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Abstract

Coupled climate models are multiphysics models comprising multi-
ple separately developed codes that are combined into a single physical
system. This composition of codes is amenable to a scripting solution,
and Python is a language that offers many desirable properties for this
task. We have prototyped a version of the Community Climate System
Model (CCSM) with coupling infrastructure written in Python. Our
objective was to improve dramatically CCSM’s already flexible cou-
pling infrastructure to enable research uses of the model not currently
supported. Here we report the progress in the first steps in this effort:
the construction of Python bindings for the Model Coupling Toolkit,
a key piece of third-party coupling middleware used in CCSM, and
a Python-based CCSM coupler application. We find that the choice
of Python over the original Fortran implementation in the coupler
imposes minimal visible performance impact to the overall coupled
system. We believe our results augur well for the use of Python in the
top-level coupling and organisation of large parallel multiphysics and
multiscale applications.
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1 Introduction

Coupled climate models are now the state-of-the-art simulation tool for stud-
ies of climate variability, climate sensitivity, climate change, and past cli-
mates. These models typically comprise a number of computationally inten-
sive components, including an atmospheric general circulation model (GCM),
an ocean GCM, a dynamic-thermodynamic sea ice model, and a land-surface
model. Some coupled models contain an additional software entity that me-
diates exchanges between the subsystems. This component is called a flux

coupler, or simply a coupler. Many of these models contain other refinements
such as a river transport model that routes freshwater runoff from the land
surface for input into the ocean. Future coupled climate models will evolve
into more complete earth system models, adding in effects such as the carbon
cycle, interactive vegetation, and continental-scale ice sheets.

Though the first attempt at coupled climate modeling took place nearly
forty years ago[9], only recently has the coupled climate model become a
practicable tool within the individual researcher’s reach. The key enabling
technology has been parallel computing, and in particular distributed-memory

parallelism (a.k.a. message-passing) on commodity clusters.
Message-passing introduces a new obstacle to be surmounted–the parallel

coupling problem (PCP)[8]. That is, given N multiple, separately-developed
message-passing parallel models, combine them into an efficient parallel cou-
pled model. One strategy for addressing the PCP is to use a library called
the Model Coupling Toolkit (MCT)[8, 7].

We report preliminary results in our effort to build Python interfaces
for MCT (pyMCT), and then exploit these interfaces to recreate CCSM’s
coupling infrastructure in Python. Our purpose in pursuing this strategy is
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to explore the viability of run-time Python as a programmer productivity
tool in high performance computing.

The application of CCSM that draws the most attention is as a climate
prognostication tool. Used this way, no major changes are required to the
code base; the principal challenge in such usage is simply the marshalling and
management of very large computational resources, sufficient for running an
ensemble of simulations of several centuries of the evolution of the climate
system.

However, such efforts depend in turn on more speculative work with model
codes, whether in theoretical studies with speculative scenarios, or in repli-
cating geological evidence of paleoclimates. Such usages of models frequently
require substantial rewrites by individual researchers, and it is here that the
opacity and brittleness of the released models comes back to restrict further
progress. Time spent by researchers in coding and debugging is time not
spent thinking about the science. Even worse, time not spent by reserachers
testing and verifying their modifications can lead to incorrect conclusions.

The expected benefit of this work—and our primary motivation—is a
considerably more flexible CCSM that will facilitate a wide variety of model
studies that would require considerably more programmer time and effort
using the current version of CCSM.

2 The Community Climate System Model Soft-

ware Stack

CCSM is a coupled model that employs parallel computing. It is a multiple-
load-image program because CCSM comprises five distinct components—
atmosphere, ocean, sea-ice, land-surface, and coupler—each of which has
a distinct executable image. In terms of coupled model architecture such
a design, with multiple parallel entities scheduled concurrently is called a
parallel composition[5].

In CCSM, all intercomponent data traffic is routed through the coupler.
This hub-and-spokes architecture has been a part of CCSM since its initial
version. The coupler in the current version of CCSM, called CPL6[1], is the
first version of the CCSM coupler to employ message-passing parallelism,
allowing dedication of multiple processors to the coupling problem, in turn
allowing CCSM to escape a coupling bottleneck as resources scale up. Such
scalability was the foremost requirement for the design of CPL6.

The CCSM software stack is shown in Figure 1. At the lowest level lies
parallel computing middleware in the form of MPI and OpenMP. Immedi-
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Figure 1: The CCSM Coupler CPL6 software stack.

ately above this layer lie two pieces of coupling middleware, Multi-Process
Handshaking utilities (MPH) and the Model Coupling Toolkit (MCT).

MPH is a set of Fortran utilities that perform the type of communica-
tor management and communicator splitting required by MPI-based parallel
coupled models[6]. In the current CCSM implementation, its role is limited to
model instantiation, where various instances of MPH across multi-processor
executables collaborate to build an agreed-upon set of MPI communicators.

