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Abstract

Single instruction multiple data (SIMD) functional units

are ubiquitous in modern microprocessors. Effective use

of these SIMD functional units is essential in achieving

the highest possible performance. Automatic generation of

SIMD instructions in the presence of control flow is chal-

lenging, however, not only because SIMD code is hard to

generate in the presence of arbitrarily complex control flow,

but also because the SIMD code executing the instructions

in all control paths may slow compared to the scalar orig-

inal, which may bypass a large portion of the code. One

promising technique introduced recently involves inserting

branches-on-superword-condition-codes (BOSCCs) to by-

pass vector instructions. In this paper, we describe two

techniques that improve on the previous approach. First,

BOSCCs are generated in a nested fashion so that even

BOSCCs themselves can be bypassed by other BOSCCs.

Second, we generate all vec any * instructions to by-

pass even some predicate-defining instructions. We imple-

mented these techniques in a vectorizing compiler. On 14

kernels, the compiler achieves distinct speedups, including

1.99X over the previous technique that generates single-

level BOSCCs and vec any ne only.

1 Introduction

As the clock frequency of microprocessors flattens, more

attention is being paid to exploiting parallelism to satisfy the

ever-increasing need for high performance. While paral-

lelism can be categorized into multiple levels depending on

the size of the program units being executed in parallel, for

the best performance it is important to exploit parallelism at

all levels, including single instruction multiple data (SIMD)

parallelism.

To support SIMD parallelism, manufacturers have ex-

tended their processors with support for short vectors [16,

20, 23]. If the short vectors are larger than the size of a

machine word, then they are called superwords [15]. The

rationale behind this extension is that adding such an ex-

tension does not cost much in terms of die area and design

time but sometimes gives a large benefit when the SIMD

units can be utilized [16, 29]. However, writing parallel pro-

grams manually is not easy, is error prone, and sometimes

undermines the portability of the code. We believe that par-

allelization has to be performed automatically by software

tools such as the compiler. There are two approaches to

generate SIMD instructions automatically. The first is to

adapt the vectorization technique developed for the conven-

tional vector machines. More recently, Larsen and Amaras-

inghe developed a technique to exploit SIMD parallelism

from basic blocks [15]. This fine-grained SIMD parallelism

in a superword is called superword-level parallelism (SLP).

Currently, several compilers can generate SIMD instruc-

tions automatically [15, 5, 21, 11]. They can generate

efficient code for well-formed input programs, but their

SIMD code generation is limited by several factors. One

such factor is control flow. For conventional vector com-

puters, vectorization in the presence of control flow in-

volves if-conversion followed by generating vector instruc-

tions guarded by vector predicates [13]. In 1991, Park and

Schlansker developed an if-conversion technique that is op-

timal in the number of predicates used and in the number

of predicate-defining instructions [22]. Our earlier work

used this technique to generate SIMD instructions for mod-

ern microprocessors in the presence of arbitrarily complex

acyclic control flow [26]. However, the generated code still

has to execute instructions in all control paths to merge val-

ues. Consequently, when branches in the scalar baseline are

frequently taken to bypass a large number of instructions,

the vector code may slow compared to the baseline.

To overcome this overhead of executing all control

paths, we introduced a technique to generate branches-on-

superword-condition-codes (BOSCCs) automatically [25].

A sequence of consecutive vector instructions guarded by

the same vector predicate can be bypassed by a BOSCC

if all fields of the guarding vector predicate are false. If



viewed in conjunction with the scalar baseline, a BOSCC is

taken when all corresponding scalar branches are taken. For

the loops with simple control flow where if-statements are

not nested, this technique improves the performance of the

generated SIMD code. For the loops with complex control

flow where if-statements are nested, however, the technique

generates a long sequence of non-nested if-statements. As a

result, although the vector instructions might be bypassed,

all vector predicates have to be checked to set the superword

condition code, and all BOSCCs have to be executed.

In this paper, we describe a technique to nest BOSCC

instructions so that multiple BOSCCs and the vector in-

structions enclosed within them can be bypassed by a single

BOSCC instruction. A key idea of this technique is to uti-

lize the relation ¬VP1 =⇒ ¬VP2 between the two vector

predicates VP1 and VP2. If this relation holds, whenever

the vector instructions guarded by VP1 can be bypassed,

the vector instructions guarded by VP2 can also be by-

passed, including the BOSCC for VP2. In addition, we

describe a new code generation technique that can generate

all vec any * instructions to bypass even some predicate-

defining instructions.

The contributions of this paper are summarized below.

• Discovery of a key relation between vector predicates

that can be used to generate nested control flow in vec-

tor code

• A code generation technique that allows a BOSCC

to bypass more instructions by generating all

vec any * instructions

• Development of an algorithm that exploits the relation

and code generation technique described above

• Experimental evaluation of the algorithm and the in-

teraction of two predicate-obtaining approaches with

redundancy elimination on 14 kernels

In the next section, we describe the terms and concepts

necessary to understand the later sections. Section 3 intro-

duces the two techniques using examples to motivate this

research. In Section 4, we describe the key relation be-

tween vector predicates. The algorithms are described in

Section 5. In Section 6, we present our implementation and

the experimental results on a set of 14 benchmarks. Sec-

tion 7 discusses related work, and Section 8 summarizes

our research.

2 Background

We begin by presenting background information about

vectorization and predication. This information will be used

in the subsequent sections.

