Test Suite for Evaluating Performance of MPI
Implementations That Support
MPI_ THREAD MULTIPLE

Rajeev Thakur and William Gropp

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439, USA
{thakur, gropp}@mcs.anl.gov

Abstract. MPI implementations that support the highest level of thread
safety for user programs, MPI_THREAD MULTIPLE, are becoming widely
available. Users often expect that different threads can execute inde-
pendently and that the MPI implementation can provide the necessary
level of thread safety with only a small overhead. The MPI Standard,
however, requires only that no MPI call in one thread block MPI calls
in other threads; it makes no performance guarantees. Therefore, some
way of measuring an implementation’s performance is needed. In this
paper, we propose a number of performance tests that are motivated by
typical application scenarios. These tests cover the overhead of provid-
ing the MPI_THREAD MULTIPLE level of thread safety for user programs,
the amount of concurrency in different threads making MPI calls, the
ability to overlap communication with computation, and other features.
We present performance results with this test suite on several plat-
forms (Linux cluster, Sun and IBM SMPs) and MPI implementations
(MPICH2, Open MPI, IBM, and Sun).

1 Introduction

With thread-safe MPI implementations becoming increasingly common, users
are able to write multithreaded MPI programs that make MPI calls concur-
rently from multiple threads. Thread safety does not come for free, however,
because the implementation must protect certain data structures or parts of the
code with mutexes or critical sections. Developing a thread-safe MPI implemen-
tation is a fairly complex task, and the implementers must make several design
choices, both for correctness and for performance [2]. To simplify the task, im-
plementations often focus on correctness first and performance later (if at all).
As a result, even though an MPI implementation may support multithreading,
its performance may be far from optimized. Users, therefore, need a way to
determine how efficiently an implementation can support multiple threads. Sim-
ilarly, as implementers experiment with a potential performance optimization,
they need a way to measure the outcome. (We ourselves face this situation in
MPICH?2.) To meet these needs, we have created a test suite that can shed light

on the performance of an MPI implementation in the multithreaded case. We
describe the tests in the suite, the rationale behind them, and their performance
with several MPI implementations (MPICH2, Open MPI, IBM MPI, and Sun
MPI) on several platforms.

Related Work. The MPI benchmarks from Ohio State University [4] contain a
multithreaded latency test, which is a ping-pong test with one thread on the
sender side and two (or more) threads on the receiver side. A number of other
MPI benchmarks exist, such as SKaMPI [6] and the Intel MPI Benchmarks [3],
but they do not measure the performance of multithreaded MPI programs. A
good discussion of the issues in developing a thread-safe MPI implementation is
given in [2]. Other thread-safe MPI implementations are described in [1, 5].

2 Overview of MPI and Threads

To understand the test suite and the rationale behind each test, one must un-
derstand the thread-safety specification in MPI. For performance reasons, MPI
defines four “levels” of thread safety and allows the user to indicate the level
desired—the idea being that the implementation need not incur the cost for a
higher level of thread safety than the user needs. The four levels of thread safety
are as follows:

1. MPI_THREAD_SINGLE Each process has a single thread of execution.

2. MPI_THREAD_FUNNELED A process may be multithreaded, but only the thread
that initialized MPI may make MPI calls.

3. MPI_THREAD_SERIALIZED A process may be multithreaded, but only one
thread at a time may make MPT calls.

4. MPI_THREAD MULTIPLE A process may be multithreaded, and multiple threads
may simultaneously call MPI functions (with some restrictions mentioned
below).

An implementation is mnot required to support levels higher than
MPI_THREAD_SINGLE; that is, an implementation is not required to be thread safe.
A fully thread-compliant implementation, however, will support
MPI_THREAD MULTIPLE. MPI provides a function, MPI_Init_thread, by which
the user can indicate the level of thread support desired, and the implemen-
tation will return the level supported. A portable program that does not call
MPI_Init_thread should assume that only MPI_THREAD SINGLE is supported.
The tests described in this paper focus on the MPI_THREAD MULTIPLE (fully mul-
tithreaded) case.

