
1

Formal Methods Applied to HPC Software

Design: A Case Study of Locking Based on

MPI One-Sided Communication
Salman Pervez, Ganesh Gopalakrishnan, Robert M. Kirby,

Rajeev Thakur, and William Gropp

Abstract

There is growing need to address the complexity of modeling and verifying the numerous concurrent

protocols involved in high-performance computing (HPC) software design. Finite-state modeling and

formal verification (FV) using model-checking technology have made impressive inroads into debugging

concurrent protocols. However, there remains a dearth of research in applying model-checking methods

to HPC software design. This situation can be attributed to the lack of awareness by the HPC community

about the potentials of FV in the HPC arena, as well as lack of awareness by the FV community of the

challenges that HPC application domains pose. In this paper, we demonstrate the utility of finite-state

modeling and model checking in detecting race conditions and deadlocks in concurrent protocols that

arise while developing HPC software. In particular, we detail a case study that develops a distributed

byte-range locking algorithm using MPI’s one-sided communication. Our model-checking effort detected

a race condition that can cause deadlock, of which the authors of the algorithm were unaware. We

describe two designs to fix the deadlock problem, and we present their formal analysis using model

checking, and their performance analysis on a 128-node cluster. Our objective is to give practitioners,

especially those developing parallel programs using libraries, the opportunity to accurately assess the

costs and benefits of finite-state modeling and model checking.

S. Pervez, G. Gopalakrishnan, and R. M. Kirby are with the School of Computing, University of Utah. R. Thakur and W.

Gropp are with the Mathematics and Computer Science Division, Argonne National Laboratory.

2

Index Terms

Parallel programming, race condition, deadlock, formal verification, model checking, SPIN, Message

Passing Interface (MPI), one-sided communication

I. I NTRODUCTION

Debugging concurrent protocols is one of the fundamental challenges facing the computing

community today. Accurate protocols are especially needed given the increasing importance of

making advances in high-performance computing (HPC) and the sheer number of concurrent

protocols involving many concurrency libraries that will be used in realizing these advances.

Model checking [1], [2], [3] is widely regarded as the primary technique of choice for debugging

a significant number of concurrent protocols. After 25 years of research [4] that has resulted

in many important theoretical discoveries as well as practical applications and tools, designers

in many application areas now possess a good understanding of how and to what extent model

checking can help in their work. Yet, when we began our research on applying formal methods

for debugging high-performance computing software about three years ago, we were surprised

to discover that designers in HPC did not know about model checking or its potential to help

them debug concurrent protocols of the kind they are now developing.

After an initial dialog was established between Argonne National Laboratory (interested pri-

marily in HPC, and the principal developers of the MPICH2 MPI library [5]) and the University

of Utah (interested primarily in model checking), the Utah researchers were given a modest-

looking challenge problem by their Argonne colleagues: See what model checking can do in

terms of analyzing a then-recently publishedbyte-range lockingalgorithm [6] developed by some

Argonne researchers. The challenge problem held (and still holds) considerable appeal. It uses

MPI’s recent extensions that involve shared memory, calledone-sided communication(or remote-

memory access) [7], which allows a process to directly read from or write to another process’s

memory. In other words, it is more like shared memory than message passing and comes with

3

the associated problem of a shared-memory programming style, namely, the potential for race

conditions. At the time the challenge was issued, one-sided communication had proved to be

rather slippery territory for previous MPI users. We emphasize that the challenge problem was

not a contrived example. It was developed to enable an MPI-IO implementation to acquire byte-

range locks in the absence of POSIXfcntl() file locks, which some high-performance file

systems do not support.

The challenge problem was as follows. Imagine processes wanting read/write accesses to

contiguous ranges of bytes maintained in some storage device. In order to maintain mutual

exclusion, the processes must detect conflicts between their byte ranges of interest through

a suitable concurrent protocol. Unfortunately, the protocol actions of various processes can

occur only through one-sided operations that, in effect, perform “puts” and “gets” within one-

sided synchronization epochs. Since these puts and gets are unordered, popular paradigms

of designing locking protocols that depend on sequential orderings of process actions (e.g.,

Peterson’s algorithm [8] involves setting one’s own “interested” bit and then seeing which other

process has its turn) do not work for the stated byte-range problem. The authors of [6] had

devised a solution involving back offs and retries. Unlike “textbook” locking protocols whose

behaviors have been studied under weak memory models (e.g., [9]), the principal appeal of the

locking protocol (detailed in Section III) from a model-checking perspective stems from its use

of realistic features from a library (MPI) that is considered the de-facto standard of parallel

programming.

This paper makes the following contributions. It demonstrates that by using finite-state mod-

eling and model checking early during the design of concurrent protocols, many costly mistakes

can be avoided. In particular, it discusses the race conditions latent in our challenge problem

(the algorithm of [6]) that result in deadlocks. These errors were found relatively easily by

using model checking. Curiously, neither the authors of the algorithm nor the reviewers of the

4

published paper [6] were aware of the race condition, and conventional testing had missed the

associated bugs. To solve the deadlock problem, we present two other algorithms, which we

analyze by using model checking and show to be free of race conditions and other problems

affecting correctness. However, the algorithms have remaining resource issues (as did the original

algorithm) that must be addressed on pragmatic grounds. An initial assessment we present in

this paper is that these resource issues are no worse than in the original buggy protocol. In

addition, since performance is a crucial aspect of any HPC design, an engineer must ultimately

conduct performance analysis in addition to verifying correctness. In this regard, our performance

assessment of the alternative protocols on a 128-node cluster reveals that Alternative 2 performs

far better than Alternative 1, under both low and high lock contention.

This paper details our contributions, discusses a few limitations of our current model-checking

approach, and briefly describes our planned work to overcome these limitations. It also discusses

the important lesson of having to build techniques and tools that help engineers iterate through

the option space in search of optimal choices that balance correctness, performance, and resource

issues.

