
The Common Component Architecture for Particle Accelerator
Simulations

Douglas R. Dechow ∗

Tech-X Corporation, 5621 Arapahoe
Ave., Suite A, Boulder, CO 80303

dechow@txcorp.com

Boyana Norris
Argonne National Laboratory, 9700

S. Cass Ave., Argonne, IL 60439
norris@mcs.anl.gov

James Amundson
Fermi National Accelerator

Laboratory, Batavia, IL 60510
amundson@fnal.gov

Abstract
Synergia2 is a beam dynamics modeling and simulation ap-
plication for high-energy accelerators such as the Tevatron
at Fermilab and the International Linear Collider, which is
now under planning and development. Synergia2 is a hybrid,
multilanguage software package comprised of two separate
accelerator physics packages (Synergia and MaryLie/Im-
pact) and one high-performance computer science package
(PETSc). We describe our approach to producing a set of
beam dynamics-specific software components based on the
Common Component Architecture specification. Among
other topics, we describe particular experiences with the
following tasks: using Python steering to guide the creation
of interfaces and to prototype components; working with
legacy Fortran codes; and an example component-based,
beam dynamics simulation.

Categories and Subject Descriptors D.2.13 [Software En-
gineering]: Reusable Software—domain engineering; J.2
[Physical Sciences and Engineering]: Physics

General Terms Design, Languages, Management, Stan-
dardization

Keywords Common Component Architecture, CCA, com-
ponents, accelerator simulations, Synergia2, MaryLie/IM-
PACT

1. Introduction
As high-performance computing (HPC) platforms become
more complex and software algorithms become more so-
phisticated, application scientists find it increasingly diffi-

∗ Correspondence should be directed to dechow@txcorp.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
HPC-GECO/CompFrame’07, October 21–22, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-867-1/07/0010. . . $5.00

cult to write physics software that takes full advantage of
these developments. The (DOE) Office of Advanced Sci-
entific Computing Research (OASCR) has recognized this
problem and funded the SciDAC-2 (http://scidac.org)
Center for Technology for Advanced Scientific Component
Software (TASCS) [10] to build upon previous success in
the development of the Common Component Architecture
(CCA), a set of standards for component development that
allows disparate components to be composed together to
build a running application. This extensible component-
based software architecture facilitates software interoper-
ability between components developed by different teams
across different institutions. The goal of TASCS (which
funds the majority of work by the Common Component Ar-
chitecture (CCA) Forum [7]) is to enable high-performance
computing in DOE laboratories and elsewhere by introduc-
ing and supporting component-based software engineering
practices and tools into scientific application development.
The promise of CCA is that it will enable scientific appli-
cations to take fullest advantage of new supercomputing
hardware by interfacing with specialized software compo-
nents (for example, solvers for partial differential equations
(PDEs)) that mathematics and computer science researchers
have specifically tuned for maximum efficiency [6, 11, 16].

A perceived difficulty with introducing a component-
based approach into scientific software is that computa-
tional science applications will need to be retrofitted to use
these specialized software components, and this task can
be too time-intensive for many researchers (both computer
scientists and physical scientists). Lack of familiarity with
component-based software engineering and lack of promi-
nent examples within their topical areas is a barrier for in-
vesting the time to perform this retrofitting.

An example of a scientific software application where this
effort has been undertaken is Synergia2 [4]. Synergia2 is a
significant computational science application in the Office
of High Energy Physics Accelerator SciDAC [12] Commu-
nity Petascale Project for Accelerator Science and Simula-
tion (COMPASS) [18]. Synergia2 is a beam dynamics mod-
eling application for high energy accelerators such as the

Tevatron at Fermilab and the International Linear Collider
(ILC), which is now under planning and development.

This article recounts the experiences of using the tech-
niques and tools of the CCA framework to create a com-
ponent based beam dynamics application based upon Syn-
ergia2. The development of a component-based variant of
Synergia2 was accomplished via the following tasks:

1. Defining component interfaces using the Scientific Inter-
face Definition Language (SIDL) and Babel [14] to ad-
dress the multilanguage interoperability issues.