For MPI_THREAD_MULTIPLE, the MPI Standard specifies that when multiple
threads make MPI calls concurrently, the outcome will be as if the calls exe-
cuted sequentially in some (any) order. Also, blocking MPT calls will block only
the calling thread and will not prevent other threads from running or executing
MPI functions. MPT also says that it is the user’s responsibility to prevent races
when threads in the same application post conflicting MPI calls. For example,

Process 0 Process 1

Thread0 Thread 1 Thread0 Thread 1

MPI_Recv(src=1) | MPI_Send(dest=1) | MPI_Recv(src=0) | MPI_Send(dest=0)

Fig. 1. An implementation must ensure that this example never deadlocks for any
ordering of thread execution.

the user cannot call MPI_Info_set and MPI_Info _free on the same info ob-
ject concurrently from two threads of the same process; the user must ensure
that the MPI_Info_free is called only after MPI_Info_set returns on the other
thread. Similarly, the user must ensure that collective operations on the same
communicator, window, or file handle are correctly ordered among threads.

A straightforward implication of the MPI thread-safety specification is that
an implementation cannot implement thread safety by simply acquiring a lock at
the beginning of each MPI function and releasing it at the end of the function: A
blocked function that holds a lock may prevent MPI functions on other threads
from executing, a situation that in turn might prevent the occurrence of the
event that is needed for the blocked function to return. An example is shown
in Figure 1. If thread 0 happened to get scheduled first on both processes, and
MPI Recv simply acquired a lock and waited for the data to arrive, the MPI_Send
on thread 1 would not be able to acquire its lock and send its data; hence, the
MPI_Recv would block forever. Therefore, the implementation must release the
lock at least before blocking within the MPI_Recv and then reacquire the lock if
needed after the data has arrived. (The tests described in this paper provide some
information about the fairness and granularity of how blocking MPI functions
are handled by the implementation.)

3 The Test Suite

Users of threads in MPI often have the following expectations of the performance
of threads, both those making MPI calls and those performing computation
concurrently with threads that are making MPI calls.

— The cost of thread safety, compared with lower levels of thread support, such
as MPI_THREAD_FUNNELED, is relatively low.

— Multiple threads making MPI calls, such as MPI_Send or MPI Bcast, can
make progress simultaneously.

— A blocking MPI routine in one thread does not consume excessive CPU
resources while waiting.

Our tests are designed to test these expectations; in terms of the above categories,
they are as follows:

Cost of thread safety One simple test to measure MPI_THREAD MULTIPLE over-
head.

Concurrent progress Tests to measure concurrent bandwidth by multiple
threads of a process to multiple threads of another process, as compared
with multiple processes to multiple processes. Both point-to-point and col-
lective operations are included.

Computation overlap Tests to measure the overlap of communication with
computation and the ability of the application to use a thread to provide
a nonblocking version of a communication operation for which there is no
corresponding MPT call, such as nonblocking collectives or I/O operations
that involve several steps.

We describe the tests below and present performance results on the following
platforms and MPI implementations:

Linux Cluster We used the Breadboard cluster at Argonne, in which each node
has two dual-core 2.8 GHz AMD Opteron CPUs. The nodes are connected
by Gigabit Ethernet. We used MPICH2 1.0.5 and Open MPI 1.2.1.

Sun Fire SMP We used a Sun Fire SMP from the Sun cluster at the RWTH
Aachen University. The specific machine we ran on was a Sun Fire E2900
with eight dual-core UltraSPARC IV 1.2 GHz CPUs. It runs Sun’s MPI
(ClusterTools 5).

IBM SMP We also used an IBM p6554+ SMP from the DataStar cluster at the
San Diego Supercomputer Center. The machine has eight 1.7 GHz POWER4+
CPUs and runs IBM’s MPI.

3.1 MPI.THREAD MULTIPLE Overhead

Our first test measures the ping-pong latency for two cases of a single-threaded
program: initializing MPI with just MPI_Init and initializing it with
MPI_Init_thread for MPI_THREAD MULTIPLE. This test demonstrates the over-
head of ensuring thread safety for MPT_THREAD MULTIPLE—typically implemented
by acquiring and releasing locks—even though no special steps are needed in
this case because the process is single threaded (but the implementation does
not know that).

Figure 2 shows the results. On the Linux cluster, with both MPICH2 and
Open MPI, the overhead of MPI_THREAD MULTIPLE is less than 0.5 us. On the
IBM SMP with IBM MPI, it is less than 0.25 us. On the other hand, on the Sun
SMP with Sun MPI, the overhead is very high—more than 3 us.

