagrange multipliers 1 2, , Kθ θ θ… of the constraints at optimality are the coefficients of the 

approximation to the mapping ( )θ ω , ( ) ( )
1

K

i i
i

θ ω θψ ω
=

= ∑ as detailed in [1]. 

 
Expressing The Parametric Linear Constraints For Linear Parametric Dependence  
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Expressing the two linear constraints in the eigenvalue problem in the generic format of (3.1) is , 
to a large extent, uninformative. Therefore we formulate the problem for a special but widely 
encountered case in which the matrices appearing in (3.1) have the following expression : 
  

( ) 0
1

, 1, 2, 5
m

i i i
j i

j

Q Q Q iω ζ
=

= + =∑ … , 

where we have defined by iζ the components of the vector ω , that is, ( )1 2, , , mω ζ ζ ζ= … .  
Replacing in the SFEM formulation, we obtain the following. 
 
  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 2 21 2
0 0

1 1 1 1

3 3 3 3
0

1 1

, 1, 2,

K m K m

i j k i k j i j k i k j
k j k j

K m

i j k i k j
k j

Q x Q x E Q x Q x E

Q x Q x E i K

ω ω

ω

ω ψ ω ψ ω ω ω ψ ω ψ ω ω

ω ψ ω ψ ω ω

= = = =

= =

⎡ ⎤ ⎡ ⎤+ + + =⎣ ⎦ ⎣ ⎦

⎡ ⎤+ =⎣ ⎦

∑ ∑ ∑ ∑

∑ ∑ …
 (3.3) 

( ) ( ) ( ) ( ) ( ) ( )5 2 5 4 1 42 1
0 0

1 1 1 1

K m K m

i j k i k j i j k i k j
k j k j

Q x Q x E Q x Q x Eω ωω ψ ω ψ ω ζ ω ψ ω ψ ω ζ
= = = =

⎡ ⎤ ⎡ ⎤+ = +⎣ ⎦ ⎣ ⎦∑ ∑ ∑ ∑  (3.4) 

 
We can write these equations in matrix form, where we use the notation 

( )1 2, , , , 1, 2,3
TT T Ti i i i

Kx x x x i⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ⎣ ⎦… , as  

  
 1 1 2 2 3 3 5 2 4 1, .Q x Q x Q x Q x Q x+ = =  (3.5) 

 

3.2 Iterative Scheme.  
 
We can then define our iterative scheme as follows: 

• Choose the vector coefficients 1 , 1, 2, , ,n
kx R k K∈ = …  which are the block components of 

( )1x ω  
• Compute the vector 2x by solving the equation (3.5) with matrix ( )5Q ω . 
• Compute the vector 3x  by solving the equation (3.5) with matrix ( )3Q ω . 
• Compute the solution of the constrained optimization problem (3.5), which provides the 

new 1x and the Lagrange multipliers , 1, 2, , ,k k Kθ = …   which are the coefficients of the 
approximation ( )θ ω . We obtain the approximation ( )λ ω of the eigenvalue map. 

• Repeat the process.  
 
Clearly, as , 1,2, ,5, 1,2, ,i

jQ i j m= =… …  approach 0, this algorithms approaches precisely the power 

method applied to the matrix { } { }( )1 13 1 2 5 4
0 0 0 0 0Q Q Q Q Q

− −
− , provided that it is started with 

1 0 , 2,3, ,i nx i K= = … . 
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4 NUMERICAL EXAMPLE 
 
We use the one-dimensional multigroup diffusion equation  

 
 

,( ) ( ) ( ) ( ) ( )

1 ( ) ( ), 0

g g tg g s g g g
g g

g fg g
g

d dD z z z z z
dz dz

z z z L
k

φ φ φ

χ ν φ

′ ′→
′≠

′ ′
′

− + Σ − Σ =

Σ ≤ ≤

∑

∑
 

 
with boundary conditions ( ) 0, 0,g z z Lφ = =  [1]. We have used a 2-group configuration with 
nominal parameters from Table 7-2 of [1], where the energy groups are directly coupled. The 
model was discretized with finite differences on 200 nodes in MATLAB. We assume that we 
have uncertainty in the cross sections as follows: ( )0

,1 2,1 2 21ss εζ→→Σ = Σ + and 
( )1 1 11f f εζΣ = Σ + ( )2 2 11f f εζΣ = Σ +  (that is, the two fission cross sections have correlation 1). Here 

the random variables 1ζ  and 2ζ are independent uniformly distributed on the interval [ 1,1]− . 
Note that we have chosen two variables primarily because it is easier to display functions of two 
variables as opposed to more variables; there is no conceptual impediment to applying our 
method to larger configurations.  
 