2. Creating components that adhere to the Common Com-
ponent Architecture protocol.

3. Taking advantage of Python’s lightweight characteristics
for prototyping individual components.

2. Accelerator Modeling and Synergia2
Computational modeling and simulation of particle acceler-
ators are enabling technologies for enhancing the full life-
cycle of accelerators: analysis, design, optimization, and
upgrading. Simulation tools for modeling the behavior of
charged particle beams and their associated accelerators
have traditionally been written as monolithic, problem-
specific beam dynamics codes. The development of software
that can support accelerator modeling activities is a compli-
cated process. Additionally, government-funded scientific
software has its own set of requirements that add complexity
to the software development process. The Synergia2 applica-
tion was created specifically to address some of these issues.

The Synergia2 application is a software tool developed at
Fermilab for modeling the beam dynamics of high-energy
particle accelerators. Synergia2 tracks the position and ve-
locity of simulated particles as they move along the length of
the accelerator. Synergia2 models (with analytic approxima-
tions) the various forces on the particles, such as the bending
produced by dipole magnets, the focusing produced from
quadrupole magnets, and the acceleration produced from
cavities. An overview of the computational underpinnings
of Synergia2 simulations is given in Section 2.1.

The algorithm for the magnetic force calculations used
in Synergia2 simulations is from the Chef suite developed
at Fermilab. Synergia2 also self-consistently models the re-
pulsive forces between the particles (space charge forces)
in three dimensions. The algorithm for these space charge
calculations is from the IMPACT code [20], developed at
Los Alamos National Laboratory and presently maintained
at Lawrence Berkeley National Laboratory. Synergia2 is a
very rare beam dynamics toolkit in that few accelerator sim-
ulation tools have self-consistent space charge, and an even
smaller number of systems have three-dimensional algo-
rithms.

Like many large, complex scientific software applica-
tions, the Synergia accelerator physics framework was de-
veloped in a non-traditional software engineering environ-

ment. A number of the algorithms at the core of Synergia,
such as the calculation of magnetic forces on individual par-
ticles, are embarrassingly parallel. As a result, Synergia sim-
ulations are designed to execute on parallel architectures.
Communication between the compute nodes is handled by
the Message Passing Interface (MPI) [15]. Synergia is also
a hybrid software application that is comprised of software
libraries written in several programming languages. Adding
to the complexity of the framework is the feature enabling
Synergia simulations to be developed and executed in the
high-level scripting language Python [19].

The software package diagram shown in Figure 1 gives
some idea of the scale of the Synergia2 software develop-
ment effort. In short, Synergia represents the current state of
computational physics codes: parallel, multi-language, and
complex.

2.1 Synergia2 Simulations
All modern charged particle accelerator simulation tools
start with the definition of the accelerator lattice. The lat-
tice is the physical layout of the machine as described by
the organization of its functional units. The lattice is com-
posed of a sequence of structures known as FODO cells [9].
A single FODO cell is composed of the following series of
accelerator-specific optical devices:

• a Focusing quadrupole magnet
• a drift space (denoted by the letter O)
• a Defocusing quadrupole magnet
• a second drift space (denoted by the letter O)

2.1.1 Describing Accelerator Lattices
The lingua franca of the accelerator simulation community
is the MAD language. Originally developed to work with
the Methodical Accelerator Design [13] program, the MAD
language is a file format that is used to describe the physical
layout of a charged particle accelerator. Among the impor-
tant pieces of information that are contained in a MAD file
are the following:

• the length and strength of individual beamline elements;
• the sequencing of lattice components;
• values assigned to variables for simple computation.

An example of the contents of a MAD file is shown
below.

Figure 1. Synergia2 packages

1 ! s c a l i n g
2 s c a l e =0.374749636
3

4 ! d r i f t s
5 d r s : d r i f t , l =7 .44 d−2

! ” d r i f t s h o r t ”
6 d r l : d r i f t , l =14 .88 d−2

! ” d r i f t l o ng ” (e q u a l s 2∗ d r s)
7

8 ! quads
9 qd7 : quad r upo l e , l =6 .10 d−2,

k1 =−38.64 d0 / s c a l e
10 qf7 : qu ad rupo l e , l =6 .10 d−2,

k1= 38 .64 d0 / s c a l e
11 ! l i n e
12 c h a n n e l : l i n e =(drs , qd7 , d r l , qf7 , d r s)

This particular MAD file (channel.mad) is used for a
range of Synergia2 simulations, and a simulation that uses
it will be explored in greater detail in Section 4. All of
the features of the MAD file language that were described
above are demonstrated in this file. In particular, note that
in the quads section that the variable qd7 is defined to
have a length attribute, l, and a strength attribute, kl. The
value of kl is computed. Also, note that the defocusing
quadrupole, qd7, is simply defined as the negative of the
focusing quadrupole, qf7.