Related Work.The area of formal methods applied to concurrent-program design has a history

of over 50 years of research and hence is too vast to present. Even those efforts directed at the

use of model checking for concurrent and distributed program verification are vast; applications

in telecommunication-software design (e.g., [10]), aerospace software (e.g., [11]), device-driver

design (e.g., [12]), and operating-system kernels (e.g., [13]) are four examples of recent efforts.

Focusing on the use of formal methods for HPC software design, and in particular for MPI-based

parallel/distributed program design, one finds an increasing level of activity from a handful of

researchers. Siegel et al. have used model checking to verify MPI programs that employ a limited

set of two-sided MPI communication primitives [14], [15], [16], [17]. We have also employed

model checking to formally analyze as well as verify MPI programs that use two-sided constructs

5

[18], [19], [20], [21]. Kranzlm̈uller used a formal event-graph based method to help understand

MPI program executions [22]. Matlin et al. used the SPIN model checker to verify parts of the

MPD process manager used in MPICH2 [23]. The case study in this paper involves one-sided

communication, applies to a published algorithm, and assesses the solution in terms of resources

as well as performance.

Roadmap.The rest of this paper is organized as follows. In Section II, we briefly introduce

model checking. In Sections III and IV, we describe the byte-range locking algorithm and how

we model checked it. In Section V, we present two designs of the algorithm that avoid the

race condition, formally verify them using model checking, provide empirical observations to

interpret the model-checking results, and study their performance on up to 128 processors on a

Linux cluster. In Section VI, we conclude with a discussion of future work.

II. OVERVIEW OF MODEL CHECKING

Model checking consists of two steps: creatingmodelsof concurrent systems and traversing

these models exhaustively while checking the truth of desired properties. A model can be anything

from a simple finite-state machine modeling the concurrent system to actual deployed code.

Model checking is performed by creating—either manually or automatically—simplified models

of the concurrent system to be verified, recording states and paths visited to avoid test repetitions

(an extreme case of which is infinite looping), and checking the desired correctness properties,

typically on the fly. Given that the size of the reachable state space of concurrent systems can be

exponential in the number of concurrent processes, model checkers employ a significant number

of algorithms as well as heuristics to achieve the effect of full coverage without ever storing entire

state histories. The properties checked by a model checker can range from simple state properties

such asasserts to complex temporal logic formulas that express classes of desired behaviors.

Model checkers are well known for their ability to track down deadlocks, illegal states (safety [3]

bugs), and starvation scenarios (liveness [3] bugs) that may survive years of intense testing. We

6

considerfinite-statemodel checking, where the model of the concurrent system is expressed in

a modeling language—Promela [10], in our case. (All the pseudocodes expressed in this paper

have an almost direct Promela encoding once the MPI constructs have been accurately modeled.)

By (in effect) exhaustively traversing the concurrent-system automaton, a model checker helps

establish desired temporal properties, such as “always P” and “A implies eventually Q,” or

generates concrete error traces when such properties fail.

The capabilities of model checkers have been steadily advancing, with modern model checkers

being able to handle astronomically large state spaces (consisting, for example, of billions

of distinct states). A model checker that has received wide attention in the computer-science

community is SPIN [10]. Despite the very large state spaces of the SPIN MPI models discussed

in this paper, our model-checking runs finished within acceptable durations (often in minutes)

on standard workstations.

III. T HE BYTE-RANGE LOCKING ALGORITHM

Often, processes must acquire exclusive access to a range of bytes, such as a portion of

a file. In [6], Thakur et al. presented an algorithm by which processes can coordinate among

themselves to acquire byte-range locks, without a central lock-granting server. The algorithm uses

MPI one-sided communication (or remote-memory access) [7]. Since it is essential to understand

the semantics of MPI one-sided communication in order to understand the algorithm, we first

briefly explain the relevant features of MPI one-sided communication.

A. Overview of MPI One-Sided Communication

MPI-2 added one-sided communication functions that offer a different programming model

from the regular MPI-1 point-to-point operations. In one-sided communication, a process can

directly write to or read from the memory of a remote process viaput and get operations.

Prior to that, a process must specify the memory region that it wishes to allow other processes

7

Process 0 Process 1 Process 2
MPI_Win_create(&win)
MPI_Win_lock(excl,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)
MPI_Win_free(&win)

MPI_Win_create(&win)

MPI_Win_free(&win)

MPI_Win_create(&win)
MPI_Win_lock(excl,1)
MPI_Put(1)
MPI_Get(1)
MPI_Win_unlock(1)
MPI_Win_free(&win)

Fig. 1. The lock-unlock synchronization method for one-sided communication in MPI. The numerical arguments indicate the

target rank.

to directly access. This memory region is called awindow and is specified via the collective

function MPI_Win_create . The three functions for one-sided communication areMPI Put ,

MPI Get , andMPI Accumulate . MPI Put writes to remote memory;MPI Get reads from

remote memory; andMPI Accumulate does a reduction operation on remote memory. All

three functions are nonblocking: They initiate but do not necessarily complete the one-sided

operation. These functions are not sufficient by themselves because one needs to know when

a one-sided operation can be initiated (that is, when the remote memory is ready to be read

or written) and when a one-sided operation is guaranteed to be completed. To specify these

semantics, MPI defines three synchronization methods. For simplicity, we consider only one of

them, lock-unlock, which is the one used in the byte-range locking algorithm.

In the lock-unlock method, a process can gain exclusive access to the window of a target

process by callingMPI_Win_unlock . In the lock-unlock synchronization method, the origin

process callsMPI_Win_lock to obtain either shared or exclusive access to the window on the

target, as shown in Figure 1.MPI Win lock is not required to block until the lock is acquired,

except when the origin and target are the same process. After issuing the one-sided operations,

the origin callsMPI Win unlock . WhenMPI Win unlock returns, the one-sided operations

are guaranteed to be completed at the origin and the target. The target process does not make

any synchronization call.

8

for rank 0 for rank 1 for rank 2

F S E F F F F FS S S S SE E E E E

F = flag S = start offset E = end offset

Fig. 2. Window layout for the original byte-range locking algorithm.