If we denote the Laplacian by L and the identity matrix by I , our equation above applies with the 
following matrices, where ( )1 2,ω ζ ζ= : 

 

 

Figure 1: Eigenvalue and error of SFEM approximation. 
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Here we consider only the case of the constant diffusion parameter, which allows us to write the 
previous algebraic expressions. We choose the parameter 0.5ε = , which corresponds to a 50% 
uncertainty in the fission and scattering cross-sections.  
 
 
A nonlinear Gauss-Newton method is used to solve the optimization inner loop (a projection on a 
manifold problem). The iteration is stopped when the 2-norm of the vector of Lagrange 
multipliers 1 2, , , Kθ θ θ…  obtained from the projection process did not vary for more than 1e-4. 
 

4.1 SFEM Results  
 
As the polynomial basis, we consider the tensor product basis with maximum degrees 1N and 2N ,   

( ) ( ) ( )
2( 1) 1 2 1 2 1 2, , 0,1, , , 0,1, ,i N j i jP P i N j Nψ ζ ζ ζ ζ− + = = =… …  In our simulations, we have used 

1 2 3N N= = , which results in 16 polynomials.   
 
The results require 104 seconds to generate with SFEM and 480 seconds to generate by direct 
calculation on a 41x41 grid: almost 5 times larger time . In the left panel of Figure 1, we show 
the results from direct calculation on a 41x41 grid. In the right panel,  we display the error on the 
same grid points of the SFEM approach. We can see that the maximum relative error is less than 
1%.  
 
We also note that the computed model exhibits substantial nonlinearity, which would 
nonetheless be invisible on a parameter-by-parameter basis. Indeed, in the left panel of Figure 2, 

Figure 2: Eigenvalue computed by direct numerical simulation and error of SFEM approximation. 
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where the graph of the eigenvalue is plotted along the directions , 1, 2i iζ = , we see that the graph 
is nearly perfectly linear, and could be well captured by sensitivity.On the other hand, along the 
correlated directions 1 2 1 20,ζ ζ ζ ζ+ = =  the eigenvalue exhibits substantial nonlinearity, that is well 
captured by our model and that could not be captured by sensitivity calculations alone.  
Nonetheless, sensitivity coefficients (that here have a global least squares meaning) can be 
computed from the linear term of the SFEM model.  
 

4.2 Considering Subsets of the Full Tensor Product Set 
 
One of the problems with our approach is the curse of dimensionality, since degree of up to 3 in 
each variable results in 4d coefficients to be calculated, where d is the dimension of the 
parameter set. We expect that this will be alleviated by considering only subsets of the full tensor 
product of orthogonal polynomials in two variables. In Figure 3 we plot the logarithm of the 
SFEM coefficients of the solution ( )λ ω  as a function of the degrees ,i j  of the component 
polynomials in the individual variables 1ζ and 2ζ  that define the basis. Clearly only 4 coefficients 
are significant: the ones of ( ) ( ) ( ) ( )2

0 0 1 1 0 1 2 1 1 1 2, , ,P P P P P P Pζ ζ ζ ζ . If we consider only those in our 
approximation, the time of calculation of the SFEM approximation drops to 40 s, with virtually 
no change in the quality of the solution (see Table I). In this case the ratio of the time of grid 
exploration to simulation exceeds 12!  Of course, in doing so we have the advantage of 
hindsight, but this shows that the reach of the method can be substantially expanded by 
considering well chosen subsets of the complete polynomial set of a given degree.    
 
 
 

Table I. Timing results and error for SFEM and direct calculation 
 

Method  Time to Completion  Average Error 

SFEM, 1 2 1N N= =  40s 1.1% 

SFEM, 1 2 3N N= =  104s 1.1% 

Direct Calculation 480s 0% 
 
 
 

5 CONCLUSIONS 
 
 
 We have defined a stochastic finite-element method for the perturbation analysis of the 
eigenvalue and eigenvector of a problem with stochastic parameter dependence.  For small 
examples, we have shown that the method is more accurate (by virtue of providing global, rather 
than local answers) than a sensitivity approach and is faster than a simulation method.  
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Figure 3: Logarithm of the spectral coefficients, by degree of tensor basis component. 
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