2.1.2 Split-Operator Algorithm
As was mentioned in Section 2, the Synergia2 application
tracks the position and velocity of simulated particles as they
move along the length of a charged particle accelerator. The
computational algorithm that is at the heart of the Synergia2
application is based on a split-operator algorithm. The Syn-
ergia2 implementation of this technique has been detailed

extensively elsewhere [4]. A brief overview is provided in
the following paragraphs.

The key data structure in the Synergia2 application is
a 7 × n two-dimensional array where n is the number of
particles used in the simulation. This data structure is used
to model the phase-space of the beam bunch (i.e., particles).
The phase-space representation is [X , X ′, Y , Y ′, Z, Z ′, id],
where X , Y , Z are the positional coordinates of a particle
and X ′, Y ′, Z ′ are the momenta. The id is a unique, numeric
identifier for each particle.

The split-operator technique relies on separating those
operations that change the positional values of a particle
from the operation of changing the momenta of a particle.
Traditionally, beam dynamics simulations have used the con-
cept of a transfer map to change a particle’s position. A
transfer map is a matrix representation of the magnetic prop-
erties of a beamline element (e.g., a focusing quadrupole).
Using this representation, the application of a transfer map
to a beam bunch becomes a matrix-matrix multiplication. To
conform to the algorithm of the split-operator technique, the
transfer map representing half the length of a beamline ele-
ment is calculated and then applied to the beam bunch. Next,
the momentum “kick”, or change, is calculated (making use
of a Poisson Solver that is described in Section 3.2.4) for
each particle in the beam bunch. Finally, the transfer map
representing the second half of the beamline element is ap-
plied to the beam bunch.

2.2 Steered Simulation Interface
One relatively recent technique that has evolved to deal
with the complexity of developing scientific software, in
general, and scientific simulations, in particular, is the use
of a high-level scripting languages such as Python [5]. In
the case of scientific simulation tools, the end result is a

Table 1. The programming languages used by the Syner-
gia2 scientific packages and libraries.

Packages Python C++ C F90 F77
Synergia2-
Simulations

X

Synergia2-
New Solvers

X

Synergia2-
IMPACT

X

Synergia2-
Chef

X

MaryLie/
IMPACT

X X

PETSc X

software system where the users are free to develop models
in a programming environment that does not force low-
level management of memory as in C++ or dealing with
deprecated, but still prevalent, concepts such as Fortran’s
common blocks. Synergia2’s steered simulation interface
was developed to specifically address concerns of this type
in the context of charged particle accelerator simulations.

That said, a consideration that was equally as important
for moving Synergia2 to a steered interface was the desire
to ameliorate the language interoperability issues that have
been present in Synergia2 from its inception. As a mixed-
language environment, Synergia2’s core functionality de-
pends upon the integration of two extant object-oriented ac-
celerator modeling libraries (IMPACT written in Fortran 90
and Chef written in C++) with a high-performance numer-
ical library, PETSc (and its newly developed FFTW inter-
face), which was developed in the C programming language.
All of these activities are to be coordinated and steered by a
another, more human-friendly interface framework, written
in Python.

Table 1 contains a matrix associating the primary Syner-
gia2 project packages and libraries and their respective im-
plementation languages.

To achieve these ends, the Synergia2 application depends
heavily on the software glue characteristics of the Python
scripting language as described in [17].

One outcome of the Synergia2 software development ef-
fort devoted to resolving language interoperability issues
was to push the team in the direction of creating software
components. These efforts have largely consisted of creating
new, cleaner interfaces to our Fortran-based software. Once
this was done, the Forthon Python-Fortran90 interoperabil-
ity tool was used to generate Python bindings. This has also
forced us to be cognizant of language interoperability issues
when designing our newest software tools such as the New
Poisson Solver. One technique that we have used to keep
mindful of these issues is to create our unit tests in Python,

and then use BOOST.Python to generate the appropriate lan-
guage bindings.