Note that MPI puts and gets are nonblocking operations, and an implementation is allowed to

reorder them within a lock-unlock synchronization epoch. They are guaranteed to be completed,

both locally and remotely, only after the unlock returns. In other words, a get operation is not

guaranteed to see the data that was written by a put issued before it in the same lock-unlock

epoch. Consequently, it is difficult to implement an atomic read-modify-write operation by using

MPI one-sided communication [24]. One cannot simply do a lock-get-modify-put-unlock because

the data from the get is not available until after the unlock. In fact, the MPI Standard defines

such an operation to be erroneous (doing a put and a get to the same location in the window in

the same synchronization epoch). One also cannot do a lock-get-unlock, modify the data, and

then do a lock-put-unlock because the read-modify-write is no longer atomic. This feature of

MPI complicates the design of a byte-range locking algorithm.

B. The Algorithm

Below we describe the byte-range locking algorithm of [6] together with snippets of the code

for acquiring and releasing a lock.

1) Window Layout:The window memory for the byte-range locking algorithm comprises

three values for each process, ordered by process rank, as shown in Figure 2. (The window is

allocated on any one process, say rank 0.) The three values are a flag, the start offset for the

byte-range lock, and the end offset.

2) Acquiring the Lock:The process wanting to acquire a lock callsMPI Win lock with

the lock type asMPI LOCKEXCLUSIVE, followed by anMPI Put , anMPI Get , and then

9

MPI Win unlock , as shown in Figure 3. With theMPI Put , the process sets its own three

values in the window: It sets the flag to 1 and the start and end offsets to those needed for

the lock. With theMPI Get , it gets the three values for all other processes (excluding its

own values) by using a suitably constructed derived datatype, for example, an indexed type

with two blocks. (The derived datatype is used because the memory accessed by a put and a

get in the same synchronization epoch must not overlap as per the MPI specification.) After

MPI Win unlock returns, the process goes through the list of values returned byMPI Get .

For all other processes, it first checks whether the flag is 1; if so, it checks whether there is a

conflict between that process’s byte-range lock and the lock it wants to acquire. If there is no

such conflict with any other process, it considers the lock acquired. If a conflict (flag and byte

range) exists with any process, it considers the lock as not acquired.

If the lock is not acquired, the process resets its flag in the window to 0 by doing a lock-put-

unlock and leaves its start and end offsets in the window unchanged. It then calls a zero-byte

MPI Recv with MPI ANYSOURCEas the source and blocks until it receives such a message

from any other process (that currently has a lock; see the lock-release algorithm below). After

receiving the message, it tries again to acquire the lock by using the above algorithm.

3) Releasing the Lock:The process wanting to release a lock callsMPI Win lock with

the lock type asMPI LOCKEXCLUSIVE, followed by anMPI Put , anMPI Get , and then

MPI Win unlock , as shown in Figure 4. With theMPI Put , the process resets its own three

values in the window: It resets its flag to 0 and the start and end offsets to -1. With theMPI Get ,

it gets the start and end offsets for all other processes (excluding its own values) by using a

derived datatype. This derived datatype could be different from the one used for acquiring the

lock because the flags are not needed. AfterMPI Win unlock returns, the process goes through

the list of values returned byMPI Get . For all other processes, it checks whether there is a

conflict between the byte range set for that process and the lock it is releasing. The flag is ignored

10

1 Lock_acquire(int start, int end)

2 {

3 val[0] = 1; /* flag */ val[1] = start; val[2] = end;

4

5 while (1) {

6 /* add self to locklist */

7 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, homerank, 0, lockwin);

8 MPI_Put(&val, 3, MPI_INT, homerank, 3*(myrank), 3, MPI_INT, lockwin);

9 MPI_Get(locklistcopy, 3*(nprocs-1), MPI_INT, homerank, 0, 1, locktype1,

10 lockwin);

11 MPI_Win_unlock(homerank, lockwin);

12

13 /* check to see if lock is already held */

14 conflict = 0;

15 for (i=0; i < (nprocs - 1); i++) {

16 if ((flag == 1) && (byte ranges conflict with lock request)) {

17 conflict = 1; break ;

18 }

19 }

20

21 if (conflict == 1) {

22 /* reset flag to 0, wait for notification, and then retry the lock */

23 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, homerank, 0, lockwin);

24 val[0] = 0;

25 MPI_Put(val, 1, MPI_INT, homerank, 3*(myrank), 1, MPI_INT, lockwin);

26 MPI_Win_unlock(homerank, lockwin);

27

28 /* wait for notification from some other process */

29 MPI_Recv(NULL, 0, MPI_BYTE, MPI_ANY_SOURCE, WAKEUP, comm,

30 MPI_STATUS_IGNORE);

31 /* retry the lock */

32 }

33 else {

34 /* lock is acquired */

35 break ;

36 }

37 }

38 }

Fig. 3. Pseudocode for obtaining a byte-range lock in the original algorithm.

in this comparison. If there is a conflict with the byte range set by another process—meaning

that process is waiting to acquire a conflicting lock—it sends a 0-byte message to that process,

in response to which that process will retry the lock. After it has gone through the entire list of

values and sent 0-byte messages to all other processes waiting for a lock that conflicts with its

own, the process returns.

