
Component Specification for Parallel Coupling

Infrastructure

J. Walter Larson1,2 and Boyana Norris1

1 Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL 60439, USA

{larson,norris}@mcs.anl.gov
2 ANU Supercomputer Facility, The Australian National University, Canberra ACT

0200 Australia

Abstract. Coupled systems comprise multiple interacting subsystems
and are an increasingly common computational science application, most
notably as multiscale and multiphysics models. Parallel computing and,
in particular, message-passing programming have enabled the develop-
ment of these models but also present a parallel coupling problem (PCP)
in the form of intermodel data dependencies. Component-based software
engineering has been proposed as one means of conquering software com-
plexity in scientific applications; and given the compound nature of cou-
pled models, it is a natural approach to addressing the PCP. We define
a software component specification for solving the PCP, abstracting the
elements of the PCP and mapping them onto a set of components from
the Common Component Architecture. We discuss a reference implemen-
tation based on the Model Coupling Toolkit. We demonstrate how these
components might be deployed to solve coupling problems in climate
modeling.

1 Introduction

Multiphysics and multiscale models share one salient algorithmic feature: They
involve interactions between distinct models for different physical phenomena.
Multiphysics systems entail coupling of distinct interacting natural phenomena;
a classic example is a coupled climate model, involving interactions between the
Earth’s atmosphere, ocean, cryosphere, and biosphere. Multiscale systems bridge
distinct and interacting spatiotemporal scales. A good example can be found in
numerical weather prediction, where models typically solve the atmosphere’s
primitive equations on multiple nested and interacting spatial domains. These
systems are more generally labeled as coupled systems, and the set of interactions
between their various parts are called couplings.

Though the first coupled climate model was created over 30 years ago [1],
their proliferation has been dramatic in the past decade as a result of increased
computing power.

On a computer platform with a single address space, coupling introduces
algorithmic complexity by requiring data transformation such as integrid inter-

2

polation or time accumulation through averaging of state variables or integration
of interfacial fluxes.

On a distributed-memory platform, however, the lack of a global address
space adds further algorithmic complexity. Since distributed data are exchanged
between the coupled model’s constituent subsystems, their description must
include a domain decomposition. If domain decompositions differ for data on
source and target subsystems, the data traffic between them involves a commu-
nication schedule to route the data from source to destination. Furthermore, all
data processing associated with data transformation will in principle involve ex-
plicit parallelism. The resultant situation is called the parallel coupling problem
(PCP) [2, 3].

Myriad application-specific solutions to the PCP have been developed [4–10].
Some packages address portions of the PCP (e.g., the M×N problem—see [11]).
Fewer attempts have been made to devise a flexible and more comprehensive
solution [2, 12]. We propose here the development of a parallel coupling infras-
tructure toolkit, PCI-Tk, based on the component-based software engineering
strategy defined by the Common Component Architecture Forum. We present
a component specification for coupling, an implementation based on the Model
Coupling Toolkit [2, 13, 14], and climate modeling as an example application.

2 The Parallel Coupling Problem

We begin with an overview of the PCP. For a full discussion readers should
consult Refs. [2, 3].

2.1 Coupled Systems

A coupled system M comprises a set of N subsystem models called constituents
{C1, . . . , CN}. Each constituent Ci solves its equations of evolution for a set of
state variables φi, using a set of input variables αi, and producing a set of output
variables βi. Each constituent Ci has a spatial domain Γi; its boundary ∂Γi is
the portion Γi exposed to other models for coupling.

The state Ui of Ci is the Cartesian product of the set of state variables φi

and the domain Γi, that is, Ui ≡ φi×Γi. The state Ui of Ci is computed from its
current value and a set of coupling inputs Vi ≡ αi ×∂Γi from one or more other
constituents in {C1, . . . , CN}. Coupling outputs Wi ≡ βi × ∂Γi are computed by
Ci for use by one or more other constituents in {C1, . . . , CN}. Coupling between
between constituents Ci and Cj occurs if the following conditions hold:

1. Their computational domains overlap, that is, the coupling overlap domain
Ωij ≡ Γi ∩ Γj 6= ∅.

2. They coincide in time.
3. Outputs from one constituent serve as inputs to the other, specifically (a)

Wj∩Vi 6= ∅ and/or Vj∩Wi 6= ∅ or (b) the inputs Vi (Vj) can be computed
from the outputs Wj (Wi).