2.1 If-Conversion

The SLP compiler applies the RK-algorithm of Park and

Schlansker [22] to generate a large basic block of predicated

instructions. We denote an instruction guarded by a predi-

cate pred as follows.

dst = operation; <pred>

The semantics of this notation is that if pred is true, dst

is updated with the operation’s result; otherwise, dst re-

mains unchanged. Thus, we can introduce an if-statement

as follows and still preserve the original semantics of the

predicated instruction.

if (pred) { dst = operation; <pred> }

We use pset as a predicate-defining instruction whose syn-

tax is as follows.

pT, pF = pset(cond) <pred>

The instruction pset takes one source operand and two

destination operands. The source operand is the result of

a previous comparison instruction, and the two destination

operands are predicate variables that can be used to guard

the subsequent instructions. A pset instruction itself can

also be guarded by another predicate just like any other in-

struction. The semantics of pset is that pT = cond and

pF = !cond when pred is true. If pred is false, both

pT and pF remain unchanged.

2.2 Predicate Hierarchy Graph

After the if-conversion is applied, some instructions in

a basic block may have predicates. To identify relations

among predicates, we use Mahlke’s analyses based on a

predicate hierarchy graph. Some relevant concepts are de-

fined as follows [18].

Definition 1 A predicate hierarchy graph (PHG) is a di-

rected acyclic graph representing the Boolean equations

used to compute all predicates in a basic block (after the

if-conversion has been applied).

A PHG comprises two types of nodes, predicate nodes

and condition nodes. Initially, a PHG consists of a single

predicate node for the NULL predicate, which represents

the constant true. In order to construct a PHG, instructions

are examined in textual order. For each instruction that de-

fines predicates, at most two predicate nodes are created,

representing the true and false values of the comparison.

For example, for a predicate-defining instruction such as

pT, pF = pset(comp) <pParent>, one condition

node for comp is created as a child of the predicate node

for pParent. The two predicate nodes representing pT

and pF are also created as children of the condition code

for comp, if they do not already exist. This process is re-

peated for each predicate-defining instruction.



2.3 Relations between Predicates

From the PHG built, we can extract some useful relations

between predicates, such as ancestor-relation and implies-

relation [18].

Definition 2 A predicate P1 is an ancestor of another pred-

icate P2 if all conditions used to compute P2 are derived

directly or indirectly from P1.

To determine whether P1 is an ancestor of P2, we traverse

the PHG backward from the node for P2 toward the root

node, examining all possible paths. For P1 to be an ancestor

of P2, all paths from the root node to the node for P2 should

contain the node for P1. If P1 is an ancestor of P2, P2 =⇒
P1.

Definition 3 A predicate implies another predicate when

the conditions for the first predicate being true guarantee

that the second predicate is also true.

A situation can arise where a predicate P1 implies another

predicate P2 but P2 is not necessarily an ancestor of P1. One

such situation occurs if, for each condition leading to the

predicate node for P1, there is the same condition leading

to the predicate node for P2, in which case there can be a

condition node C that leads to P2 but does not necessarily

lead to P1 1.

2.4 Vectorization in the Presence of Con-
trol Flow

Based on if-conversion and PHG, code with any arbi-

trarily complex acyclic control flow can be vectorized. For

multimedia extension architectures that do not support pred-

icated execution, however, vector predicates must be con-

verted to something semantically equivalent. Select in-

structions can be used to remove vector predicates [26]. The

select instruction

dst = select(src1, src2, mask)

assigns src2 to dst for the fields where the corresponding

mask bit is 1. Otherwise, src1 is assigned to dst.

2.5 Branch-on-Superword-Condition-
Code (BOSCC)

BOSCC is a branch instruction that can be conditionally

taken based on the comparison result of two vector vari-

ables. AltiVec supports BOSCC instructions with AltiVec

predicates [19]. For example, the predicated vector instruc-

tion

Vdst = vec operation; <Vpred>

1Figure 3(c) shows an example. P5 implies P6, but P6 is not an ancestor

of P5.

can be bypassed by introducing a BOSCC instruction as fol-

lows.

NotTaken = vec any ne(Vpred, ZeroVector)

if (NotTaken) { Vdst = vec operation; <Vpred> }

The vec any ne instruction returns true if any field

of Vpred does not match the corresponding field of

ZeroVector. Assuming ZeroVector contains false

values in all fields, NotTaken will be set to false only

when all fields of Vpred are false. We use predicate region

to refer to a sequence of consecutive instructions guarded

by the same predicate and BOSCC region to refer to the se-

quence of instructions enclosed by a BOSCC. By enclosing

the vector instructions guarded by vector predicate Vpred

inside an if-statement, we bypass them whenever the guard-

ing vector predicate has all false values, which is the only

case when NotTaken is set to false.

By inserting a BOSCC instruction, we increase the num-

ber of instructions statically in the hope of reducing the

number of instructions executed during run time. Thus, it

is important to know how frequently the BOSCC being in-

serted will be taken. According to the above code gener-

ation style, a BOSCC is taken only when the values in all

fields of the given vector predicate are false. Thus it is use-

ful to know the percentage of all false superwords, defined

as follows.

Definition 4 The percentage of all false superwords
(PAFS) of a vector predicate VP is the percentage of the
run-time values of VP where all fields are false.

PAFS =
# run-time values of VP, whose fields are all false

# all run-time values of VP

3 Two New Techniques

In this section, we use simple examples to introduce two

new techniques: nesting BOSCCs and bypassing more in-

structions by generating all vec any *.

3.1 Nesting BOSCCs

Figure 1(b) shows the control flow graph of the example

code shown in Figure 1(a), where the loop body has four

control paths. When vectorized without using BOSCCs,

the vector instructions along all four control paths have to

be executed to merge the values computed along the con-

trol paths. As a result, if edge 2 → 8 is taken most of the

times during scalar execution, the vector code may slow.