11

1 Lock_release(int start, int end)

2 {

3 val[0] = 0; val[1] = -1; val[2] = -1;

4

5 /* set start and end offsets to -1, flag to 0, and get everyone else’s status */

6 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, homerank, 0, lockwin);

7 MPI_Put(val, 3, MPI_INT, homerank, 3*(myrank), 3, MPI_INT, lockwin);

8 MPI_Get(locklistcopy, 3*(nprocs-1), MPI_INT, homerank, 0, 1, locktype2,

9 lockwin);

10 MPI_Win_unlock(homerank, lockwin);

11

12 /* check if anyone is waiting for a conflicting lock. If so, send them a

13 0-byte message, in response to which they will retry the lock. For

14 fairness, we start with the rank after ours and look in order. */

15

16 i = myrank; /* ranks are off by 1 because of the derived datatype */

17 while (i < (nprocs - 1)) {

18 /* the flag doesn’t matter here. check only the byte ranges */

19 if (byte ranges conflict) MPI_Send(NULL, 0, MPI_BYTE, i+1, WAKEUP, comm);

20 i++;

21 }

22 i = 0;

23 while (i < myrank) {

24 if (byte ranges conflict) MPI_Send(NULL, 0, MPI_BYTE, i, WAKEUP, comm);

25 i++;

26 }

27 }

Fig. 4. Pseudocode for releasing a lock in the original algorithm.

IV. M ODEL CHECKING THE BYTE-RANGE LOCKING ALGORITHM

To model the algorithm, we first needed to model the MPI one-sided communication con-

structs used in the algorithm and capture their semantics precisely as specified in the MPI

standard [7]. For example, the MPI standard specifies that if a communication epoch is started

with MPI Win lock , it must end withMPI Win unlock and that the put/get/accumulate

calls made within this epoch are not guaranteed to complete beforeMPI Win unlock returns.

Furthermore, there are no ordering guarantees of the puts/gets/accumulates within an epoch.

Therefore, in order to obtain adequate execution-space coverage, all permutations of put/get/ac-

cumulate calls in the epoch must be examined. However, the byte-range locking algorithm

uses theMPI LOCKEXCLUSIVE lock type; therefore, while a certain process has entered the

12

1 inline MPI_Put(flag, start, end, pick, proc_id) {

2 int i=0;

3 do

4 :: i==NUM_PROCS -> break ;

5 :: put_requests[i].used -> i++;

6 :: else ->

7 put_requests[i].used = 1; put_requests[i].req_flag = flag;

8 put_requests[i].req_start = start; put_requests[i].req_end = end;

9 put_requests[i].req_pick = pick; put_requests[i].req_id = proc_id;

10 break ;

11 od;

12 }

Fig. 5. Promela implementation ofMPI Put . Put requests are simply saved in a list, and the list is processed in

MPI Win unlock .

synchronization epoch, no other process may enter until that process has left. This approach

makes the synchronization epoch an atomic block and renders all permutations of the calls

within it equivalent from the perspective of other processes.

As an example, our Promela implementation ofMPI Put is shown in Figure 5. In order to

be consistent with the MPI Standard, a put request is simply stored in a list of requests, and the

list is processed inMPI Win unlock . Modeling the byte-range locking algorithm itself was

relatively straightforward. (This experience augurs well for the checking of other algorithms that

use MPI one-sided communication, since one of the significant challenges in model checking

lies in the ease of modeling constructs in the target domain using modeling primitives in the

modeling language.) The complete Promela code used in our model checking can be found

online [25].

When we model checked our model with three processes, our model checker, SPIN [10],

discovered an error indicating an “invalid end state.” Deeper probing revealed the following

error scenario (explained through an example, which assumes that P1 tries to lock byte range

〈1, 2〉, P2 tries to lock〈3, 4〉, and P3 tries to lock〈2, 3〉):

• P1 and P3 successfully acquire their byte-range locks.

13

• P2 then tries to acquire its lock, notices conflict with respect to both P1 and P3, and blocks

on theMPI_Recv .

• P1 and P3 release their locks, both notice conflicts with P2, and both perform an MPISend,

when only one send is needed.

Hence, while P2 ends up successfully waking up and acquiring the lock, the extraMPI Sends

may accumulate in the system. This is a subtle error whose severity depends on the MPI

implementation being used. Recall that the MPI Standard allows implementors to decide whether

to block on anMPI Send call. In practice, a zero-byte send will rarely block. Nonetheless, an

implementation of the byte-range locking algorithm can address this problem by periodically

calling MPI_Iprobe and matching any unexpected messages withMPI_Recv s.

We then modeled the system as if these extraMPI Sends do not exhaust the system resources

and hence do not cause processes to block. In this case, model checking detected a far more

serious deadlock situation, summarized in Figure 6. P1 expresses its intent to acquire a lock in

the range〈10, 20〉 (1), with P2 following suit (2). P1 acquires the lock (3), finishes using it and

relinquishes it (4), and performs a send to unblock P2 (5). Before P2 gets a chance to change

its global state, P1 tries to reacquire the lock (6). P1 reads P2’s current flag value as 1, so it

decides to block by carrying out events (10) and (12). At this point, P2 changes its global state,

receives the message sent by P1 (8), and reacquires the lock (9). P2 reads P1’s current flag value

as 1, so it decides to block by carrying out events (11) and (13). Both processes now block on

receive calls, and the result is deadlock.

This deadlock is caused by a classic race condition, namely, a particular timing of events that

caused P1 to attempt to reacquire the lock (6) before P2 could reset its state (7). We note that

the possibility of this race condition was not detected by the authors of the original algorithm

during their design and testing nor by the reviewers of the paper describing the algorithm [6].

Of course, after the model checker pointed out the problem, it appeared obvious and could be

14

2 [10,20,1]
1 [10,20,1]

3 Acquire

4 [−1,−1,0]

5 Send

6 [10,20,1]
7 [10,20,0]

9 [10,20,1]

Receive8

[10,20,0]11

13 Receive
10 [10,20,0]

Receive12

P1 P2

Fig. 6. A deadlock scenario found through model checking.

reproduced in practice. This is again an example of how easy it is for humans to miss potential

race conditions and deadlock scenarios, whereas a model-checking tool can easily catch them.

V. CORRECTING THEBYTE-RANGE LOCKING ALGORITHM

We propose two approaches to fixing this deadlock problem, describe our experience with using

model checking on these solutions, and study their relative performance on a Linux cluster.

A. Alternative 1

One way to eliminate the deadlock is to add a third state to the “flag” used in the algorithm.