3

In practice, the constituents are numerical models, and both Γi and ∂Γi are
discretized3 by the discretization operator D̂i(·), resulting in meshes D̂i(Γi) and
D̂i(∂Γi), respectively. Discretization of the domains Γi leads to definitions of
state, input, and output vectors for each constituent Ci: The state vector Ûi of
Ci is the Cartesian product of the state variables φi and the discretization of
Γi; that is, Ûi ≡ φi × D̂i(Γi). The input and output vectors of Ci are defined as
V̂i ≡ αi × D̂i(∂Γi) and Ŵi ≡ βi × D̂i(∂Γi), respectively.

The types of couplings in M can be classified as diagnostic or prognostic,
explicit or implict. Consider coupling between Ci and Cj in which Ci receives
among its inputs data from outputs of Cj . Diagnostic coupling occurs if the
outputs Wj used as input to Ci are computed a posteriori from the state Uj .
Prognostic coupling occurs if the outputs Wj used as input to Ci are computed as
a forecast based on the state Uj . Explicit coupling occurs if there is no overlap
in space and time between the states Ui and Uj . Implicit coupling occurs if
there is overlap in space and time between Ui and Uj , requiring a simultaneous,
self-consistent solution for Ui and Uj .

Consider explicit coupling in which Ci receives input from Cj. The input state

vector V̂i is computed from a coupling transformation Tji : Ŵj → V̂i. The
coupling transformation Tji is a composition of two transformations: a mesh

transformation Gji : D̂j(Ωij) → D̂i(Ωij) and a field variable transformation
Fji : βj → αi. Intergrid interpolation, often cast as a linear transformation, is a
simple example of Gji, but Gji can be more general, such as a spectral transfor-
mation or a transformation betweeen Eulerian and Lagrangian representations.
The variable transformation Fji is application-specific, defined by the natural
law relationships between βj and αi. In general, Gji ◦ Fji 6= Fji ◦ Gji; that is,
the choice of operation order Gji ◦Fji versus Fji ◦Gji is up to the coupled model
developer and is a source of coupled model uncertainty.

A coupled model M can be represented as a directed graph G in which
the constituents are nodes and their data dependencies are directed edges. The
connectivity of M is expressible in terms of the nonzero elements of the adjacency
matrix A of G. For a constituent’s associated node, the number of incoming
and outgoing edges corresponds to the number of couplings. If a node has only
incoming (outgoing) edges, it is a sink (source) on G, and this model may in
principle be run off-line, using (providing) time history output (input) from (to)
the rest of the coupled system. In some cases, a node may have two or more
incoming edges, which may require merging of multiple outputs for use as input
data. For a constituent Ci with incoming edges directed from Cj and Ck, merging

of data will be required to create V̂i if the following conditions hold:

1. The constituents Ci, Cj , and Ck coincide in time.
2. The coupling domains Ωij and Ωik overlap, resulting in a merge domain

Ωijk ≡ Ωij ∩ Ωik 6= ∅.
3. Shared variables exist among the fields delivered from Cj and Ck to Ci,

namely, (βj ∩ αi) ∩ (βk ∩ αi) 6= ∅.

3 We will use the terms “mesh,” “grid,” “mesh points,” and “grid points” interchange-
ably with the term “spatial discretization.”

4

The time evolution of the coupled system is marked by coupling events, which
either can occur predictibly following a schedule or can be threshhold-triggered
based on some condition satisfied by the constituents’ states. In some cases, the
set of coupling events fall into a repeatable periodic schedule called a coupling
cycle. For explicit coupling in which Ci depends on Cj for input, the time sampling

of the output from Cj can come in the form of instantaneous values of Ŵj or as

a time integral of Ŵj , the latter used in some coupled climate models [6, 15].

2.2 Consequences of Distributed-Memory Parallelism

The discussion of coupling thus far is equally applicable to a single global address
space or a distributed-memory parallel system. Developers of parallel coupled
models confront numerous parallel programming challenges within the PCP.
These challenges fall into two categories. Coupled model architecture encom-
passes the overall layout of the coupled model’s resource allocation and execution
scheduling of the constituents. Parallel data processing is the set of operations
necessary to accomplish data interplay between the constituents.