In order to address this problem, BOSCCs can be inserted

to bypass vector instructions [25]. Figures 1(c) and 1(d)

show the BOSCC inserted code and the corresponding con-

trol flow graph, respectively. Note that all BOSCCs are

single-level if-statements. In this code, vector instructions

are executed only if the corresponding scalar instruction is



for(i=0; i<SIZE; i++){
xx = in[i];

if(xx<8){
if(xx==0){

out[i] = 0;

goto end;

}
if(xx<0){

out[i] = 2;

goto end;

}
out[i] = xx+xx;

}
end:;

}

(a) scalar code

2

3

8

4 5

9

6 7

(b) CFG of (a)

L: . . .
V3 = vec cmplt(V1, V2);

B1 = vec any ne(V3, vF);

if (B1 == 1){ . . . } . . .
V4 = vec cmpeq(V1, vZero);

V5 = select(vZero, V4, V3);

B2 = vec any ne(V5, vF);

if (B2 == 1){ . . . } . . .
B4 = vec any ne(V7, vF);

if (B4 == 1){ . . . } . . .
B5 = vec any ne(V8, vF);

if (B5 == 1){ . . . } . . .
B3 = vec any ne(V6, vF);

if (B3 == 1){ . . . } . . .
goto L;

(c) Single-level BOSCCs
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(d) CFG of (c)

L: . . .
B1 = vec any lt(V1, V2);

if (B1 == 1){
V3 = vec cmplt(V1, V2); . . .
V4 = vec cmpeq(V1, vZero);

V5 = select(vZero, V4, V3);

B2 = vec any ne(V5, vF);

if (B2 == 1){ . . . } . . .
B3 = vec any ne(V6, vF);

if (B3 == 1){ . . .
B4 = vec any ne(V7, vF);

if (B4 == 1){ . . . } . . .
B5 = vec any ne(V8, vF);

if (B5 == 1){ . . . }}} . . .
goto L;

(e) Nested BOSCCs
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(f) CFG of (e)

Figure 1. Motivating example for nesting BOSCCs and generating all vec any *

executed at least once during the corresponding scalar iter-

ations. Although this approach is efficient when the control

flow is simple, the drawback is evident for more complex

control flow; since the algorithm does not nest BOSCCs, all

BOSCCs must be executed always.

We suggest a technique to nest BOSCCs, allowing

BOSCCs to bypass other BOSCCs and the instructions

enclosed within them. Figures 1(e) and 1(f) show the

code generated by our approach and the CFG. Nesting the

BOSCCs can reduce the number of BOSCCs that are exe-

cuted. Since we do not generate else part of BOSCCs, the

statements in the else part of the scalar code are guarded

by a separate BOSCC. Although we have used a simple ex-

ample for clarity, the strength of this approach, compared

to the previous approach, becomes clear for programs with

more complex control flow.

3.2 Bypassing More Instructions by Gen-
erating All vec any *

The other technique we introduce in this paper is a code

generation optimization that can be used to bypass more in-

structions than the previous approach. To illustrate the dif-

ferences between the two approaches, we use the example

in Figure 1 again.

The previous BOSCC generation approach checks each

vector predicate for any true values. In the code gen-

erated by the previous approach shown in Figure 1(c),

all vector predicates are computed before being used in

vec any ne’s. We suggest bypassing even predicate-

defining instructions shown in bold in Figure 1(e). Here,

the instruction defining predicate V3 is enclosed by the

BOSCC for the same predicate; however, the comparison

instruction defining B1 has changed from vec any ne to

vec any lt, together with the source operands. As a re-

sult of this change, B1 is defined by the same value as be-

fore, but the predicate-defining instruction can also be by-

passed if it would define predicate V3 with all false values.

Although this optimization can also be applied to the

BOSCCs nested within other BOSCCs, doing so can de-

grade performance. Note that the instructions defining V4

and V5 are not enclosed by the inner BOSCC for B2 in Fig-

ure 1(e). In fact, while abbreviated, all instructions defin-

ing the vector predicates V6, V7, and V8 are not enclosed

within the BOSCC regions for them. Applying this code

generation optimization to the BOSCC defining instructions

at all nested levels will result in a code that is still cor-

rect. For example, if we did, the two statements defin-

ing V4 and V5 would be enclosed in the BOSCC region

for B2 by changing the instruction defining B2 into “B2

= vec any eq(V1, vZero)”. However, this aggres-

sive bypassing often entails an increase in the frequency

of execution for the nested BOSCC regions because the

BOSCC regions will be executed based on a single com-

parison rather than on the conjunction of the vector predi-

cates of all outer BOSCCs. For example, the value of B2

would be a result of single comparison, vec any eq(V1,

vZero) rather than the conjunction of two comparisons,

one for V3 and the other for V4. Thus, we apply this op-

timization to the outermost BOSCCs only. Although this

technique reduces only one instruction per BOSCC, when

a loop contains many non-nested BOSCC regions with a

small number of instructions, reducing even one instruction

per BOSCC can result in a large gain in performance.

4 Inverse-Implies Relation

We start by defining the inverse-implies relation, which

is a core concept in nesting one region of predicated instruc-

tions inside another.

Definition 5 Given two predicates P1 and P2, P1 inverse-

implies P2 iff ¬P1 =⇒ ¬P2.