This is shown in the pseudocode in Figure 7. In the original algorithm, a flag value of ‘0’

indicates that the process does not have the lock, while a flag value of ‘1’ indicates that it either

has acquired the lock or is in the process of determining whether it has acquired the lock. In

other words, the ‘1’ state is overloaded. In the proposed fix, we add a third state of ‘2,’ with

‘0’ denoting the same as before, ‘1’ now denoting that the process has acquired the lock, and

‘2’ denoting that it is in the process of determining whether it has acquired the lock. There is

no change to the lock-release algorithm, but the lock-acquire algorithm changes as follows.

15

When a process wants to acquire a lock, it writes its flag value as ‘2’ and its start and end

values in the memory window. It also reads the state of the other processes from the memory

window. If it finds a process with a conflicting byte range and a flag value of ‘1,’ it knows that

it does not have the lock. So it resets its flag value to ‘0’ and blocks on anMPI Recv . If no

such process (with conflicting byte range and flag=1) is found, but there is another process with

a conflicting byte range and a flag value of ‘2,’ the process resets its flag to ‘0’ and its start and

end offsets to -1 and retries the lock from scratch. If neither of these cases is true, the process

sets its flag value to ‘1’ and considers the lock acquired. (The algorithm is described recursively

in Figure 7 only for convenience. It is implemented and modeled as an iteration.)

1) Dealing with Fairness and Livelock:One problem with this algorithm is the issue of

fairness: a process wanting to acquire the lock repeatedly may starve out other processes. This

problem can be avoided if the MPI implementation grants exclusive access to the window fairly

among the requesting processes.

Even in the absence of this problem, model checking revealed the potential for livelock when

processes try to acquire the lock multiple times. The situation is similar to the one that caused

deadlock in the original algorithm, where two processes trying to acquire the lock both block in

order that the other can go ahead. To avoid deadlock, we introduced the intermediate state of 2,

which ensures that instead of blocking on anMPI Recv , the process backs off and retries the

lock. Figure 8 shows an example of how the back off and retry could repeat forever if events

get scheduled in a particular way. This is another example of a race condition that is hard for

humans to detect but can be caught by a model checker. The performance graphs presented in

Section V-E shows the possibility of these livelocks happening in practice. The possibility of

livelock can be reduced, however, by having each process back off for a random amount of time

before retrying, thereby avoiding the likelihood of the same sequence of events occurring each

time.

16

1 Lock_acquire (int start, int end)

2 {

3 val[0] = 2; /* flag */

4 val[1] = start; val[2] = end;

5 /* add self to locklist */

6 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, homerank, 0, lockwin);

7 MPI_Put(&val, 3, MPI_INT, homerank, 3*myrank, 3, MPI_INT, lockwin);

8 /* use derived datatype to get others’ info into a contiguous buffer */

9 MPI_Get(locklistcopy, 3*(nprocs-1), MPI_INT, homerank, 0, 1,

10 locktype1, lockwin);

11 MPI_Win_unlock(homerank, lockwin);

12 /* check to see if lock is already held */

13 flag1 = flag2 = 0;

14 for (i=0; i < (nprocs-1); i ++) {

15 if ((flag == 1) && (byte ranges conflict with lock request)) {

16 flag1 = 1;

17 break ;

18 }

19 if ((flag == 2) && (byte ranges conflict with lock request)) {

20 flag2 = 1;

21 break ;

22 }

23 }

24 if (flag1 == 1) {

25 /* reset flag to 0, wait for notification, and then retry */

26 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, homerank, 0, lockwin);

27 val[0] = 0;

28 MPI_Put(val, 1, MPI_INT, homerank, 3*myrank, 1, MPI_INT, lockwin);

29 MPI_Win_unlock(homerank, lockwin);

30 /* wait for notification from some other process */

31 MPI_Recv(NULL, 0, MPI_BYTE, MPI_ANY_SOURCE, WAKEUP, comm, &status);

32 /* retry the lock - iteration shown as tail recursion */

33 Lock_acquire(start, end);

34 }

35 else if (flag2 == 1) {

36 /* reset flag to 0, start/end offsets to -1 */

37 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, homerank, 0, lockwin);

38 val[0] = 0; /* flag */

39 val[1] = -1; val[2] = -1;

40 MPI_Put(val, 3, MPI_INT, homerank, 3*myrank, 3, MPI_INT, lockwin);

41 MPI_Win_unlock(homerank, lockwin);

42 /* wait for small random amount of time (to avoid livelock) */

43 /* then retry the lock - iteration shown as tail recursion */

44 Lock_acquire(start, end);

45 }

46 else {

47 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, homerank, 0, lockwin);

48 val[0] = 1;

49 MPI_Put(val, 1, MPI_INT, homerank, 3*myrank, 1, MPI_INT, lockwin);

50 MPI_Win_unlock(homerank, lockwin);

51 /* lock is acquired */

52 }

53 }

Fig. 7. Pseudocode for the deadlock-free byte-range locking algorithm (Alternative 1).

17

P1 sets flag=2
P2 sets flag=2, sees P1’s 2, and decides to retry
P1 acquires the lock
P1 releases the lock and retries for the lock
P1 sets flag=2, sees P2’s 2, and decides to retry

P2 sets flag=0
P2 sets flag=2, sees P1’s 2, and decides to retry
P1 sets flag=0
P1 sets flag=2, sees P2’s 2, and decides to retry

Above sequence repeats

Fig. 8. A potential livelock scenario in Alternative 1 found through model checking.

B. Alternative 2

Alternative 2 uses the same values for the flag as the original algorithm; but when a process

tries to acquire a lock and determines that it does not have the lock, it picks a process (that

currently has the lock) to awaken it and then blocks on the receive. For this purpose, we add a

fourth field (the pick field) to the values for each process in the memory window (see Figure 9).