On distributed-memory platforms, the coupled-model developer faces a strate-
gic decision regarding the mapping of the constituents to processors and the
scheduling of their execution. Two main strategies exist—serial and parallel com-
position [16]. In a serial composition, all of the processors available are kept in
a single pool, and the system’s constituents each execute in turn using all of the
processors available. In a parallel composition the set of available processors is
divided into N disjoint groups called cohorts, and the constituents execute si-
multaneously, each on its own cohort. Serial composition has a simple conceptual
design but can be a poor choice if the constituents do not have roughly the same
parallel scalability; moreover, it restricts the model implementation to a single
executable. Parallel composition offers the developer the option of right-sizing
the cohorts based on the constituents’ scalability; moreover, it enables the cou-
pled model to be implemented as multiple executables. The chief disadvantage
is that the concurrently executing constituents may be forced to wait for input
data, causing cascading, hard-to-predict, and hard-to-control execution delays,
which can complicate the coupled model’s load balance. A third strategy, called
hybrid composition, involves nesting one within the other to one or more levels
(e.g., serial within parallel and vice versa). A fourth strategy, called overlapping
composition, involves dividing the processor pool such that the constituents share
some of the processors in their respective cohorts; this approach may be useful
with implicit coupling.

In a single global address space, description and transfer of coupling data are
straightforward, and exchanges can be as simple as passing arguments through
function interfaces. Standards for field data description (i.e., the αi and βi) and
mesh description for the coupling overlap domains Ωij (i.e., their discretizations

D̂i(Ωij)) are sufficient. Distributed memory requires additional data descrip-
tion in the form of a domain decomposition Pi(·), which splits the coupling
overlap domain mesh D̂i(Ωij) and associated input and output vectors V̂i and

5

Ŵi into their respective local components across the processes {p1, p2, . . . , pKi
},

where Ki is the number of processors in the cohort associated with Ci. That
is, Pi(V̂i) = {V̂1

i , . . . , V̂
Ki

i }, Pi(Ŵi) = {Ŵ1

i , . . . ,Ŵ
Ki

i }, and Pi(D̂i(Ωij)) =

{D̂1

i (Ωij), . . . , D̂
Ki

i (Ωij)}.
Consider a coupling in which Ci receives input from Cj . The transformation

Tji becomes a distributed-memory parallel operation, which in addition to its
grid transformation Gji and field transformation Fji includes a third operation—
data transfer Hji. The order of composition of Fji, Gji, and Hji is up to the
model developer, and again the order of operations will affect the result. The data
transfer Hji will have less of an impact on uncertainties in the ordering of Fji and
Gji, its main effect appearing in roundoff-level differences caused by reordering
of arithmetic operations if computation is interleaved with the execution of Hji.
In addition, the model developer has a choice in the placement of operations, that
is, on which constituent’s cohort the variable and mesh transformations should
be performed—the source, Cj , the destination, Ci, on a subset of the union of
their cohorts, or someplace else (i.e., delegated to another constituent—called a
coupler [4]—with a separate set of processes).

2.3 PCI Requirements

The abstraction of the PCP described above yields two observations: (1) the ar-
chitectural aspects of the problem form a large decision space; and (2) the parallel
data processing aspects of the problem are highly amenable to a generic soft-
ware solution. Based on these observations, a parallel component infrastructure
(PCI) must be modular, enabling coupled model developers to choose appropri-
ate components for their particular PCP’s. The PCI must include decomposition
descriptors for each constituent’s mesh for its domain boundary Pi(D̂i(∂Γi))
and inputs Pi(V̂i) and outputs Pi(Ŵi). The PCI must provide communica-
tions scheduling for parallel data transfers and transposes needed to implement
the Hij operations for each model coupling interaction. Data transformation for
coupling is an open-ended problem: Support for variable transformations Fij

will remain application-specific. The PCI should provide generic infrastructure
for spatial mesh transformations Gij , perhaps cast as a parallel linear transfor-
mation. Other desirable features of a PCI include spatial integrals for diagnosis
of flux conservation under mesh transformations, time integration registers for
time averaging of state data and time accumulation of flux data for implement-
ing loose coupling, and a facility to merge output from multiple sources for input
to a target constituent.

3 Software Components and the Common Component

Architecture

Component-based software engineering (CBSE) [17, 18] is widespread in enter-
prise computing. A component is an atomic unit of software encapsulating some

6

useful functionality, interacting with the outside world through well-defined in-
terfaces often specified in an interface definition language. Components are com-
posed into applications, which are executed in a runtime framework. CBSE en-
ables software reuse, empowers application developers to switch between subsys-
tem implementations for which multiple components exist, and can dramatically
reduce application development time. Examples of commercial CBSE approaches
include COM, DCOM, JavaBeans, Rails, and CORBA. Alas, they are not suit-
able for scientific applications for two reasons: unreasonably high performance
cost, especially in massively parallel applications, and inability to describe sci-
entific data adequately (e.g., they do not support complex numbers).