The inverse-implies relation can also be viewed as the con-

traposition of the implies relation. Given P2 =⇒ P1,

the contraposition is ¬P1 =⇒ ¬P2, which means that

whenever P1 is false, P2 is also false. Figure 2(a) shows an

example of two predicated vector instructions to illustrate

how we use this relation to nest BOSCC regions. As shown

in Figure 2(b), we can introduce an if-statement around

each predicated instruction. When p1 inverse-implies p2

(¬p1 =⇒ ¬p2), if all fields of p1 are false, all fields of

p2 are false as well. Hence, we can bypass the instruction

guarded by p2 just by checking whether p1 are all false, as

shown in Figure 2(c).

dst1 = operation1; <p1>
dst2 = operation2; <p2>

(a) predicated instructions

if (p1)

dst1 = operation1; <p1>
if (p2)

dst2 = operation2; <p2>

(b) Single-level BOSCCs

if (p1) {
dst1 = operation1; <p1>
if (p2) {

dst2 = operation2; <p2>
}

}

(c) Nested BOSCCs

Figure 2. Nesting if-statements using an

inverse-implies relation.

We use an inverse-implies graph to represent the inverse-

implies relations between predicates. An inverse-implies

graph is a tuple (V,E), where a node n ∈ V represents

a predicate in a given basic block and there is an edge

(n1, n2) ∈ E if the predicate of node n1 inverse-implies the

predicate of node n2. Inverse-implies graphs are acyclic but

not necessarily trees. Figure 3(a) is an example designed

to illustrate this point. Figure 3(b) shows the CFG of the

code in (a), and Figure 3(f) shows the mappings between

the statements in (a) and the nodes in (b). Figure 3(c) is

the PHG of the code in (a) after it is predicated. Predicate

nodes are shown as boxes, and condition nodes have cir-

cular shapes. The root node of PHG, labeled P0, always

represents the constant true predicate. The condition nodes

C1, C4, and C7 represent the statements 1, 3, and 8 of the

code in Figure 3(a), respectively.

Now let us turn to the inverse-implies graph shown in

Figure 3(d). We use edge P2 → P5 of this graph as an

example to show how the inverse-implies graph is used to

nest regions of predicated instructions and BOSCCs. The

edge means that whenever vector predicate P2 has all false

values, the vector predicate P5 is guaranteed to have false

values in all fields as well and that it is safe to bypass the

instructions guarded by P5 whenever we can bypass the in-

structions guarded by P2. This is exactly what we did for the

example code in Figure 2(c) with an inverse-implies edge

p1 → p2. In terms of the source code in Figure 3(a), the

1. if (b[i] < 0){ // C1

2. b[i] = 0;

3. if (a[i] > 10){ // C4

4. c[i] = a[i] + b[i];

5. goto L1;}}
6. else{
7. b[i] = b[i] + 1;

8. if (a[i] > 0){ // C7

9. L1:

10. c[i] = a[i] - b[i];}}

(a) C program

2

3

54

7

6

(b) CFG of (a)

P0

C1

P2

true

P3

false

C4 C7

P5

true

P6

true true

(c) PHG of (b)

P0

P3 P2 P6

P5

(d) inverse-implies

graph of (c)
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(e) CFG of the

vectorized code

Stmts Nodes

(a) (b) (c) (e)

1 2,7 P0 4,7,9,11

2,3 3 P2 5

4,5 4 P5 6

6,7,8 5 P3 8

9,10 6 P6 10

(f) Mapping between the state-

ments and nodes

Figure 3. Example showing that the inverse-

implies graph is not a tree.

inverse-implies edge P2 → P5 informs us that whenever

we can bypass the vector codes for the statements 2 and

3, we can also bypass the vector codes for the statements

4 and 5. Likewise, the inverse-implies edge P6 → P5
means that the vector codes for statements 4 and 5 can be

bypassed whenever the vector codes for statements 9 and 10

can be bypassed. The three outgoing edges from node P0

are not useful because, by definition, P0 will never be false

and no BOSCC regions can be nested based on these edges.

Figure 3(e) shows the CFG of the vectorized code, where

BOSCCs are generated in a nested fashion. Figure 3(f)

shows the mappings between the nodes of the PHG and the

CFG nodes in Figure 3(e). In general, the two CFGs for the

scalar and vector codes are not isomorphic.

Inverse-implies relation between predicates is closely re-

lated to dominator and postdominator relations between ba-

sic blocks of the corresponding CFG. If node A dominates

or postdominates node B in a CFG, the predicate of node A

is equal to or inverse-implies the predicate of node B.

5 Algorithm

In this section, we describe an algorithm to insert

BOSCCs in a nested fashion while enclosing predicate-

defining instructions when profitable. This algorithm

is based on our previous work to generate single-level

BOSCCs [25].

Figure 4 shows a high-level view of the algorithm. The

lower four boxes are either newly added or modified for this



Vectorization(SLP)

Build 
inverse-implies graph

Form BOSCC regions

Insert BOSCCs

Input:
sequential code

Output:
vectorized code

-Remove predicates
-Redundancy elimination
-Restore predicates

(Alternative)
Predicate aware

redundancy elimination

Figure 4. Overview of the algorithm.

work. After vectorization, the basic block contains vector

instructions possibly guarded by vector predicates. From

this predicated vector code, we build an inverse-implies

graph. Next, we apply a set of compiler passes, which in-

cludes removing both vector and scalar predicates, redun-

dancy elimination, and restoring vector predicates for the

subsequent BOSCC insertion. For this step, we also ex-

plore an alternative approach, where vector predicates are

preserved rather than removed and restored back. When this

alternative approach is used, the passes for both removing

and restoring vector predicates are skipped, and the redun-

dancy elimination is performed in a way that honors pred-

icates. Next, the instructions that are guarded by the same

predicate are collected so that they form a region of adja-

cent instructions guarded by the same predicate. As the last

step, BOSCCs are inserted so that they can bypass regions

of contiguous instructions. The five boxes of Figure 4 ex-

cept the one labeled “Vectorization(SLP)” are the subjects

of the next five subsections.