The process trying to acquire the lock must now decide whether to block and wait for notification

from picklist[j]. This decision is based on two factors: Has the process selected to wake it up

already released the lock? and Is there a possibility of a deadlock caused by a cycle of processes

that wait on each other to wake them up? The latter can be detected and avoided by using the

algorithm in Figure 10. The former can be easily determined by reading the values returned by

the MPI_Get on line 24. If the selected process has already released the lock, a new process

must be picked in its place. We simply traverse the list of conflicting processes until we find one

that has not yet released the lock. If no such process is found, the algorithm tries to reacquire

the lock. Note the added complexity of going through the list of conflicting processes and doing

put and get operations each time. However, if this loop is successful and the process blocks

on MPI_Recv , we can save considerable processor time in the case of highly contentious lock

requests as compared with Alternative 1.

18

1 Lock_acquire (int start, int end)

2 {

3 int picklist[num_procs];

4 val[0] = 1; /* flag */

5 val[1] = start; val[2] = end; val[3] = -1; /* pick */

6 /* add self to locklist */

7 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, homerank, 0, lockwin);

8 MPI_Put(&val, 4, MPI_INT, homerank, 4*myrank, 4, MPI_INT, lockwin);

9 MPI_Get(locklistcopy, 4*(nprocs-1), MPI_INT, homerank, 0, 1,

10 locktype1, lockwin);

11 MPI_Win_unlock(homerank, lockwin);

12 /* check to see if lock is already held */

13 cprocs_i = 0;

14 for (i=0; i <(nprocs-1); i++)

15 if ((flag == 1) && (byte range conflicts with Pi‘s request)) {

16 conflict = 1; picklist[cprocs_i] = Pi; cprocs_i++;

17 }

18 if (conflict == 1) {

19 for (j=0; j < cprocs_i; j++) {

20 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, homerank, 0, lockwin);

21 val[0] = 0; val[3] = picklist[j];

22 /* reset flag to 0, indicate pick and pick_counter */

23 MPI_Put(&val, 4, MPI_INT, homerank, 4*myrank, 4, MPI_INT, lockwin);

24 MPI_Get(locklistcopy, 4*(nprocs-1), MPI_INT, homerank, 0, 1,

25 locktype1, lockwin);

26 MPI_Win_unlock(homerank, lockwin);

27 if (picklist[j] has released the lock || detect_deadlock())

28 /* repeat for the next process in picklist */

29 else {

30 /* wait for notification from picklist[j], then retry the lock */

31 MPI_Recv(NULL, 0, MPI_BYTE, picklist[j], WAKEUP, comm,

32 MPI_STATUS_IGNORE);

33 break ;

34 }

35 }

36 Lock_acquire(start, end); /* Iteration shown as tail recursion */

37 }

38 /* lock is acquired here */

39 }

Fig. 9. Pseudocode for the deadlock-free byte-range locking algorithm (Alternative 2).

19

1 detect_deadlock() {

2 cur_pick = locklistcopy[4 * myrank + 3];

3 for (curpick=0; curpick < num_procs; curpick++) {

4 /* picking this process means a cycle is completed */

5 if (locklistcopy[4 * cur_pick + 3] == my_rank) return 1;

6 /* no cycle can be formed */

7 else if (locklistcopy[4 * cur_pick + 3] == -1) return 0;

8 else cur_pick = locklistcopy[4 * cur_pick + 3];

9 }

10 }

Fig. 10. Avoiding circular loops among processes picked to wake up other processes in Alternative 2.

The lock-release algorithm for Alternative 2 is similar to the original except that the releasing

process sends a wake-up message only to those processes that have picked it, not to all processes

that have a conflicting byte range. This procedure also reduces the number of extra sends (but

does not eliminate them altogether). A discussion of these extra sends is provided in Section V-D.

C. Formal Modeling and Verification

Alternative 1 and Alternative 2 were prototyped by using Promela. The entire code is available

online [25]. We employ Promela channels to model MPI sockets. While the creation of such

Promela models requires some expertise, our experience is that Promela can be easily taught

to most engineers. Our Promela models occupy nearly the same number of lines of code and

are structured similar to the pseudocode we have presented for the algorithms. Figure 11 shows

an excerpt of thelock_acquire function in Promela. Comparing with Figure 9, we see that

the Promela code fleshes out the pseudocode by adding an iteration acrossNUM_PROCSand

essentially carries out the same sequence of actions such asMPI_Win_lock and MPI_Put .

We have built a support library in Promela that models these MPI primitives.

D. Assessment of the Alternative Algorithms

Neither of these alternatives eliminates the extra sends, but, as described in Section IV, an

implementation can deal with them by usingMPI_Iprobe . We model checked these algorithms

20

1 inline lock_acquire(start, end) {

2

3 do

4 :: 1 ->

5 do

6 :: cprocs_i == NUM_PROCS ->

7 break ;

8 :: else ->

9 cprocs[cprocs_i] = -1;

10 cprocs_i++;

11 od;

12 cprocs_i = 0;

13

14 MPI_Win_lock(my_pid);

15 MPI_Put(1, start, end, -1, my_pid);

16 MPI_Get(my_pid);

17 MPI_Win_unlock(my_pid);

18

19 do

20 :: lock_acquire_i == DATA_SIZE -> break ;

21 :: else ->

22 if

23 :: lock_acquire_i == my_pid ->

24 lock_acquire_i = lock_acquire_i + 4;

25 :: lock_acquire_i != my_pid &&

26 (private_data[my_pid].data[lock_acquire_i] == 1) ->

27 /* someone else has a flag value of 1,

28 check for byte range conflict */

29

30 ...rest of the code omitted...

Fig. 11. Excerpts from Promela encoding ofLock acquire .

using SPIN, which helped establish the following formal properties of the algorithms:

• Absence of deadlocks (both Alternatives 1 and 2). (Even if an MPI implementation blocks

on a 0-byte send, the extra sends need not cause deadlock because they can be handled by

usingMPI_Iprobe s.)

• Communal progress (that is, if a collection of processes request a lock, then someone will

eventually obtain it). Alternative 2 satisfies this under all fair schedules (all processes are

scheduled to run infinitely often), whereas Alternative 1 requires a few additional restrictions

to rule out a few rare schedules (meaning, the livelock problem discussed in Figure 8) [26].