3.2 Concurrent Bandwidth

The second test measures the cumulative bandwidth obtained when multiple
threads of a process communicate with multiple threads of another process com-
pared with multiple processes instead of threads (see Figure 3). It demonstrates
how much thread locks affect the cumulative bandwidth; ideally, the multipro-
cess and multithreaded cases should perform similarly.

Figure 4 shows the results. On the Linux cluster, the tests were run on two
nodes, with all communication happening across nodes. We ran two cases: one

100

T T T T
MPICH2 thread-single —— SUN MPI thread-single —+—

MPICH2 thread-multiple 2 SUN MPI thread-multiple
0 | Open MPI thread-single - # | 8 - IBM MPI thread-single -
Open MPI thread-multiple & & IBM MPI thread-multiple =
®
&

8 | & / | 7
7 o 7
é W A // § 6y
g Tr s A / E —

n 5t —

] P %) _
£ ¥ £ e
L I F -

=~

4 o
{ —
| [\ : e NS S Nt
I | Sy Do P A T G B o
W“'k | Funoonx g ook 8
50 ## | 1 5 [poete]

R //

40 2
0 200 400 600 800 1000 0 200 400 600 800 1000

Size (bytes) Size (bytes)

Fig. 2. Overhead of MPI_THREAD MULTIPLE on the Linux cluster (left) and Sun and IBM
SMPs (right).

where there were as many processes/threads as the number of processors on
a node (four) and one where there were eight processes/threads running on
four processors. In both cases, there is no measurable difference in bandwidth
between threads and processes with MPICH2. With Open MPI, there is a decline
in bandwidth with threads in the oversubscribed case.

On the Sun and IBM SMPs, on the other hand, there is a substantial decline
(more than 50% in some cases) in the bandwidth when threads were used instead
of processes. Although it is harder to provide low overhead in these shared-
memory environments because the communication bandwidths are so high, we
believe a tuned implementation should be able to support concurrent threads
with a much smaller loss in performance.

y i ; ;
TJ IT P P
T/ ’RT P P

Fig. 3. Communication test when using multiple threads (left) versus multiple pro-
cesses (right).

3.3 Concurrent Latency

Our third test is similar to the concurrent bandwidth test except that it mea-
sures the time for individual short messages instead of concurrent bandwidth for
large messages. Figure 5 shows the results. On the Linux cluster with MPICH2,

1200 !
4p-4p ——

1000 - 8T-8T s

800

400

Cumulative bandwidth (Mbits/s)
I
3
3
T
Cumulative bandwidth (GBytes/s)

200

MPICH2

Sun MPI

Open IBM MPI
Fig. 4. Concurrent bandwidth test on Linux cluster (left) and Sun and IBM SMPs
(right).

there is a 20 ps overhead in latency when using concurrent threads instead of
processes. With Open MPI, the overhead is about 30 ps. With Sun and IBM
MPI, the latency with threads is about 10 times the latency with processes.
Again, although it is more difficult to provide low overhead on these machines
because the basic message-passing latency is so low, a tuned implementation
should be able to do better than a factor of 10 higher latency in the threaded
case.

150

T
—

40

MPICH2 4P-4P o e . PR
140 | MPICH2 4T-4T - o i 5o ot]
Open MPI 4P-4P —x-- e 35 1 s By @ o
130, OPenMPIATAT Lo j " a
/ 30 - Sun MPI 4p-4P —— 4
Sun MP| 4T-4T
~ ~ IBM MPI 4P-4P -~
g g 25F IBM MPI 4T-4T o]
d 8
g g L]
3 g
g g
£ E B 1
10 4
5L e]
e A R |
e
0
0 200 400 600 800 1000
Size (bytes) Size (bytes)

Fig. 5. Concurrent latency test on Linux cluster (left) and Sun and IBM SMPs (right).