Algorithm BuildInverseImpliesGraph (basic block bb):

phg← build a predicate hierarchy graph (bb)

inverseImpliesGraph← new Graph

for each predicate p1 ∈ phg

for each predicate p2 ∈ phg where p1 6= p2

if ( p1 implies p2 ∨ p2 is an ancestor of p1 )

inverseImpliesGraph ∪ ← edge(p2→ p1)

Figure 5. Algorithm to build inverse-implies

graph.

5.1 Building an Inverse-Implies Graph

Figure 5 shows an algorithm to build an inverse-implies

graph for a basic block of predicated vector instructions.

After building a PHG, all possible pairs of vector predi-

cates are examined to check whether one inverse-implies

the other. To find an inverse-implies relation between two

predicates p1 and p2, we use the algorithms described in

[18]. If either p1 implies p2 or p2 is an ancestor of p1, we

add an edge to the inverse-implies graph from the node for

p2 to the node for p1. The result of the algorithm in Fig-

Algorithm RestoreVP (basic block bb, inverse-implies graph iiGr):

dGraph← build a dependence graph (bb);

vCmpTB← build a vector compare table (bb);

for each predicate p ∈ iiGr in postorder

for each select I:“dst = select(src1, src2, p)” ∈ bb \
where dst == src1

I.predicate← p;

PredicateDefs(src2, I, p, iiGr, dGraph, vCmpTB);

PredicateMemAcc(src1, dst, p, iiGr, dGraph);

if (vCmpTB[p])

PredicateDefs(p, I, p, iiGr, dGraph, vCmpTB);

Schedule(dGraph);

(a) Restoring vector predicates

Algorithm PredicateDefs(operand opr, statement s, predicate p, \
inverse-implies graph iiGr, dependence graph dGr, \
vector comparison table vCmpTB):

rd← reaching definition of source operand opr in s;

if (rd is outside the basic block ∨ (opr == p ∧ !vCmpTB[p]) ∨ \
rd is used by another statement whose predicate is neither p \
nor its descendant ∨ p is not a descendant of the predicate \
of rd in iiGr) return;

rd.predicate← p; update dGr;

if (rd == vCmpTB[p]) return;

for each source operand src of rd

PredicateDefs(src, rd, p, iiGr, dGr, vCmpTB);

(b) Restoring predicates for reaching definitions

Figure 6. Algorithm to restore vector predi-

cates.

ure 5 is a directed acyclic graph but may contain redundant

information by having all inverse-implied predicate nodes

as immediate successors. We minimize the graph by remov-

ing the edges whose head is reachable from the tail without

going through the edge.

5.2 Preserving Predicates While Inserting
selects

In order to insert BOSCCs, vector code must have predi-

cate information. The previous approach used an algorithm

to restore vector predicates that had been removed [25]. But

wouldn’t it be easier just to keep the vector predicates and

provide a direct mapping between the vector predicates in

the inverse-implies graph and the ones encountered in the

code by the later steps of the algorithm? It turns out that for

the set of benchmarks used in this paper, preserving vector

predicates is not a good idea because all intervening com-

piler optimizations such as redundancy elimination and loop

invariant code motion must be aware of predicates and this

predicate awareness limits their applicability, significantly

in some cases. In Section 6, we present the experimental

comparisons between the two approaches. In this subsec-

tion, we describe how we preserve vector predicates for the

experiments.

Since select instructions are inserted to remove vec-

tor predicates [26], one might think naively that we can just



not insert selects to preserve predicates. Select in-

structions still have to be inserted, however, because predi-

cates should be removed after BOSCCs are inserted for the

output code to run on the architectures that do not support

predicated execution. The statement guarded by a predicate

pred shown below

dst = operation; <pred>

is transformed to the two statements

temp = operation; <pred>

dst = select(dst, temp, pred); <pred>

which are semantically identical to the original statement

both with and without the predicate.

5.3 Restoring Predicates from selects

We restore vector predicates starting from select in-

structions similar to our previous approach. We extend the

previous algorithm so that even predicate-defining instruc-

tions are guarded by the predicate they are defining. After a

vector predicate is restored to guard the vector compare in-

struction defining itself, the instruction appears as if it uses

the predicate before defining it. However, this is only to

convey the predicate information to the later passes so that

the predicated instructions can be bypassed by a BOSCC

generated from the same condition. The extended algorithm

is shown in Figure 6. Initially, a table of vector compare in-

structions is generated to store mappings from vector vari-

ables to the vector compare instructions defining them. This

table provides the vector compare instructions as a barrier

to stop predicating reaching definitions beyond it. In other

words, we want to bypass the vector compare instructions

but not the ones defining the source operands of them. The

second if-statement of Figure 6(b) checks for this situation.

The second call to PredicateDefs in Figure 6(a) pred-

icates the reaching definition of the third source operand of

select instructions only when the definition is a vector

compare instruction. Since the vector predicates that are

nested within another predicate are defined by select in-

structions to merge predicate values, the table entries for

them are NULL and this checking of vCmpTB filters the

new code generation technique for the nested vector predi-

cates. PredicateMemAcc is not shown but is the same

as IdentifyMemoryAccesses of [25].