21

That said, Alternative 2 considerably reduces these extra sends, as it restricts the number of

processes that can wake up a particular process compared with Alternative 1.

We are still seeking algorithms that would avoid the extra sends (and be efficient). We have

a few reasons to suspect that finding such algorithms will not be straightforward. For instance,

consider the scenario of a process P1 initially picking P2 to wake it up but, finding that it has

released the lock (Line 27 of Figure 9), tries to pick the next eligible process. In Figure 9, we do

not show the obvious action of P1 first “unpicking” P2 before picking the next eligible process

because P1 will need access to the window before it can mark P2 as having been unpicked.

This action may actually be scheduled after P2 has again acquired and released the lock and

sent a message to P1, thus defeating the act of unpicking P2. Of course, theoretically, correct

solutions do exist. One could, for instance, consider implementing atomic storage locations, one

location per one-sided communication window, and program, say, Peterson’s mutual exclusion

algorithm [8] to be the basis for theentire byte-range locking protocol. The drastic inefficiency

of such overkill solutions would not be tolerated, however. This point underscores the trio of

concerns introduced in Section I, namely, that a programmer must ultimately learn to apply

model checking to debug the overall correctness, and also balance the issues of resources and

performance in arriving at the final solution employed. The success of formal methods applied

in the HPC arena may, in the end, depend equally on the success that the research community

attains pertaining to the latter two issues, over and above the success attained in the area of

model checking.

E. Performance Results

To measure the relative performance of the two algorithms, we wrote three test programs:

one in which all processes try to acquire nonconflicting locks (different byte ranges), another

in which all processes try to acquire a conflicting lock (same byte range), and a third in which

all processes acquire random locks (random byte-range between0 and1000). In all tests, each

22

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 128 96 64 48 32 16 8 4 2

Ti
m

e
(m

illi
se

c.
)

Processes

Alt. 1, nonconflicting
Alt. 2, nonconflicting

Fig. 12. Average time per process for acquiring and releasing a nonconflicting lock.

process acquires and releases the lock in a loop several times. We measured the time taken by

all processes to complete acquiring and releasing all their locks and divided this time by the

number of processes times the number of iterations. This measurement gave the average time

taken by a single process for acquiring and releasing a single lock. We ran the tests on up to128

nodes of a Myrinet-connected Linux cluster at Argonne. We used the latest version of MPICH2

(1.0.5) with the Nemesis channel over GM.

Figure 12 shows the results for nonconflicting locks. In this case, there is no contention for

the byte-range lock; however, since the target window is located on one process (rank 0) and

all the one-sided operations are directed to it, the time taken to service the one-sided operations

increases as the number of processes calling them increases. Alternative 1 is slightly slower than

Alternative 2 because it always involves two steps: the flag is first set to 2, and if no conflict is

detected, it is set to 1. Alternative 2 requires only one step.

Figure 13 shows the results for conflicting and random locks. Even in these two cases, we

find that Alternative 2 outperforms Alternative 1. Alternative 1 is hampered by the need for a

process to back off for a random amount of time before retrying the lock when it detects that

23

another process is trying to acquire a lock (flag=2). This random wait is needed to avoid the

livelock condition described earlier. We implemented the wait by using the POSIXnanosleep

function, which delays the execution of the program for at least the time specified. However, a

drawback of the way this function is implemented in Linux (and many other operating systems)

is that even though the specified time is small, it can take up to10 ms longer than specified

until the process becomes runnable again. This causes the process to wait longer than needed

and slows the algorithm. Also, there is no good way to know how long a process must wait

before retrying in order to avoid the livelock. Based on experiments, we used a time equal to

(myrank× 500) nanoseconds, where myrank is the rank of the process.

For conflicting locks on a small number of processes (4–16), we find that the time taken by

Alternative 1 is substantially higher than Alternative 2. We believe this is because the effect

of nanosleep taking longer than specified to return is more visible here as wasted time. On

larger numbers of processes, that time gets used by some other process trying to acquire the

lock and hence does not adversely affect the average.

VI. CONCLUSIONS

We have shown how formal verification based on model checking can be used to find actual

deadlocks in a published algorithm for distributed byte-range locking. We have also discussed

how this technology can help shed light on a number of related issues such as forward progress

and the possibility of there being unconsumed messages. We presented and analyzed two algo-

rithms for byte-range locking that avoid the race condition. We also verified their characteristics.

Although concurrency-related errors such as deadlocks and race conditions are hard for hu-

mans to detect but easy for a model-checking tool, the use of formal verification for parallel

programming is still quite rare. Our experience provides evidence that the parallel-programming

community should pay more attention to this promising technology. With the widespread emer-

gence of multicore chips, and the need for concurrent programming to exploit the availability

24

 0.5

 1

 1.5

 2

 2.5

 3

 128 96 64 48 32 16 8 4 2

Ti
m

e
(m

illi
se

c.
)

Processes

Alt. 1, conflicting
Alt. 2, conflicting

Alt. 1, random
Alt. 2, random

Fig. 13. Average time per process for acquiring and releasing a conflicting lock and a random lock. The spike in the small

process range for Alternative 1 is because the effect of the backoff with nanosleep is more visible here as wasted time, whereas

on a larger number of processes, that time gets used by some other process trying to acquire the lock.

of multiple CPUs, the need for such technology is all the more important and timely.

One difficulty in model checking is the need to create an accurate model of the program being

verified. This step is tedious and error prone. If the model itself is not accurate, the verification

will not be accurate. To avoid this problem, we are also working on an in-situ model checker

that works directly on the parallel MPI program and avoids the need to create a model [27].

ACKNOWLEDGMENTS

This work was supported by NSF award CNS-0509379, by the Microsoft HPC Institutes pro-
gram, and by the Mathematical, Information, and Computational Sciences Division subprogram
of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of
Energy, under Contract DE-AC02-06CH11357.