In the future, the plan is for Synergia2 to migrate as
much of its language interoperability issues as possible to
language-independent component specifications, for which
language interoperability is handled automatically by the
Babel tool [14]. Unlike most language interoperability so-
lutions, Babel specializes in high-performance support of
Fortran and Fortran 77. In the Babel system, users define
their types using the Scientific Interface Definition Language
(SIDL). The Babel compiler then generates glue code for
each language. The Babel runtime library provides basic fa-
cilities and infrastructure to keep the model consistent. At
present, Babel supports Fortran, Fortran77, Python, Java, C,
and C++ and so removes language interoperability concerns
from the developers. The Babel tool is discussed again in
Section 4.

Finally, an example showing how scientists can use the
Python steering interface to develop Synergia2 simulations
is shown in Section 4.

3. Introducing CCA components to
Synergia2

We employed an incremental, top-down approach to our
component design. Our initial high-level interfaces encapsu-
late large-grain functionality. This approach exploits the ex-
isting separation between the different underlying software
packages and ensures that the component performance over-
head is negligible.

3.1 Common Component Architecture
A comprehensive description of the CCA, including a dis-
cussion of how it differs from other component models, is
available in [6]; here we present a brief overview of the CCA
environment, focusing on the aspects most relevant to the
subsequent discussion of our accelerator components design.

The specification of the Common Component Architec-
ture [8] defines the rights, responsibilities, and relation-
ships among the various elements of the component model.
Briefly, the elements of the CCA model are as follows:

• Components are units of software functionality that can
be composed together to form applications. Components
encapsulate much of the complexity of the software in-
side a black box and expose only well-defined interfaces
(ports).

• Ports are the interfaces through which components inter-
act. CCA ports can be thought of as a class or an inter-
face in object-oriented languages, or a collection of sub-
routines, or a module in a language such as Fortran 90.
Components may provide ports, meaning that they im-
plement the interface, or they may use ports, meaning
that they invoke methods implemented by another com-
ponent. Components that provide the same port(s) are

Figure 2. Component wiring diagram.

considered functionally equivalent and can thus be used
interchangeably.

• Frameworks manage CCA components as they are as-
sembled into applications and executed. The framework
is responsible for instantiating components, destroying
instances, and connecting uses and provides ports without
exposing the components’ implementation details. The
framework also provides a small set of standard services
that are available to all components.

3.2 Interfaces and Components for Particle
Accelerator Simulations

In this section we discuss the ports we have defined and the
corresponding components using or providing them. In this
initial design, we are focusing on encapsulating large-grain
functionality; thus, only three ports and a driver compo-
nent are necessary for assembling a simulation. The compo-
nent wiring diagram in Figure 2 shows an example applica-
tion composed of components based on MaryLie/IMPACT,
IMPACT, and the New Poisson Solver (which is based on
PETSc and FFTW).

3.2.1 Python Simulation Driver
A driver component normally plays the role of a coordi-
nator of the other components, in effect defining the top-
level workflow of the application. The SIDL definition
of the FishDriverComp component is shown below. The
class body contains no methods because the use of the
implements-all SIDL keywords signifies that all inter-
face methods are implemented by this class without having
to explicitly include them in the class declaration.

1 c l a s s FishDriverComp implements−a l l
2 gov . cca . p o r t s . GoPort ,
3 gov . cca . Component { }

This component (implemented in Python) provides the
standard gov.cca.ports.GoPort interface, which is used
to start the application’s execution.

3.2.2 Particle Store
The ParticleStore port encapsulates tasks related to man-
aging the representation of the particles in the beam.

1 i n t e r f a c e P a r t i c l e S t o r e ex tends gov . cca . P o r t
2 {
3 void i n i t i a l i z e () ;
4 void g e n e r a t e p a r t i c l e s (
5 i n double c u r r e n t ,
6 i n i n t n u m p a r t i c l e s) ;
7 void c o n f i g u r e b e a m (
8 i n double s c a l e 1 ,
9 i n double s c a l e 2 ,

10 i n double s c a l e 3 ,
11 i n a r r a y <double , 2 , row−major>
12 c o r r e l a t i o n m a t r i x) ;
13 a r r a y <double , 2 , column−major>
14 g e t p a r t i c l e s () ;
15 }

The components providing the ParticleStore port are
as follows.