5.4 Forming BOSCC Regions

The next step is to collect the instructions guarded by the

same predicate so that they are textually contiguous. Fig-

ure 7 shows the algorithm that performs this operation. For

each predicate P in postorder of the given inverse-implies

graph, we perform two operations. First, for each instruc-

tion guarded by P in the textual order, we follow the def-use

Algorithm FormBosccRegions (basic block bb, inverse-implies graph \
iiGr, vector comparison table vCmpTB):

depGr← build a dependence graph (bb)

duGr← build a def-use graph (bb, phg)

for each predicate p ∈ iiGr in postorder

// expand the instruction region guarded by p

for each statement s guarded by p in the textual order

duNode← duGr.getNode(s)

for each predecessor preNode of duNode

if ( p is a descendant of the predicate of preNode in iiGr ∧\
(preNode.statement does not define p ∨ vCmpTB[p]) ∧ \
all successors of preNode are guarded by p or the \
descendants of p ∧ preNode is not a predecessor of the \
node for vCmpTB[p]) preNode.predicate← p

// merge dependence graph nodes guarded by p

tempNode← ∅
for each node n ∈ depGr in reverse postorder

if (depGr.canBeScheduledAfter(n, tempNode) ∧\
n.predicate is tempNode.predicate or its descendant in iiGr)

tempNode.append(the statement of n)

else tempNode← n

schedule instructions in depGr

Figure 7. Algorithm to form BOSCC regions.

graph backward to see whether the predecessor instructions

can also be guarded by P. Predecessors of an instruction

in the def-use graph are the instructions whose definition

reaches the instruction. The predecessor’s predicate P’ is re-

placed by P if P is a descendant of P’ in the inverse-implies

graph and all uses of the predecessor statement are guarded

by either P or the descendants of P in the inverse-implies

graph. By doing so, we are trying to guard each instruc-

tion with as restrictive a predicate as possible, so that the

instruction can have a larger chance of being bypassed.

The second operation is to schedule the instructions

guarded by the same predicate or its descendant predicates

as contiguously as possible. For example, consider two in-

structions guarded by the same predicate P. If there is an

intervening instruction guarded by P’ that is not a descen-

dant of P in the inverse-implies graph, two BOSCCs have

to be generated to bypass each instruction separately. The

two instructions can be scheduled contiguously unless one

or more instructions intervene between them in the depen-

dence graph. Note that with this operation, the instructions

guarded by two different predicate P1 and P2 are scheduled

contiguously if the inverse-implies relation holds between

them.

5.5 Inserting BOSCCs

At this point of the algorithm, the instructions that can

be bypassed by a single BOSCC have been scheduled so

that they are textually contiguous. The remaining task is

to find the largest region of contiguous instructions that can

be bypassed by a single BOSCC, check whether inserting

the BOSCC is profitable, and insert a BOSCC if so. Here,

we make an observation that can reduce the overhead of



Table 1. Benchmark programs.

Name Description Type size (bits) # lines PAFS of Figure 9 PAFS of Figure 10

Chroma Chroma keying of two images 8(char) 128 98 97

Sobel Sobel edge detection 16(int) 135 0,4,19,99 17,4,2,82

TM Template matching 32(int) 84 89 87

Max Max value search 32(float) 93 88,85 100,99

TR Shortest path search 32(int) 98 0 0

dist1 dist1 of MPEG2 encoder 8(char),32(int) 163 0∼31 20∼38

unquantize unquantize image of unEPIC 16(int),32(int) 92 6∼40 0,4,5,82,83,83,83

Calculation Calculation of the LTP parameters of GSM 16,32(int) 207 1∼7 2∼10

logf Single-precision log of glibc-2.4 32(float) 184 (5*) 0, (17*) 100 24∼98, (12*) 100

sinf kernel sinf of glibc-2.4 32(float) 145 0,6,7,100,100 0,5,6,100,100

LARp LARp to rp of GSM encoder 16(int) 114 0,75,75,(23*)100 0,70,70,97,(22*)100

ceilf Single-precision ceil of glibc-2.4 32(float) 124 (6*)0,(4*)96,(3*)100 (6*)0,(4*)96,(3*)100

roundf Single-precision round of glibc-2.4 32(float) 136 (4*)0,(2*)96,97,(2*)100 (5*)0,(2*)96,98,(2*)100

truncf Single-precision trunc of glibc-2.4 32(float) 120 0,0,06,100,100 0,0,06,100,100

Algorithm InsertBOSCCs (basic block bb, inverse-implies graph iiGr):

Regions← ∅
for each predicate p ∈ iiGr in reverse postorder

for each region r of consecutive instructions ∈ bb such that \
instruction i ∈ r is guarded by p or its descendant in iiGr

Regions ∪ ← {r}
Profitable[r]← computeProfitability(r, p, iiGr, Profitable)

for each predicate p ∈ iiGr in postorder

for each region r ∈ Regions

if ( Profitable[r] ) insert a BOSCC around r

Figure 8. Algorithm to insert BOSCCs.

BOSCCs. When a BOSCC is to be generated within an-

other BOSCC region, it is more accurate to use the con-

ditional probability of executing the inner BOSCC region,

given that the outer BOSCC region is executed. To illustrate

this point, we revisit the example of Figure 2 where we have

two predicates p1, p2 and a relation ¬p1 =⇒ ¬p2 between

them. p2 can be true only when p1 is true. If we define per-

centage of any true superwords (PATS) as follows,

PATS = 1− PAFS,

then

PATS(p2|p1) = PATS(p1 ∩ p2)/PATS(p1)

= PATS(p2)/PATS(p1),

and we adjust the PAFS of p2 as follows.

PAFS′(p2) = 1− PATS(p2|p1)

= 1−
1− PAFS(p2)

1− PAFS(p1)

Intuitively, when we compute the profitability of inserting

a BOSCC for p2 within a BOSCC region for p1, we need

to use the percentage of p2 being false given that p1 is true.

For example, if both PAFS(p2) and PAFS(p1) are 90%,

PAFS′(p2) will be zero, and most likely we don’t want

to generate a BOSCC for p2 although its original PAFS

is high. This adjustment of PAFS is performed only if

any outer BOSCC for an ancestor predicate in the inverse-

implies graph is determined to be profitable. Because of

this, profitability is computed in the reverse postorder of

predicates in the inverse-implies graph. However, we gen-

erate BOSCCs in the postorder of the nodes in the graph for

implementation convenience.