REFERENCES

[1] E. A. Emerson and E. M. Clarke, “Using branching time temporal logic to synthesize synchronization skeletons,”Science

of Computer Programming, vol. 2, no. 3, pp. 241–266, 1981.

25

[2] J. Queille and J. Sifakis, “Specification and verification of concurrent systems in CESAR,” inFifth International Symposium

on Programming, M. Dezani-Ciancaglini and U. Montanari, Eds. Lecture Notes in Computer Science 137, Springer-Verlag,

1981, pp. 337–351.

[3] E. M. Clarke, O. Grumberg, and D. Peled,Model Checking. Cambridge, MA: MIT Press, 1999.

[4] “Symposium on twenty five years of model checking,” Nov. 2006,

www.easychair.org/FLoC-06/25MC-preproceedings.pdf .

[5] “MPICH2,” http://www.mcs.anl.gov/mpi/mpich2 .

[6] R. Thakur, R. Ross, and R. Latham, “Implementing byte-range locks using MPI one-sided communication,” inRecent

Advances in Parallel Virtual Machine and Message Passing Interface, 12th European PVM/MPI Users’ Group Meeting.

Lecture Notes in Computer Science 3666, Springer, September 2005, pp. 120–129.

[7] Message Passing Interface Forum, “MPI-2: Extensions to the Message-Passing Interface,” July 1997,

http://www.mpi-forum.org/docs/docs.html .

[8] G. L. Peterson, “Myths about the mutual exclusion problem,”Information Processing Letters, vol. 12, no. 3, june 1981.

[9] M. Ahamad, R. A. Bazzi, R. John, P. Kohli, and G. Neiger, “The power of processor consistency,” inSymposium on

Parallel Algorithms and Architectures, June 1993, pp. 251–260.

[10] G. J. Holzmann,The SPIN Model Checker: Primer and Reference Manual. Boston: Addison-Wesley, 2003.

[11] W. Visser, K. Havelund, G. Brat, and S. Park, “Model checking programs,” inThe Fifteenth IEEE International Conference

on Automated Software Engineering (ASE’00), September 2000.

[12] T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “SLAM and static driver verifier: Technology transfer of formal methods

inside Microsoft,” inProceedings of IFM 04: Integrated Formal Methods. Springer, April 2004, pp. 1–20.

[13] M. Musuvathi, D. Park, A. Chou, D. Engler, and D. L. Dill, “Cmc: A pragmatic approach to model checking real code,”

in Proceedings of the Fifth Symposium on Operating System Design and Implementation, December 2002.

[14] S. F. Siegel and G. S. Avrunin, “Verification of MPI-based software for scientific computation,” inProceedings of the 11th

International SPIN Workshop on Model Checking Software. Lecture Notes in Computer Science 2989, Springer, April

2004, pp. 286–303.

[15] S. F. Siegel, “Efficient verification of halting properties for MPI programs with wildcard receives,” inProceedings of the

6th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI), 2005, pp. 413–429.

[16] S. F. Siegel, A. Mironova, G. S. Avrunin, and L. A. Clarke, “Using model checking with symbolic execution to verify

26

parallel numerical programs,” inProceedings of the ACM SIGSOFT 2006 International Symposium on Software Testing

and Analysis, July 2006.

[17] S. F. Siegel, “Model checking nonblocking MPI programs,” inProceedings of the 8th International Conference on

Verification, Model Checking, and Abstract Interpretation, January 2007, pp. 44–58.

[18] R. Palmer, S. Barrus, Y. Yang, G. Gopalakrishnan, and R. M. Kirby, “Gauss: A framework for verifying scientific computing

software,” inWorkshop on Software Model Checking (SoftMC 2005), vol. 144. Electronic Notes on Theoretical Computer

Science, Elsevier, 2005, pp. 95–106.

[19] R. Palmer, G. Gopalakrishnan, and R. M. Kirby, “Formal specification and verification using +CAL: An experience report,”

in Proceedings of Verify’06 (FLoC 2006), 2006.

[20] R. Palmer, M. Delisi, G. Gopalakrishnan, and R. M. Kirby, “An approach to formalization and analysis of message passing

libraries,” in Proceedings of 12th International Workshop on Formal Methods for Industry Critical Systems (FMICS), July

2007, accepted.

[21] R. Palmer, G. Gopalakrishnan, and R. M. Kirby, “Semantics driven dynamic partial-order reduction of mpi-based parallel

programs,” inParallel and Distributed Systems: Testing and Debugging (PADTAD), 2007, accepted.

[22] D. Kranzlmüller, “Event graph analysis for debugging massively parallel programs,” Ph.D. dissertation, John Kepler

University Linz, Austria, September 2000,http://www.gup.uni-linz.ac.at/˜dk/thesis .

[23] O. S. Matlin, E. Lusk, and W. McCune, “SPINning parallel systems software,” inModel Checking of Software: 9th

International SPIN Workshop. Lecture Notes in Computer Science 2318, Springer, 2002, pp. 213–220.

[24] W. Gropp, E. Lusk, and R. Thakur,Using MPI-2: Advanced Features of the Message-Passing Interface. Cambridge, MA:

MIT Press, 1999.

[25] S. Pervez, “Promela encoding of byte range locking written using MPI one-sided operations,” 2007,

http://www.cs.utah.edu/formal verification/benchmarks

/byterange-locking-promela-models.tar.gz .

[26] ——, “Byte-range locks using MPI one-sided communication,” University of Utah, School of Computing, Tech. Rep.,

2006,http://www.cs.utah.edu/formal verification/OnesidedTR1/ .

[27] S. Pervez, G. Gopalakrishnan, R. M. Kirby, R. Palmer, R. Thakur, and W. Gropp, “Practical model checking method

for verifying correctness of MPI programs,” University of Utah, School of Computing, Tech. Rep. UUCS-07-014, 2007,

accepted for Euro PVM/MPI 2007.

27

The submitted manuscript has been created in part by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”).

Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S.

Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to

reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the

Government.