MCT is a Fortran toolkit and library that provides a powerful set of
programming short-cuts that support the implementation of parallel coupling
mechanisms[8, 7].

In the layer immediately above MCT and MPH lies the lowest level of
CPL6, software, namely its internal datatypes and methods. The top layer
in Figure 1 comprises the CPL6 model interface datatypes that are used by
the components of CCSM and the main coupler application.

The CPL6 hub application and high-level interfaces, together with CCSM’s
other components satisfy satisfy the definition of an application framework

according to Fayad et al. [3]. This fact has been leveraged in several interop-
erability experiments in which the IBIS[4] land-surface model has replaced
CLM (Art Mirin, private communication), and POP 2.0 with biogeochem-
istry has replaced CCSM’s default ocean POP 1.4 (Mat Multrud, private
communication) as have the HYCOM and MICOM ocean models (Nancy
Norton, private communication).

4



CPL6 has thus expanded substantially the scientific horizons of CCSM.
Its existence has accelerated the inclusion of a biogeochemical cycle in CCSM.
Adding biogeochemistry requires the ability to easily change the number of
fields transferred between the models to allow for different groups of chemicals
and to query the coupled system to determine which fields are active. This is
made possible by the flexible data structures and methods provided by MCT
and CPL6.

One way to address such efforts is to view the CPL6 main program as
a disposable entity, and its relatively small code base means one could in
principle re-code in Fortran a replacement to CPL6 that serves a specific sci-
entific objective. Alternatively, we can seek to generalize, orthogonalize and
encapsulate CPL6 methods in a more object-oriented strategy, facilitating
their reuse in alternative modeling scenarios. It is this latter approach that
drives our efforts.

3 Python Coupling Infrastructure for CCSM

3.1 Performance Issues

As presently constructed, computationally intensive codes in very high level
languages such as Python are typically one to two orders of magnitude slower
in performance than comparable codes in conventional compiled languages.
It is commonly concluded that, whatever its productivity advantages, Python
is not an appropriate run-time component for high performance computing
applications. There are three aspects to our strategy that overcome this
objection.

The first, well-known to the Python community, is language interoper-
ability. When Python is used in performance-critical applications, the critical
code blocks are commonly written in a high performance compiled language
such as C. In the present case, much of the coupler’s work is in fact delegated
to existing software libraries. A larger fraction can be so delegated should it
prove necessary.

A more unusual aspect of the strategy depends specifically on the design
of MCT. MCT is intended as a totally and almost linearly scalable coupling
layer. Thus, to the extent that the coupler actually impacts performance,
more processors can be delegated to the coupler process. In practical im-
plementations of CCSM, the coupler takes only a very smalll fraction of the
total computational resources, so that there is substantial room increasing
this fraction without dramatically impacting the cost of a run.

Finally, such computations that the coupler performs in CCSM are not
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on the critical performance path. The CCSM coupler is idle much of the
time, awaiting completion of the more computationally demanding physical
calculations.

All of these factors work in favor of our design, so that the appealing
but intuitively implausible idea of Python at runtime in a high performance
model can be achieved.

3.2 Design

Our first objective was to demonstrate that a scripting language could be a
part of the runtime of a high performance model. To achieve this goal, we
sought to achieve the minimum disruption of the CCSM.

To understand our strategy, it is sufficient to refer to Figure 1. The soft-
ware stack llustrated there equally described the physics component and the
coupler component of the official CCSM release. A Python coupler must
simply provide the same MPI interface to the physical components as does
the CCSM coupler. Because we had already completed the goal of providing
Babel couplings to MCT in the context of another project, and because Ba-
bel provides interlanguage interoperability among a set of languages which
includes Python, this was the natural place to put the interlanguage bound-
ary.

This presented us with the requirement to reimplement CPL6 in Python,
rather than providing Python bindings for CPL6. Because our conclusion is
that CPL6 is not a sufficiently general design, we hope eventually to draw
upon the incremental agile development strategies which Python is known,
in order to provide a more flexible, more robust, and more elegant implemen-
tation of the standard coupler. Nevertheless, the smallest hurdle, to ensure
that the Python coupler is feasible, is to slavishly replicate the Fortran source
in an essentially line-for-line translation.

After looking at what MPH is used for in CCSM we estimated it could be
quickly replaced with an equivalent piece of Python in about 200 lines of code.
It was necessary to design a subsystem that could allocate communicators
to processor groups that could successfully interoperate between Fortran 90
and Python. To support this new initialization we also needed to add a
new function to the Fortran version of CPL6 library that supported this
simple CCSM-only initialization. The only Fortran code modified is within
the CPL6 library and the component source code remains untouched.