The Common Component Architecture (CCA) [19, 20] is a CBSE approach
targeting high-performance scientific computing. CCA’s approach is based on
explicit descriptions of software dependencies (i.e., caller/callee relationships).
CCA component interfaces are known as ports: provides ports are the inter-
faces implemented, or provided, by a component, while uses ports are external
interfaces whose methods are called, or used, by a component. Component in-
teractions follow a peer component model through a connection between a uses
ports and a provides port of the same type to establish a caller/callee relation-
ship (Figure 1 (a)). The CCA specification also defines some special ports (e.g.,
GoPort, essentially a “start button” for a CCA application). CCA interfaces as
well as port and component definitions are described in a SIDL (scientific in-
terface definition language) file, which is subsequently processed by a language
interoperability tool such as Babel [21] to create the necessary interlanguage glue
code. CCA meets performance criteria associated with high-performance com-
puting, and typical latency times for intercomponent calls between components
executing on the same parallel machine are on the order of a virtual function
call between same-language components; times for interlanguage component in-
teractions are slightly more, but within 1–2 orders of magnitude of typical MPI
latency times.

The port connection and mediation of calls is handled by a CCA-compliant
framework. Each component implements a SetServices() method where the
component’s uses and provides ports are registered with the framework. At run-
time, uses ports are connected to provides ports, and a component can access
the methods of a port through a getPort() method. A typical port connection
diagram for a simple application (which will be discussed in greater detail in
Section 6) is shown in Figure 1 (b).

CCA technology has been applied successfully in many application areas
including combustion, computational chemistry, and Earth sciences. CCA’s lan-
guage interoperability approach has been leveraged to create multilingual bind-
ings for the Model Coupling Toolkit (MCT) [22], the coupling middleware used
by the Community Climate System Model (CCSM), and a Python implemen-
tation of the CCSM coupler. The work reported here will eventually be part of
the CCA Toolkit.

7

Fig. 1. Sample CCA component wiring diagrams: (a) generic port connection for two
components; (b) a simple application composed from multiple components.

4 PCI Component Toolkit

Our PCI specification is designed to address the majority of the requirements
stated in Section 2.3. Emphasis is on the parallel data processing part of the
PCP, with a middleware layer immediately above MPI that models can invoke to
perform parallel coupling operations. A highly modular approach that separates
concerns at this low level maximizes flexibility, and this bottom-up design allows
support for serial and parallel compositions and multiple executables. We have
defined a standard API for distributed data description and constituent processor
layout. These standards form a foundation for an API for parallel data transfer
and transformation. Below we outline the PCI API and the component and port
definitions for PCI-Tk.

4.1 Data Model for Coupling

In our specification, the objects for data description are the SpatialGrid (D̂i(Γi)
and D̂i(∂Γi)), the FieldData (the input and output vectors V̂i and Ŵi) and
the GlobalIndMap (the domain decomposition Pi). This approach assumes a 1-1
mapping between the elements of the spatial discretization and the physical lo-
cations in the field data definition. The domain decomposition applies equally
to both. For example, a constituent Ci spread across a cohort of Ki processors,
each processor (say, the kth) will have its own SpatialGrid to describe D̂k

i (∂Γi),
and FieldData instantiations to describe its local inputs and outputs V̂k

i and
Ŵk

i , respectively. In the interest of generality and minimal burden to PCI im-
plementers, we have adopted explicit virtual linearization [2, 11, 23–26] as our
index and mesh description standard. Virtual linearization supports decomposi-
tion description of multidimensional index spaces and meshes, both structured
and unstructured. We have adopted an explicit, segmented domain decomposi-
tion [2, 11] of the linearized index space.

8

Data transfer within PCI requires a description of the constituents’ cohorts
and communications schedules for interconstituent parallel data transfers and in-
tracohort parallel data redistributions. Mapping of constituent processor pools
is described by the CohortRegistry interface, which provides MPI processor ID
ranks for a constituent’s processors within its own MPI communicator and a
union communicator of all model cohorts. The CohortRegistry provides lookup
services necessary for interconstituent data transfers. Our PCI data model pro-
vides two descriptors for the transfer operation Hji: The TransferSched API is
an interface that encapsulates interconstituent parallel data transfer scheduling;
that is, it contains all of the information necessary to execute all of the MPI
point-to-point communication calls needed to implement the transfer.