The algorithm shown in Figure 8 consists of two loop-

nests. The first loopnest looks for the largest predicate re-

gion r that can be bypassed based on a predicate p and com-

putes the profitability. The predicate region r may contain

not only the instructions guarded by p but also the ones

guarded by the descendant predicates of p in the inverse-

implies graph. Hence a BOSCC generated by this algorithm

can bypass a larger number of instructions than the ones

generated by the algorithm in the previous approach that

does not exploit the inverse-implies relations between pred-

icates. When we count the number of instructions guarded

by p for use in computing the profitability, however, we do

not count the instructions guarded by the descendant pred-

icates of p to not generate the empty outer BOSCCs when

only the innermost BOSCC has nonzero instructions to by-

pass. For profitability, we use the same equation as in [25]

except that we use 2 for the cost of a BOSCC. The second

loopnest of Figure 8 performs the code transformation.

6 Experiments

In this section, we apply our compiler to 14 kernels. We

describe our implementation, the experimental methodol-

ogy, the kernels used in the experiments, and the experi-

mental results.

6.1 Implementation

The algorithm described in Section 5 is implemented

in a vectorizing compiler that exploits SLP. This compiler

was developed by Larsen and Amarasinghe [15] based on

the SUIF compiler infrastructure [10] and subsequently ex-

tended by Shin et al. [24, 26, 25]. The boxes representing

the component algorithms in Figure 4 also closely match

the individual passes in our implementation. The input to
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Figure 9. Speedups over scalar code with

small data sizes.

the compiler is a sequential code written in C or Fortran,

and the output is a C code augmented with vector intrin-

sics [19].

6.2 Methodology

In order to evaluate our implementation, the 14 kernels

shown in Table 1 were automatically vectorized by our com-

piler and run on a Power Mac G5. The first eight kernels are

identical to the ones used in our previous work [26]. In ad-

dition to the eight kernels, six others were adopted to study

the effects on nested control flow. Five math library func-

tions logf, sinf, ceilf, roundf, and truncf were

taken from GNU math library implementation [9]. To make

benchmarks, the library functions were inlined in a loop that

computes the function values of uniform random numbers

except for logf, whose input data is taken from an appli-

cation implementing the link discovery algorithm [1]. The

last two columns of Table 1 show PAFS values or value

ranges for the vector predicates in each benchmark. The

numbers in parentheses represent the counts of the PAFS

values coming next. For each benchmark, we used two data

sizes to observe the interaction of the suggested techniques

with the memory hierarchy. Figures 9 and 10 show the

speedups over the scalar baseline for data sizes that fit in

L1 data cache and for data sizes that are larger than the L2

cache, respectively. For each benchmark, speedups of five

different versions are measured. The “No BOSCC” ver-

sion is generated by vectorization but without inserting any

BOSCCs. The “Previous approach” version represents the

previous approach; uses only single level BOSCCs and does

not exploit inverse-implies relations to include the predi-

cate regions associated with the descendant predicates. The

“New code generation” version exploits the new code gen-

eration technique of Section 3.2 in addition to the “Previ-

ous approach” version to isolate its impact on performance.

The “Nesting BOSCCs” version uses BOSCCs in a nested
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Figure 10. Speedups over scalar code with

large data sizes.

fashion and shows the benefit of nesting BOSCCs. The last

version, labeled “Nesting + New code gen,” combines the

two new techniques to show their combined impacts on per-

formance. For all five versions in Figures 9 and 10, vec-

tor predicates were restored as described in Section 5.3 af-

ter redundancy elimination was performed in a predicate-

oblivious fashion.

These kernels are used to show the effectiveness and

wide applicability of our techniques and are not intended

to be representatives of applications in general. Since the

focus of this paper is on efficient vectorization of code with

complex control flow, all our benchmarks are vectorizable

and have control flow. Furthermore, unquantize, logf,

sinf, LARp, ceilf, roundf, and truncf have nested

if-statements in the loopbody. To compile and run the vec-

torized output codes, we used gcc 4.0.1 with the -O2 option

on a Mac OS X 10.4.7 and a machine that has 32 KB L1 data

cache, 512 KB L2 integrated cache, and 8 GB of memory.

6.3 Results

In Figures 9 and 10, the speedups of the first eight bench-

marks roughly match or exceed those of [25]. Speedups

drop, however, when the data sizes increase. Since vec-

torization reduces more of the instruction execution time

than the memory access time, it is not as beneficial when

memory accesses dominate the execution time. For both

large and small data sizes of sobel, Max, TR, dist1, and

Calculation, and for the small data of unquantize,

no BOSCCs are generated because of the low PAFS values

(see Table 1) and the small number of instructions to bypass,

leading to the similar speedups across all five versions.

Figure 11 shows speedups of the three versions with the

new techniques over the “Previous approach” version for

small data sizes. Chroma and TM show distinct speedups

when the new code generation technique is added for the

“New code generation” version. For the other benchmarks,
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Figure 11. Speedups over “Previous ap-

proach” for small data sizes.

the “New code generation” versions show almost no per-

formance improvement over the ‘Previous approach” ver-

sions. For the six benchmarks with no BOSCCs, adding one

more instruction to the predicate regions by applying the

new code generation technique was not enough to make the

BOSCCs profitable. For the other benchmarks, the predi-

cate defining instructions for the then part are not included

within any BOSCC region because the result of the vector

comparison is also used by the instructions guarded by the

other predicate, which is associated with the else part of

the vector comparison. For ceilf, roundf and truncf,

applying the new code generation technique made one more

BOSCC profitable but the performance benefit was not sig-

nificant.