1 c l a s s BeamBunchComp implements−a l l
2 a d v a c c e l s i m s . P a r t i c l e S t o r e ,
3 gov . cca . Component { }
4

5 c l a s s MacroBeamBunchComp implements−a l l
6 a d v a c c e l s i m s . P a r t i c l e S t o r e ,
7 gov . cca . Component { }

The BeamBunchComp component is implemented in For-
tran 90 and is based on IMPACT, while the MacroBeamBunchComp
component is implemented in Python and is based on the
New Poisson Solver package.

3.2.3 Beam Optics
The BeamOpticsPort port encapsulates tasks related to the
application of transfer maps to the particles in the beam.
The BeamOpticsPort interface is an example of an early
interface design. It is essentially a one-to-one mapping of
the ML/I routines that are implemented by the component.

1 i n t e r f a c e BeamOpt ic sPor t ex tends gov . cca . P o r t
2 {
3 void i n i t i a l i z e () ;
4 void fquad3 (i n double l ,
5 i n double gb0 ,
6 i n o u t a r r a y <double , 1 , column−major> h ,
7 i n o u t a r r a y <double , 2 , column−major> mh) ;
8

9 void dquad3 (i n double l ,
10 i n double gb0 ,
11 i n o u t a r r a y <double , 1 , column−major> h ,
12 i n o u t a r r a y <double , 2 , column−major> mh) ;
13

14 void d r i f t 3 (i n double l ,
15 i n o u t a r r a y <double , 1 , column−major> h ,
16 i n o u t a r r a y <double , 2 , column−major> mh) ;
17 }

The BeamOptics, a Fortran90-based component, imple-
ments the BeamOpticsPort port.

In the future, we will be building upon our current ex-
perience by developing a more general interface that can
support a wide-range of transfer map implementations (i.e.,
not just those implementations available in Synergia2 and
ML/I). One possible incarnation of this interface is described
by the prototype interface that is discussed in the following
paragraphs.

The Mapper port defines a simple interface for applying
transfer maps for changing a particle’s position (as described
in Section 2.1.2). The apply interface method will be used
to change a particles positional values in the beam bunch
abstraction. Components providing the Mapper port will
also have a ParticleStore uses port to obtain the particle
beam information.

1 i n t e r f a c e Mapper ex tends gov . cca . P o r t
2 {
3 void a p p l y () ;
4 }

We have implemented the following two components pro-
viding the BeamOpticsPort:

1 c l a s s FastMappingComp implements−a l l
2 S y n e r g i a . BeamOpt icsPor t ,
3 gov . cca . Component {}
4

5 c l a s s MLIMapperComp implements−a l l
6 S y n e r g i a . BeamOpt icsPor t ,
7 gov . cca . Component {}

The FastMappingComponent component is based on
the Lie algebraic mapping routines in the Chef single-
particle, beam optics library. The MLIMapperComp compo-
nent will be an evolution of the BeamOptics component
and is based on an underlying set of Fortran transfer map
subroutines present in MaryLie/IMPACT.

3.2.4 Poisson Solver
A super-fast and scalable Poisson solver is essential for
beam dynamics simulations. This includes modeling high-
intensity/high-brightness beams in linear accelerators and
rings, modeling electron cloud effects in rings, and modeling
beam-beam effects in colliders. To self-consistently model
those effects, one must solve the Poisson equation at every
time step in the beam dynamics codes.

The Synergia2 framework, which uses a Particle-In-
Cell (PIC) method to solve the Poisson-Vlasov equation
in three dimensions, currently implements two parallel lin-
ear solvers. Both solvers implement open, closed, and pe-
riodic boundary conditions. The first solver makes use of
domain decomposition and a Fast Fourier Transform (FFT)
provided by the IMPACT code [20]. In this context, domain
decomposition is a process of assigning the particles to two-
dimensional processor subdomains that represent a spatial
region. A particle manager provides load balancing capabil-
ities in this case. However, this FFT-based Poisson solver
does not scale well on large numbers of processors because
of global communication. Furthermore, the computational
cost of the FFT-based solver normally scales as N log N .

The second solver makes use of particle decomposition
and is implemented via the PETSc library (in C). Addition-
ally, the actual solve is performed via FFTW-based routines
that have been integrated into the PETSc library. This New
Poisson Solver has been made available as a CCA-compliant
component.