The data transformation part of the PCI requires data models for linear
transformations and for time integration. The LinearTransform encapsulates the
whole transformation from storage of transformation coefficients to communi-
cations scheduling required to execute the parallel transformation. The TimeIn-

tRegister describes time integration and averaging registers required for loose
coupling in which state averages and flux integrals are exchanged periodically
for incremental application.

In the SIDL PCI API, all of the elements of the data model are defined as
interfaces; their implementation as classes or otherwise is at the discretion of
the PCI developer.

4.2 PCI-Tk Components

Data Description

The Fabricator Component The Fabricator creates objects used in the interfaces
for all the coupling components, along with their associated service methods.
It also handles overall MPI communicator management This component has
a single provides port, Factory, on which all of the create/destroy, query, and
manipulation methods for the coupling data objects reside.

Data Transfer Data under transfer by our PCI interfaces is described by our
FieldData specification.

The Transporter Component The Transporter performs one-way parallel data
transfers such as the data routing between source and destination constituents,
with communications scheduling described by our TransferSched interface. It has
one provides port, Transfer, on which methods for both blocking (PCI Send(),
PCI Recv()) and nonblocking (PCI ISend(), PCI IRecv()) parallel data trans-
fers are implemented, making it capable of supporting both serial and parallel
compositions.

The Transposer Component The Transposer performs two-way parallel data
transfers such as data redistribution within a cohort, or two-way data traffic

9

between constituents, with communications scheduling defined by the Transpos-

eSched interface. It has one provides port, Transpose, that implements a data
transpose function PCI Transpose().

Data Transformation The data transformation components in PCI-Tk act on
FieldData inputs and, unless otherwise noted, produce outputs described by the
FieldData specification.

The LinearTransformer Component The LinearTransformer performs parallel lin-
ear transformations using user-defined, precomputed transform coefficients. It
has a single provides port, LinearXForm, that implements the transformation
method PCI ApplyLinearTransform().

The TimeIntegrator Component The TimeIntegrator performs temporal integra-
tion and averaging of FieldData for a given constituent, storing the ongoing
result in a form described by the TimeIntRegister specification. It has a single
provides port, TimeInt, that implements methods for time averaging and integra-
tion, named PCI TimeIntegral() and PCI TimeAverage(), respectively. Users
can retrieve time integrals in FieldData form from a query method associated
with the TimeIntRegister interface.

The SpatialIntegrator Component The SpatialIntegrator performs spatial inte-
grals of FieldData on its resident SpatialGrid. It has a single provides port, Spa-

tialInt, that offers methods PCI SpatialIntegral()and PCI SpatialAverage()

that perform multifield spatial integrals and averages, respectively. This port
also has methods for performing simultaneously paired multifield spatial inte-
grals and averages; here pairing means that calculations for two different sets
of FieldData on their respective resident SpatialGrid objects are computed. This
functionality enables efficient, scalable diagnosis of conservation of fluxes under
transformation from source to target grids.

The Merger Component The Merger merges data from multiple sources that
have been transformed onto a common, shared SpatialGrid. It has a single pro-
vides port, Merge, on which merging methods reside, including PCI Merge2(),
PCI Merge3(), and PCI Merge4() for merging of data from two, three, and four
sources, respectively. An additional method PCI MergeIn() supports higher-
order and other user-defined merging operations.

5 Reference Implementation

We are using MCT to build a reference implementation of our PCI specification.
MCT provides a data model and library support for parallel coupling. Like the
specification, MCT uses virtual linearization to describe multidimensional index
spaces and grids. MCT’s Fortran API is described in SIDL, and Babel has been
used to generate multilingual bindings [22], with Python and C++ bindings and

10

Table 1. Correspondence between PCI Data Interfaces and MCT Classes

Functionality PCI Interface MCT Class

Mesh Description D̂iΓi, D̂i(∂Γi) SpatialGrid GeneralGrid

Field Data Ûi, V̂i, Ŵi FieldData AttrVect

Domain Decomposition Pi GlobalIndMap GlobalSegMap

Constituent PE Layouts CohortRegistry MCTWorld

One-Way Parallel Data Transfer Scheduling Hij TransferSched Router

Two-Way Parallel Data Transpose Scheduling Hij TransposeSched Rearranger

Linear Transformation Gij LinearTransform SparseMatrix
SparseMatrixPlus

Time Integration Registers TimeIntRegister Accumulator

example codes available from the MCT Web site. The data model from our PCI
specification maps readily onto MCT’s classes (see Table 1).