3.4 Concurrent Short-Long Messages

The fourth test is a blend of the concurrent bandwidth and concurrent latency
tests. It has two versions. In the threads version, rank 0 has two threads: one

2000

MPIéHZ (wi{h procésses- — Sun MPI kwith _pr‘ocesse‘sr
1800 k MPICH2 (with threads 3’\] Sun MPI (with threads;
Open MPI (with processes) -~ J“\‘ 120 F IBM MPI (with processes) -
1600 L Open MPI (with threads A/A/ 1BM MPI (with threads
7 ‘
1400 - i Y VM 100
] woo | ol ‘ g
t [
g . [‘ g 8 &
) li | S
E 1000 f ‘ £ L
g o0t “ : ‘ g 60
= | : F
600 - [‘ 1 40
N ;
400 / i | ,
: | 20
00 i | 1
v R SRR DO | ISR AR e T e e e e
0 0
100 20 30 40 50 60 70 8 90 10 20 30 40 5 60 70 8 90

Iteration Iteration

Fig. 6. Concurrent short-long messages test on Linux cluster (left) and Sun and IBM
SMPs (right).

sends a long message to rank 1, and the other sends a series of short messages
to rank 2. The second version of the test is similar except that the two senders
are processes instead of threads. This test tests the fairness of thread scheduling
and locking. If they were fair, one would expect each of the short messages to
take roughly the same amount of time.

The results are shown in Figure 6. With both MPICH2 and Open MPI, the
cost of communicating the long message is evenly distributed among a number
of short messages. A single short message is not penalized for the entire time the
long message is communicated. This result demonstrates that, in the threaded
case, locks are fairly held and released and that the thread blocked in the long-
message send does not block the other thread. With Sun and IBM MPI, however,
one sees spikes in the graphs. This behavior may be because these implementa-
tions use memory copying to communicate data, and it is harder to overlap this
memory-copy time with the memory copying on the other thread.

3.5 Computation/Communication Overlap

Our fifth test measures the ability of an implementation to overlap commu-
nication with computation and provides users an alternative way of achieving
such an overlap if the implementation does not do so. The test has two ver-
sions. The first version has an iterative loop in which a process communicates
with its four nearest neighbors by posting nonblocking sends and receives, fol-
lowed by a computation phase, followed by an MPI _Waitall for the communica-
tion to complete. The second version is similar except that, before the iterative
loop, each process spawns a thread that blocks on an MPI_Recv. The matching
MPI_Send is called by the main thread only at the end of the program, just
before MPI_Finalize. The thread thus blocks in the MPI_Recv while the main
thread is in the communication-computation loop. Since the thread is executing

1400 9000 T
6 procs, no overlap ——1

6 procs, overlap
8 procs, no overlap

8 pracs, overlap

"6 procs, no overlap [
8000 ——.

1200

2 procs, overlap
7000 +

1000 -
6000 [

800 - 5000 -

600 - 4000

3000 [

Time per iteration (millisec.)

400

Time per iteration (millisec.)

2000 [

200 -
1000 [

Open MPI Open MPI, progress thread Sun MPI

Fig. 7. Computation/communication overlap test on Linux cluster (left) and Sun and
IBM SMPs (right).

an MPI function, whenever it gets scheduled by the operating system, it can
cause progress to occur on the communication initiated by the main thread.
This technique effectively simulates asynchronous progress by the MPI imple-
mentation. If the total time taken by the communication-computation loop in
this case is less than that in the nonthreaded version, it indicates that the MPI
implementation on its own does not overlap communication with computation.

Figure 7 shows the results. Here, “no overlap” refers to the test without
the thread, and “overlap” refers to the test with the thread. The results with
MPICH2 demonstrate no asynchronous progress, as the overlap version of the
test performs better. With Open MPI, we ran two experiments. We first used
the default build; the results indicate that it performs similarly to MPICH2—no
overlap of computation and communication. Open MPI can also be optionally
built to use an extra thread internally for asynchronous progress. With this ver-
sion of the library, we see that indeed there is asynchronous progress, as the
performance is nearly the same as for the “overlap” test with the default build.
That is, the case with the implementation-created progress thread performs sim-
ilarly to the case with the user-created thread.

We note that always using an extra thread for progress has other performance
implications. For example, it can result in higher communication latencies be-
cause of the thread-switching overhead. Due to lack of space, we did not run all
the other tests with the version of Open MPI configured to use an extra thread.

The results on the Sun and IBM SMPs indicate no overlap. In fact, with
eight processes, the performance was worse with the overlap thread because of
the high overhead when using threads with these MPI implementations.