As our work progresses, all of the current and future
Synergia2 solvers will be available as software components.
The ability to easily switch between solver implementations
will allow the use of different techniques and new efficient
algorithms.

The Poisson solver port for accelerator simulations is
defined as follows.

1 i n t e r f a c e P o i s s o n S o l v e r ex tends gov . cca . P o r t
2 {
3 void s o l v e () ;
4

5 void a p p l y s p a c e c h a r g e k i c k (
6 i n a r r a y <i n t ,1> gr idddim ,
7 i n a r r a y <double ,1> s i z e ,
8 i n a r r a y <double ,1> o f f s e t ,
9 i n o u t P a r t i c l e S t o r e p a r t i c l e s ,

10 i n double t a u) ;
11 }

Currently, the apply space charge kick method is
used to encapsulate a method of the same name and ar-
gument signature in the New Poisson Solver. The computa-
tional result of the method is a change in the momenta of the
simulations particles.

The second method that is present in the interface, solve,
is present as a placeholder for a planned, more general (i.e.,

non-beam dynamics specific) interface to what is hoped will
become a highly performant solver.

We have implemented the following component wrapper
for the New Poisson Solver (in Python) providing the Pois-
sonSolver port:

1 c l a s s P e t s c P o i s s o n S o l v e r implements−a l l
2 a d v a c c e l s i m s . P o i s s o n S o l v e r ,
3 gov . cca . Component { }

3.3 Fortran Experiences
In componentizing Fortran portions of the code (based on
MaryLie/IMPACT), we encountered a number of challenges
and identified some approaches that can be generally use-
ful when creating SIDL-based component wrappers for any
Fortran application. The following steps outline an overall
design strategy for creating Fortran-based components.

• Create Fortran modules containing interface definitions
that will be exposed through component interfaces. This
is an opportunity to create better or different interfaces
than offered by the legacy software.

• Define a new port for accessing the computations in
the Fortran application. The SIDL port definition should
match the Fortran module interfaces defined in the previ-
ous step.

• Define a component providing the port and use Babel
to generate Fortran implementation skeletons, which will
contain the calls to the original Fortran library.

A number of Fortran features commonly encountered in
legacy codes present challenges in designing and imple-
menting SIDL-based component wrappers. We enumerate
some of the language features and software characteristics
that make wrapping non-trivial and present our current or
planned approach in providing the adaptor code between the
SIDL-based component and the original Fortran library.

Non-Modular Software Creating a port (component inter-
face) to encapsulate some functionality that is not already
modular in the existing code can be challenging. In some
cases simply mirroring existing library interfaces is a reason-
able approach. In many cases involving older codes, how-
ever, the existing interfaces may not be ideal for the new
component design, or there may not even be well defined in-
terfaces, especially in Fortran 77 codes. In the later case we
defined a new Fortran 90 module wrapping desired portions
of the original library interfaces and corresponding compo-
nent implementations.

Global Data By definition, components can only exchange
information through well-defined interfaces. By contrast,
many monolithic single-language applications rely on some
global data representation for accessing the application’s
state. If new components introduce interface boundaries
within a code that relies on global data, new interfaces must

be created to enable all required information to be passed
between these components. In the case of the accelerator
software discussed in this paper, the new components were
introduced at a granularity where global data is not used to
exchange information. As the design is refined, however, we
will have to encapsulate common block data and expose it
through new interfaces.

Derived Types Derived types are frequently employed in
Fortran 90 (and 95, 2003) modules to encapsulate module-
specific state. When information encapsulated in derived
types must be exchanged between components, SIDL map-
pings to these types must be defined as interfaces or classes,
so that they can be used as argument types in port meth-
ods. In the current port definitions described in Section 3, all
arguments are using built-in Babel types, including arrays,
but future refactoring will most likely involve interfaces with
SIDL-wrapped derived types.