The port methods are implemented in some cases through direct use (via
glue code) of MCT library routines, and at worst via lightweight wrappers that
perform minimal work to convert port method arguments into a form usable by
MCT. Table 2 shows in broad terms how the port methods are implemented.

Table 2. Correspondence between PCI Ports and MCT Methods

Component / Port MCT Method

Fabricator / Factory Create, destroy, query, and manipulation methods
for GeneralGrid, AttrVect, GlobalSegMap,
MCTWorld, Router, Rearranger, SparseMatrix,
SparseMatrixPlus, and Accumulator

Transporter / Transfer Transfer Routines MCT Send(), MCT Recv(),
MCT ISend(), MCT IRecv(),

Transposer / Transpose Rearrange()

LinearTransform / LinearXForm SparseMatrix-AttrVect Multiply sMatAvMult()

SpatialIntegrator / Spatial Integral SpatialIntegral() and SpatialAverage()

TimeIntegrator / TimeIntegral accumulate()

Merger / Merge Merge()

6 Deployment Examples

We present three examples from climate modeling in which PCI-Tk components
could be used to implement parallel couplings. the field of coupled climate mod-
eling. In each example, the system contains components for physical subsystems
and a coupler. The coupler handles the data transformation, and the models
interact via the coupler purely through data transfers—a hub-and-spokes archi-
tecture [15].

11

The MCT toy climate coupling example comprises atmosphere and ocean
components that interact via a coupler that performs intergrid interpolation, and
computes application-specific variable transformations such as computation of
interfacial radiative fluxes. It is a single executable application; the atmosphere,
ocean, and coupler are procedures invoked by the MAIN driver application. It is
a parallel composition; parallel data transfers between the cohorts are required.
A CCA wiring diagram of this application using PCI-Tk components is shown
in Figure 1 (b). The driver component with the Go port signifies the single
executable, and this component has uses ports labeled Atm, Ocn, and Cpl imple-
mented as provides ports on the atmosphere, ocean, and coupler components,
respectively. The PCI-Tk data model elements used in the coupling are created
and managed by the Fabricator, via method calls on its Factory port. The parallel
data transfer traffic between the physical components and the coupler are im-
plemented by the Transporter component via method calls on its Transfer port.
A LinearTransform component is present to implement interpolation between the
atmosphere and ocean grids; the coupler performs this task via method calls on
its LinearXform port.

The Parallel Climate Model (PCM) example [6] shown in Figure 2 (a) is a
single executable and a serial composition. A driver coordinates execution of the
individual model components. Since the models run as a serial composition, cou-
pling data can be passed across interfaces, and transposes performed as needed;
thus there is a Transpose component rather than a Transfer component. The
coupler in this example performs the full set of transformations found in PCM:
intergrid interpolation with the LinearTransform; diagnosis of flux conservation
under interpolation with the SpatialIntegrator; time integration of flux and aver-
aging of state data using the TimeIntegrator; and merging of data from multiple
sources with the Merger. The TimeIntegrator is invoked by both the ocean and
coupler components because of the loose coupling between the ocean and the
rest of PCM; the atmosphere, sea-ice, and land-surface models interact with the
couple hourly, but the ocean interacts with the coupler once per model day. The
coupler integrates the hourly data from the atmosphere, land, and sea-ice that
will be passed to the ocean. The ocean integrates its data from each timestep
over the course of the model day for delivery to the coupler.

The CCSM example is a parallel composition. Its coupling strategy is similar
to that in PCM in terms of the parallel data transformations and implementation
of loose coupling to the ocean. CCSM uses a peer communciation model, however,
with each of the physical components communicating in parallel with the coupler.
These differences are shown in Figure 2 (b). The atmosphere, ocean, sea-ice, land-
surface, and coupler are separate executables and have Go ports on them; and
the parallel data transfers are implemented by the Transfer component rather
than the Transpose component.

12

Fig. 2. CCA wiring diagrams for a two coupled climate model architectures: (a) PCM,
with serial composition and single executable; (b) CCSM, with parallel composition
and multiple executables.