3.6 Concurrent Collectives

Our sixth test compares the performance of concurrent calls to a collective func-
tion (MPI_Allreduce) issued from multiple threads to that when issued from

Concurrent Collectives Concurrent Collectives and Computation
0.55 T 75 T

MPICH2, processes MPICH2 with allreduce thread

MPICH2, threads ©* 70 F MPICH2 without allreduce thre:
0.5 | Open MPI, processe: Open MPI with allreduce threa
Open MPI, threads mm— Open MPI without allreduce thread

65

045
60 [

04 - 55

Time (millisec.)

50 [
035 |

03 T
025 :

12 (4x3) processes/threads 24 (4x6) processes/threads

Iterations per thread per sec.

45

40

35

3SWP nodes 6 SUP nodes
Fig. 8. Left: Concurrent collectives test on the Linux cluster (4x3 refers to 4 pro-
cess/threads each on 3 nodes). Right: Concurrent collectives and computation test on
the Linux cluster.

multiple processes. The test uses multiple communicators, and processes are ar-
ranged such that the processes belonging to a given communicator are located
on different nodes. In other words, collective operations are issued by multiple
threads/processes on a node, with all communication taking place across nodes
(similar to Figure 3 but for collectives and using multiple nodes).

Figure 8 (left) shows the results on the Linux cluster. MPICH2 has relatively
small overhead for the threaded version, compared with Open MPI.

3.7 Concurrent Collectives and Computation

Our final test evaluates the ability to use a thread to hide the latency of a
collective operation while using all available processors to perform computations.
It uses p+1 threads on a node with p processors. Threads 0—(p—1) perform some
computation iteratively. Thread p does an MPI_Allreduce with its corresponding
threads on other nodes. When the allreduce completes, it sets a flag, which
stops the iterative loop on the other threads. The average number of iterations
completed on the threads is reported. This number is compared with the case
with no allreduce thread (the higher the better).

Figure 8 (right) shows the results on the Linux cluster. MPICH2 demon-
strates a better ability than Open MPI to hide the latency of the allreduce.

4 Concluding Remarks

As MPI implementations supporting MPI_THREAD MULTIPLE become increasingly
available, there is a need for tests that can shed light on the performance and
overhead associated with using multiple threads. We have developed such a test
suite and presented its performance on multiple platforms and implementations.

The results indicate relatively good performance with MPICH2 and Open MPI
on Linux clusters, but poor performance with IBM and Sun MPI on IBM and
Sun SMP systems.

We plan to add more tests to the suite, such as to measure the overlap of com-
putation/communication with the MPI-2 file I/O and connect-accept features.
We will also accept contributions from others to the test suite. The test suite
will be available for download from www.mcs.anl.gov/ thakur/thread-tests.

Acknowledgments

We thank the RWTH Aachen University and the San Diego Supercomputer
Center for providing computing time on their systems. This work was supported
by the Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing Research, Office of Science,
U.S. Department of Energy, under Contract DE-AC02-06CH11357.

References

1. Francisco Garcia, Alejandro Calderén, and Jestis Carretero. MiMPI: A multithread-
safe implementation of MPI. In Recent Advances in Parallel Virtual Machine and
Message Passing Interface, 6th European PVM/MPI Users’ Group Meeting, pages
207-214. Lecture Notes in Computer Science 1697, Springer, September 1999.

2. William Gropp and Rajeev Thakur. Issues in developing a thread-safe MPI imple-

mentation. In Recent Advances in Parallel Virtual Machine and Message Passing

Interface, 13th European PVM/MPI Users’ Group Meeting, pages 12-21. Lecture

Notes in Computer Science 4192, Springer, September 2006.

Intel MPI benchmarks. http://www.intel.com.

OSU MPI benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks.

5. Boris V. Protopopov and Anthony Skjellum. A multithreaded message passing
interface (MPI) architecture: Performance and program issues. Journal of Parallel
and Distributed Computing, 61(4):449-466, April 2001.

6. Ralf Reussner, Peter Sanders, and Jesper Larsson Traff. SKaMPI: A comprehensive
benchmark for public benchmarking of MPI. Scientific Programming, 10(1):55-65,
January 2002.

- W