A surprisingly difficult obstacle was presented by certain
derived types, in the case when a variable of such a type
must be included in the state of a component wrapping an
existing library, such as MaryLie/IMPACT. Babel provides
a mechanism for storing internal component state within a
sequence derived type. For a sequence derived type, the
order of the components specifies a storage sequence for ob-
jects declared with this derived type (compilers do not guar-
antee a particular order for non-sequence types). Sequence
derived types are required by language interoperability tools
such as Babel. The main difficulty in dealing with this re-
striction occurs when a non-sequence type in a legacy code
(which cannot be modified) must be used for storing the state
of a SIDL-based component wrapper. The only solution we
found was to create an exact copy of the derived type def-
inition, making it a sequence type, and then provide sub-
routines to copy to and from the original type. In the case of
MaryLie/IMPACT, the type happened to encapsulate a rela-
tively small amount of data and the copy routines do not im-
pose a significant performance penalty. If the derived type
happens to contain large arrays, this solution would not be
feasible from a performance standpoint.

Arrays Babel provides two different data structures for
managing arrays: SIDL arrays and r-arrays. A SIDL array is
a regular SIDL type providing a generalization of the built-in
array types available in different languages. Operations on
SIDL arrays are performed using an API rather than built-
in array functionality. It is possible, however, to operate on
a native array type encapsulated by a SIDL array type in
some of the languages, e.g., Fortran. R-arrays (or raw arrays)
provide low-level access to numeric arrays in a subset of the
Babel languages: C, C++, and Fortran.

We decided to use SIDL arrays for two reasons: (1) since
some of the simulation components are implemented in Py-
thon, the interfaces cannot include r-arrays, and (2) in For-
tran 9X, fewer changes to existing code are required when
SIDL arrays are used since the native Fortran array can

be obtained by using an array pointer and then used nor-
mally. By contrast, using r-arrays requires pervasive code
changes since the array indexing starts at 0, while most For-
tran codes assume 11. Another array-related interface deci-
sion is whether each array should be column- or row-major.
We selected column-major ordering for interfaces whose im-
plementations will be predominantly in Fortran (e.g., the
methods in the ParticleStore port), and row-major for
those whose implementations are in likely to be in other lan-
guages (e.g., the PoissonSolver port) in order to eliminate
or minimize array copying in the component wrappers.

3.4 Python Experiences
As was described in Section 2.2, the Synergia2 project has
invested a significant amount of time and effort in develop-
ing Python-based tools. As a result of these experiences, it
was only natural to explore the use of Python-based CCA
components.

3.4.1 Leveraging Other Python Tools
A significant benefit to prototyping components using Python
is that it has allowed us to maintain our investment in
the Python tools that we already depend upon. For exam-
ple, even though it is our current intention to replace our
IMPACT-based beam bunch representation with a newer
one that was developed simultaneously with the New Pois-
son Solver. Because the original IMPACT-based bunch had
existing Python bindings (developed with the Forthon tool),
we were able to use the older beam bunch until the newer
beam bunch was mature enough to be componentized itself.

Additionally, the Python support in the CCA toolkit is
flexible enough for use to continue to use all of our exist-
ing Python modules from a Python driver component just by
importing them. This allowed us to develop an iterative pro-
gramming style where we could mix and match component-
based and non-component-based Python modules. This flex-
ibility has given us the ability to test out our intuition con-
cerning which pieces of our simulation codebase are appro-
priate component candidates, and which of our Python tools
we will continue to use as is. An example of this is demon-
strated in section 4.1 where the use of our current diagnostics
module is discussed.

4. Example Simulation
One of the primary areas of accelerator physics that Syn-
ergia2 is concerned with is that of collective effects, some-
times also called collective instabilities [9]. Collective ef-
fects are oscillatory perturbations of the beam distribution
which can cause the beam to “fall out of the pipe.” For the
Synergia2 project, we have adopted an operational interest
in collective effects. We are interested in those collective ef-

1 While Fortran 9X allows lower bounds in each array dimension to start
at any integer value, many loops in Fortran applications are hard-coded to
begin iterating at 1.

fects that can be modeled by applying a momentum kick to
the particles. In particular, Synergia2 is concerned with the
space-charge collective effect. The space-charge collective
effect is an outcome of intra-particle electromagnetic effects.

In Section 2.1.1 we described the contents of a MAD file.
In this section, the same MAD file will be used as the basis
for a Synergia2 simulation known as openchannel. Here,
we will describe the primary component-level activities of
the simulation (in the form of code snippets) as they relate
to the split-operator technique described in Section 2.1.2.