7 Conclusions

Coupling and the PCP are problems of central importance as computational
science enters the age of multiphysics and multiscale models. We have described
the theoretical underpinnings of the PCP and derived a core set of PCI require-
ments. From these requirements, we have formulated a PCI component interface
specification that is compliant with the CCA, a component approach suitable for
high-performance scientific computing—a parallel coupling infrastructure toolkit
(PCI-Tk). We have begun a reference implementation based on the Model Cou-
pling Toolkit MCT. Use-case scenarios indicate that this approach is highly
promising for climate modeling applications, and we believe the reference im-
plmentation will perform approximately as well as MCT does: the component
overhead introduced by CCA has been found to be acceptably low in other appli-
cation studies ([19]); and our own performance studies on our Babel-generated
C++ and Python bindings for MCT show minimial performance impact (at
most a fraction of a percent versus the native Fortran implementation [22]).

Future work includes completing the reference implementation and a thor-
ough performance study; prototyping of applications using the MCT-based PCI-
Tk; modifying the specification if necessary; and exploring alternative PCI com-
ponent implementations (e.g., using mesh and field data management tools from
the DOE-supported Interoperable Technologies for Advanced Petascale Simula-
tions (ITAPS) center [27].

Acknowledgments: This work is primarily a product of the Center for Technol-
ogy for Advanced Scientific Component Software (TASCS), which is supported

13

by the U.S. Department of Energy (DOE) Office of Advanced Scientific Com-
puting Research through the Scientific Discovery through Advanced Computing
Program. Argonne National Laboratory is operated for the DOE by UChicago
Argonne, LLC, under Contract No. DE-AC02-06CH11357. The ANU Supercom-
puter Facility is funded in part by the Australian Department of Education, Sci-
ence, and Training through the Australian Partnership for Advanced Computing
(APAC).

References

1. Manabe, S., Bryan, K.: Climate calculations with a combined ocean-atmosphere
model. Journal of the Atmospheric Sciences 26(4) (1969) 786–789

2. Larson, J., Jacob, R., Ong, E.: The Model Coupling Toolkit: A new Fortran90
toolkit for building multi-physics parallel coupled models. Int. J. High Perf. Comp.
App. 19(3) (2005) 277–292

3. Larson, J.W.: Some organising principles for coupling in multiphysics and multi-
scale models. Preprint ANL/MCS-P14140207, Mathematics and Computer Science
Division, Argonne National Laboratory (2006)

4. Bryan, F.O., Kauffman, B.G., Large, W.G., Gent, P.R.: The NCAR CSM flux
coupler. NCAR Tech. Note 424, NCAR, Boulder, CO (1996)

5. Jacob, R., Schafer, C., Foster, I., Tobis, M., Anderson, J.: Computational design
and performance of the Fast Ocean Atmosphere Model. In Alexandrov, V.N.,
Dongarra, J.J., Tan, C.J.K., eds.: Proc. 2001 International Conference on Com-
putational Science. Volume 2073 of Lecture Notes in Computer Science., Berlin,
Springer-Verlag (2001) 175–184

6. Bettge, T., Craig, A., James, R., Wayland, V., Strand, G.: The DOE Parallel
Climate Model (PCM): The Computational Highway and Backroads. In Alexan-
drov, V.N., Dongarra, J.J., Tan, C.J.K., eds.: Proc. International Conference on
Computational Science (ICCS) 2001. Volume 2073 of Lecture Notes in Computer
Science., Berlin, Springer-Verlag (2001) 148–156

7. Drummond, L.A., Demmel, J., Mechose, C.R., Robinson, H., Sklower, K., Spahr,
J.A.: A data broker for distirbuted computing environments. In Alexandrov, V.N.,
Dongarra, J.J., Tan, C.J.K., eds.: Proc. 2001 International Conference on Com-
putational Science. Volume 2073 of Lecture Notes in Computer Science., Berlin,
Springer-Verlag (2001) 31–40

8. Valcke, S., Redler, R., Vogelsang, R., Declat, D., Ritzdorf, H., Schoenemeyer, T.:
OASIS4 user’s guide. PRISM Report Series 3, CERFACS, Toulouse, France (2004)

9. Hill, C., DeLuca, C., Balaji, V., Suarez, M., da Silva, A., the ESMF Joint Specifica-
tion Team: The architecture of the earth system modeling framework. Computing
in Science and Engineering 6 (2004) 18–28

