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Abstract

We investigate the Fourier spectral time-domain sim-
ulations applied to the wake field calculations in two-
dimensional cylindrical structures. The scheme involves
second-order explicit leap-frogging in time and the Fourier
spectral approximation in space, which is obtained from
simply replacing the spatial differentiation oprator of the
YEE scheme by the Fourier differentiation operator [2, 3,
4, 5] on non-staggered grids.

This is a first step towards investigating high-order com-
putational techniques with Fourier spectral method which
is ralatively simple to implement and enhancing its per-
formance in comparison to the conventional lower-order
method.

FORMULATIONS

We study beam dynamics in two-dimensional conduct-
ing cavity structures defining the governing equations and
the numerical scheme as follows.
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where the current sourceJ is defined for an on-axis Gaus-
sian beam moving inx direction
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Numerical Scheme

Let us define the computational domain on[−Lx, Lx] ×
[−Ly, Ly] and the grid points as

xi = −Lx +
Lxi

Nx

(i = 0, ..., 2Nx − 1) (4)

yj = −Ly +
Lyj

Ny

(j = 0, ..., 2Ny − 1) (5)
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We approximate solutions to the Maxwell’s equations
based on Fourier interpolation polynomials [3, 4] by defin-
ing the approximate solution as
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Then, the Fourier differentiation matrix is given as
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for i 6= l and (D̄x)l,i = 0 for i = l. In
a similar manner,D̄y can be defined. Using ten-
sor product to define the two-dimensional spatial deriva-
tives Dx = I ⊗ D̄x and Dy = D̄y ⊗ I
where I represnents the identity matrix and representing
Ēn

x = [(Ex)00, (Ex)10, ..., (Ex)ij , ..., (Ex)Nx−1Ny−1]
T ,

our scheme at the time leveltn = n∆t is

ε̄
Ē
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Initial Conditions

To describe the electromagnetic fields at the presence of
the Gaussian beam for the initial time step, we first solve
the Poisson equation in one dimension at the cross section
of the initial beam position

∇2Φ1D(y) = −ρ1D(y)

ε
(12)

and get the one-dimensional electric field at the cross sec-
tion

E1D = −∇Φ1D(y) (13)

Then, the initial electric fieldE in two dimensions is as-
signed along thex-direction using the one-dimensional
electric fieldE1D scaled by the initial Gaussian distribu-
tion ρ(x) as

E(y, x) = E1D(y) ∗ ρ(x) (14)



Boundary Conditions

We apply the uniaxial perfectly matched layer (UPML)
boundary condition inx-direction and perfectly electric
conducting (PEC) boundary condition iny-direction.

UPML formulations are defined in 3D as follows:
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where σx = −(x/d)m(m + 1)ln(R)/2ηd, denotingd,
x, m, R, and η for PML size, the PML depth, polyno-
mial grading, reflection error, and impedance, respectively.
Within UPML, the components of E are updated by
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A similar formula is defined for the components ofH to
update in UPML. In our simulations we apply UPML only
in x-direction by choosingσy = σz = 0.

PEC boundary conditions are assigned at the boundaries
in y-direction by setting the values for theE andH com-
ponents as zeros.

COMPUTATIONAL RESULTS

We demonstrate the profiles of wake fields on cylindrical
tube and pillbox cavity structures in two dimensions, and
discuss the problems we encounter.

Wake fields

Figure 1 shows the electric field profile fory-component
on [−7.5, 7.5] × [−2, 2]. at a time step=60 with∆t =
∆y/10 and initial beam position atx = −3.5. As we ex-
pect for the cases with no change in the structures, we ob-
serve no significant reflection from the conducting bound-
ary, and the beam is moving with no significant distortion.
However we observe visible amount of dissipation around
the conducting boundary as the beam moves along the pos-
itive direction inx.

We carried out simulations on the pillbox cavity de-
scribed in Figure 2. Figure 3 shows the electric field profile
for y-component on[−7.5, 7.5] × [−2, 2] for the pillbox
configuration in Figure 2. We observe strong oscillations
right at the corner of the cavity as soon as the beam enters
the cavity and the oscillations remain until the beam passes
through out the cavity, which we do not observe from the
results obtained in [2, 7].

Figure 1: Electric field fory-component on a tube mesh in
2D

Figure 2: Pillbox cavity structure with PEC region (blue)
and vacuum (red) on[−7.5, 7.5]× [−2, 2]; ingoing and out-
going tube radius=1

Discussions

We remain the study on the dissipation and oscillation
when using the Fourier spectral scheme we presented in
this paper for the wake field calculations with perfect con-
ducting boundary conditions as future works. We have a
way to resolve the problems arizing with oscillations when
using Fourier spectral time domain simulations. One can
apply the Gegenbauer or the Padé [5, 6] reconstruction
techniques on the Fourier simulation data to remove the
unphysical oscillations. Considering wake potential calcu-

Figure 3: Electric field fory-component on a pillbox mesh
in 2D



lation, however, we need to carry out the reconstruction
procedures every time step when wake potential calcula-
tions are proceeded over the time integrations. This is due
to that it is required accurate field values at each time to cal-
culate wake potential not to use the contaminated data from
the oscillations. In order to reduce the computational cost
for the reconstructions at every step where one has to pro-
vide reasonable field values, one can proceed reconstruc-
tions locally around the line path where one has to obtain
wake potential along. For the pillbox configuration in Fig-
ure 2, one can get wake potential along the pathy = 1 with
two-dimensional reconstructions on[−s, s]×[1−∆, 1+∆]
for s = 5σx and some small∆.

CONCLUSIONS

We demonstrated Fourier spectral time domain simula-
tions for the wake field calculations on cylindrical tube
and pillbox cavity structures. We observe dissipations and
unphysical oscillations depending on the structures in the
Fourier spectral simulation data. Further study will be car-
ried out in a later paper regarding on how to overcome
the difficulties with dissipations and numerical oscillations,
and investigate possible enhancemance of its performance
on the same grid base with 2D wake field calculation code
ABCI.
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