As development progressed, features and MPI functions were needed
which were not supported by existing Python MPI strategies. To meet the
changing demands of the project we developed our own set of Python MPI
bindings, based on the MyMPI[13] package. Tentatively called MMPI[10],
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this work will be reported in detail elsewhere.
In addition to MMPI, the task of communicator splitting served by MPH

was also replicated in Python. It was necessary to replace MPH in the
component models to enforce compatibility with our communicator tools,
which requires re-linking of the component models but imposes no changes
to their source code whatsoever. While even this requirement disappoints us
somewhat, we encourage comparison with alternative framework strategies
which require substantial rewrites of all physics components.

MCT offers a user-friendly API for programming parallel couplings. This
API, however is expressed using Fortran derived types and Fortran pointers,
complicating considerably the challenge of interfacing MCT to other pro-
gramming languages. This is due to the lack of a specific standard for array
descriptors or derived types in the Fortran90 standard, and the nonexistence
of even a standard API for querying them.

Interfacing Fortran90 to other languages is consequently notoriously dif-
ficult, and the only solution is a vendor-by-vendor implementation such as
CHASM[11]. Our Python interfaces were crafted by leveraging CHASM via
software called Babel[2], which currently supports the following languages:
C, Fortran (through 95), C++, Java, and Python. Usage of Babel requires
the developer wishing to export library code written in a particular language
for use by other languages to describe the codes interfaces using the Scientific

Interface Definition Language (SIDL). This interface description is porcessed
by Babel to provide run-time bindings in C, along with callable interfaces in
the target languages. Babel-generated MCT interlanguage bindings can be
downloaded from the MCT Web Site[12].

Armed with a working version of pyMCT, re-programming of the Python
version of CPL6 classes was straightforward. Just as CPL6 wraps MCT ob-
jects and methods in its own derived types, PyCPL wraps PyMCT types
with Python classes that provide the necessary coupler logic and behavior.
In most cases the Python classes are just translations of their Fortran coun-
terparts. PyCPL as it stands is merely a close translation of CPL6. We
plan to provide extensions and improvements in the future to increase the
functionality of the coupling layer.

We thus succeeded in our goal of providing a completely transparent
replacement coupler design. We emphasize that no changes whatsoever are
required to the component model source.

3.3 Proof-of-Concept

PyCCSM remains an incomplete implementation of CCSM, but key elements
of it are complete and undergoing evaluation. For example the parallel data
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transfer system is exchanging the right number of messages of the right length
with their data arranged in the right order. For a multiple executable multi-
ple processor per executable architecture that requires exchanges of commu-
nication contracts at instantiation, this is no small feat. There is a significant
amount of run-time computation in the coupler, which was manually trans-
lated. This last, anticipated hurdle remains. Nevertheless we are now in a
position to claim that the conceptual basis for the design is sound.

We have tested our Python-based CCSM coupling code stack on a bench-
mark application: coupling of CCSM data models. Data models exsist
for each of the atmosphere, ocean, land-surface and sea-ice components of
CCSM, each serving as a proxy for a real or live model. Data models provide
to the coupler all of the output fields expected from the component it por-
trays, and accept from the coupler a default set of input fields. This allows
the coupler to exercise all of its functionality. Taken as such, the data models
form an integration test for the coupler.

Preliminary results have only been obtained on small clusters but are
thus far encouraging. The slowdown of the coupler code is on the order of
a factor of 2.5, but this is in a system where the coupler code is on the
critical computational path. In practice, most or all of this slowdown will
be masked by the time that the physics components spend in computations.
We anticipate a very small performance penalty in the completed system.

4 Future Work

Our immediate development path is to complete pyCCSM, a Python-based
version of CCSM with live models. We are confident this goal will be achieved
in the near future and look forward to reporting how pyCPL performs in this
context. If successful, it will mark an important step forward in applying
productivity computing to a grand challenge computational science applica-
tion.

Our ultimate objective remains scientific productivity rather than pro-
gramming productivity. As programmers, we are in a service relationship
toward physical scientists. It is their needs, rather than our interests as
software professionals, that should drive our work. Toward that end, our ob-
jective is to embed PyCCSM in various run control environments, combining
the model control with the ensemble control in a single scripting environ-
ment. The goal of a clear-cut control layer in the model is ultimately to
provide ever higher levels of abstraction, allowing for statistical analysis, ob-
jective tuning, and automated selection not only of parameters but of model
instantiations.
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Given one definition of a computational framework[3], the work presented
here marks the prototying of a major scientific software application frame-
work in Python. Given Python’s general programmer-friendliness, it is clear
that in this context one will not only be able to leverage the composition
character of software frameworks, but also enjoy a free hand to modify both
the components and the framework itself. We believe this demonstrates that
Python can provide formidable competitors to conventional software frame-
works in the scientific productivity computing arena.
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