10. Toth, G., Sokolov, I.V., Gombosi, T.I., Chesney, D.R., Clauer, C.R., Zeeuw, D.D.,
Hansen, K.C., Kane, K.J., Manchester, W.B., Oehmke, R.C., Powell, K.G., Ridley,
A.J., Roussev, I.I., Stout, Q.F., Volberg, O., Wolf, R.A., Sazykin, S., Chan, A.,
Yu, B., Kota, J.: Space weather modeling framework: A new tool for the space
science community. Journal of Geophysical Research 110 (2005) A12226

11. Bertrand, F., Bramley, R., Bernholdt, D.E., Kohl, J.A., Sussman, A., Larson, J.W.,
Damevski, K.B.: Data redistribution and remote method invocation for coupled
components. Journal of Parallel and Distributed Computing 66(7) (2006) 931–946

14

12. Joppich, W., Kurschner, M., the MpCCI Team: MpCCI - a tool for the simulation
of coupled applications. Concurrency and Computation: Practice and Experience
18(2) (2006) 183–192

13. Jacob, R., Larson, J., Ong, E.: M×N communication and parallel interpolation
in ccsm3 using the Model Coupling Tookit. Int. J. High Perf. Comp. App. 19(3)
(2005) 293–308

14. The MCT Development Team: Model Coupling Toolkit (MCT) web site. http:

//www.mcs.anl.gov/mct/ (2007)
15. Craig, A.P., Kaufmann, B., Jacob, R., Bettge, T., Larson, J., Ong, E., Ding, C., He,

H.: cpl6: The new extensible high-performance parallel coupler for the community
climate system model. Int. J. High Perf. Comp. App. 19(3) (2005) 309–327

16. Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for
Parallel Software Engineering. Addison Wesley, Reading, Massachusetts (1995)

17. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. ACM
Press, New York (1999)

18. Heineman, G.T., Council, W.T.: Component Based Software Engineering: Putting
the Pieces Together. Addison-Wesley, New York (1999)

19. Bernholdt, D.E., Allan, B.A., Armstrong, R., Bertrand, F., Chiu, K., Dahlgren,
T.L., Damevski, K., Elwasif, W.R., Epperly, T.G.W., Govindaraju, M., Katz,
D.S., Kohl, J.A., Krishnan, M., Kumfert, G., Larson, J.W., Lefantzi, S., Lewis,
M.J., Malony, A.D., Mclnnes, L.C., Nieplocha, J., Norris, B., Parker, S.G., Ray,
J., Shende, S., Windus, T.L., Zhou, S.: A component architecture for high-
performance scientific computing. Int. J. High Perf. Comp. App. 20(2) (2006)
163–202

20. CCA Forum: CCA Forum web site. http://cca-forum.org/ (2007)
21. Dahlgren, T., Epperly, T., Kumfert, G.: Babel User’s Guide. CASC, Lawrence

Livermore National Laboratory. version 0.9.0 edn. (January 2004)
22. Ong, E.T., Larson, J.W., Norris, B., Jacob, R.L., Tobis, M., Steder, M.: Multi-

lingual interfaces for parallel coupling in multiphysics and multiscale systems. In
Shi, Y., ed.: Proc. 2007 International Conference on Computational Science. Vol-
ume 4487 of Lecture Notes in Computer Science., Berlin, Springer-Verlag (2007)
924–931

23. Lee, J.Y., Sussman, A.: High performance communication between parallel pro-
grams. In: Proceedings of 2005 Joint Workshop on High-Performance Grid Com-
puting and High-Level Parallel Programming Models (HIPS-HPGC 2005), IEEE
Computer Society Press (April 2005) Appears with the Proceedings of IPDPS
2005.

24. Sussman, A.: Building complex coupled physical simulations on the grid with
InterComm. Engineering with Computers 22(3–4) (2006) 311–323

25. Jones, P.W.: A user’s guide for SCRIP: A spherical coordinate remapping and
interpolation package. Technical report, Los Alamos National Laboratory, Los
Alamos, NM (1998)

26. Jones, P.W.: First and second-order conservative remapping schemes for grids in
spherical coordinates. Mon. Wea. Rev. 127 (1999) 2204–2210

27. Interoperable Technologies for Advanced Petascale Simulation Team: ITAPS web
site. http://www.scidac.gov/math/ITAPS.html (2007)