For the six rightmost benchmarks from logf to

truncf, the speedups jump when BOSCC nesting is

applied. However, only logf and LARp have nested

BOSCCs in the “Nesting BOSCCs” and “Nesting + New

code gen” versions. For both benchmarks, the “Nest-

ing + New code gen” versions bypass about 55% of the

BOSCCs evaluated by the “Previous approach” version,

leading to speedups of 1.15 and 1.99. Although no nested

BOSCCs are generated for the other four benchmarks

(sinf, ceilf, roundf, and truncf), each BOSCC in

the “Nesting BOSCCs” version bypasses a larger number of

instructions than those in the “Previous approach” versions

because the BOSCC insertion pass uses the inverse-implies

relation to bypass the additional instructions guarded by

the descendant predicates in the inverse-implies graph. For

ceilf, roundf, and truncf, the additional speedups

are achieved by the “Nesting + New code gen” versions over

the “Nesting BOSCCs” versions. Applying the new code

generation technique increased the number of instructions

guarded by a predicate, which in turn caused the profitabil-

ity model to generate a BOSCC that is not in the “Nest-

ing BOSCCs” versions. The performance improvement is
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Figure 12. Speedups of predicate restoring

over predicate preserving for the “Nesting +

New code gen” version.

notable when the new BOSCC is added for the “Nesting

+ New code gen” versions while it is insignificant when

the new BOSCC is added for the “New code generation”

versions. This is because the newly added BOSCC could

bypass a larger number of instructions when the inverse-

implies relations can be exploited. While the “Nesting

BOSCCs” versions could have bypassed the similarly large

number of instructions, the BOSCC was not generated be-

cause we do not count the instructions guarded by the de-

scendant predicates when computing profitability.

In general, the “Nesting + New code gen” version is the

best or close to the best across the 14 benchmarks. In partic-

ular, eight out of 14 kernels achieve speedups when our two

techniques are used. Furthermore, for six out of the seven

benchmarks with complex control flow, nesting BOSCCs

achieves distinct performance improvement.

6.4 Restoring vs. Preserving Predicates

In Section 5, two approaches to obtain predicates were

discussed: restoring the predicates after removing them vs.

preserving them. The two approaches interact differently

with the intervening optimization passes such as redun-

dancy elimination. If the redundancy elimination pass is ap-

plied to the code with predicates, it must take into account

the predicates. Since one approach is not always better than

the other, in this subsection we experimentally compare the

two approaches. Figure 12 shows speedups of the predicate-

oblivious redundancy elimination (i.e., restoring predicates)

over the predicate-aware one (i.e., preserving predicates)

for the “Nesting + New code gen” version for both small

and large data sizes. While some benchmarks slowed some-

what, chroma, dist1, unquantize, sinf, and LARp

achieve distinct performance improvement when predicate-

oblivious redundancy elimination is used. This experiment

suggests that the choice between the two approaches has a



certain impact on performance and that restoring predicates

has distinct benefits over preserving predicates for the set of

benchmarks we used.

7 Related Work

Since the advent of the conventional vector machines,

vectorizing loops with control flow has been a major re-

search subject. One approach is to apply if-conversion,

followed by loop distribution for the subsequent vectoriza-

tion [13].

Recently, many vectorizing compilers have been built for

multimedia extension architectures [15, 14, 28, 6, 16, 5, 8,

17]. Two distinct approaches are used to generate SIMD

instructions automatically: one based on unrolling to ex-

pose superword-level parallelism (SLP) [15, 14, 17, 11]

and the other based on the vectorization techniques used

for the conventional vector machines [5, 28, 8]. Bik et al.

use a technique called bit masking to combine the defini-

tions of a variable generated from if-statements [5, 4]. Our

earlier work describes a technique that can be used to vec-

torize codes in the presence of arbitrarily complex control

flow [26].

A comprehensive survey of vector instructions to sup-

port conditional operations is described in [27]. Branch-

on-superword-condition-codes (BOSCCs) are supported in

AltiVec [19], DIVA [7], SSE [12], and other architec-

tures [3, 2]. The research most relevant to this work is our

previous work on generating BOSCCs automatically [25],

which generates only single-level BOSCCs. This work im-

proves on our previous work in two ways: first, we gen-

erate BOSCCs in a nested fashion, and second, we by-

pass some predicate-defining instructions by generating all

vec any * instructions. To the best of our knowledge, this

paper describes the first technique that can introduce nested

control flow into vectorized codes.

8 Conclusion

Vectorization in the presence of control flow has been

an important research subject for the past decade, not only

because of its benefit, but also because of the difficulty.

This paper describes a fundamental technique that can be

used to generate efficient vector codes in the presence of

complex control flow. Compared to our previous work

that generates single-level branch-on-superword-condition-

codes (BOSCCs), the technique suggested in this paper

is capable of generating BOSCCs in a nested fashion so

that even BOSCCs can be bypassed by other BOSCCs. In

addition, we introduce a technique that can generate all

vec any * BOSCCs to bypass more instructions. We

implemented the techniques in a vectorizing compiler. In

our experiments with 14 kernels that have control flow, the

codes generated by our compiler achieve speedups up to

19.80 over the scalar baseline. Eight out of 14 kernels

achieve distinct speedups when the two new techniques are

employed. For six out of seven benchmarks with nested

if-statements, we observe distinct speedups when BOSCCs

are nested and the inverse-implies relations are used to by-

pass the instructions guarded by the descendant predicates,

including 1.99 over the codes generated by the previous ap-

proach.

We also compared two approaches to obtain predicates.

Restoring predicates achieves distinct speedups over pre-

serving predicates for 5 out of 14 kernels because the re-

dundancy elimination pass can eliminate more redundan-

cies when predicates do not have to be taken into account.
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