At the component level, the simulation is executed by
running the Ccaffeine framework script [2, 3] shown below:

1 # ! c c a f f e i n e b o o t s t r a p f i l e .
2 #−−−−−−− don ’ t change a n y t h i n g ABOVE t h i s l i n e.−−
3 p a t h s e t / cca / t e c h x / aas−cca / components / l i b
4 p a t h append / cca / t e c h x / ml i / cca / components / l i b
5
6 r e p o s i t o r y ge t−g l o b a l

SynergiaCCA . FishDriverComp
7 i n s t a n t i a t e SynergiaCCA . FishDriverComp

SynergiaCCAFishDriverComp
8
9 r e p o s i t o r y ge t−g l o b a l

SynergiaCCA . MacroBeamBunchComp
10 i n s t a n t i a t e SynergiaCCA . MacroBeamBunchComp

SynergiaCCAMacroBeamBunchComp
11
12 c o n n e c t SynergiaCCAFishDriverComp P a r t i c l e S t o r e

SynergiaCCAMacroBeamBunchComp P a r t i c l e S t o r e
13
14 r e p o s i t o r y ge t−g l o b a l S y n e r g i a . BeamOptics
15 i n s t a n t i a t e S y n e r g i a . BeamOptics

Syne rg iaBeamOpt i c s
16
17 c o n n e c t SynergiaCCAFishDriverComp BeamOpt ic sPor t

Syne rg iaBeamOpt i c s BeamOpt i c sPor t
18
19 r e p o s i t o r y ge t−g l o b a l SynergiaCCA . P e t s c P o i s s o n S o l v e r
20 i n s t a n t i a t e SynergiaCCA . P e t s c P o i s s o n S o l v e r

S y n e r g i a C C A P e t s c P o i s s o n S o l v e r
21
22 c o n n e c t SynergiaCCAFishDriverComp P o i s s o n S o l v e r

S y n e r g i a C C A P e t s c P o i s s o n S o l v e r P o i s s o n S o l v e r
23
24 go SynergiaCCAFishDriverComp S t a r t S i m u l a t i o n
25
26 q u i t

Ccaffeine [1] is a CCA-compliant framework for provid-
ing all of the needed runtime services for supporting a com-
ponent infrastructure. In this script, the path set and path
append commands tell the Ccaffeine framework where to
locate the shared libraries for the user-created components.

The bulk of the script supports three component-level
tasks:

1. loading libraries (lines 6, 9, 14, and 19), for example:

repository get-global SynergiaCCA.MacroBeamBunchComp

2. instantiating components (lines 7, 10, 15, and 20), for
example:

instantiate SynergiaCCA.MacroBeamBunchComp

SynergiaCCAMacroBeamBunchComp

3. and connecting uses ports to provides ports (lines 12, 17,
and 22), for example:

connect SynergiaCCAFishDriverComp ParticleStore

SynergiaCCAMacroBeamBunchComp ParticleStore

The penultimate line of the script uses the StartSimulation
command (an implementation of the standard gov.cca-
.ports.GoPort port) to set the simulation in motion. The
simulation code in the go method will then accomplish a

Figure 3. Envelope equation showing space charge effect

sequence of tasks. Those tasks are illustated below for a sin-
gle, focusing quadrupole beamline element (using Python as
pseudocode).

• beam bunch initialization:

beambunch = bunchport.initialize()

• first-half transfer map application:

(h,mh) = beamport.fquad3(l/2, gb0, h, mh)

• application of space charge kick:

solverport.apply_space_charge_kick(...,beambunch,..)

• second-half transfer map application:

(h,mh) = beamport.fquad3(l/2, gb0, h, mh)

4.1 Checking the Results
To confirm that our space charge routines are working as
expected, we run a simple check based on an envelope equa-
tion. The envelope of a beam bunch is a mathematical de-
scription of the shape of the bunch. This is used as a pass/-
fail check, and an example of an expected result is shown
in Figure 3. The envelope equation is an analytic approxi-
mation using the assumption that the beam’s emittance does
not change.

As was previously described in Section 3.4, one of the
great things about prototyping component applications with
Python is that existing Python tools can often be used within
a Python driver component in a straightforward fashion. The

following Python snippet illustrates the use of the Synergia2
diagnostics module. This is the code that produced Figure 3.

1 from d i a g n o s t i c s import D i a g n o s t i c s
2 from l o a d f i l e import l o a d f i l e
3

4 d = D i a g n o s t i c s ()
5 d0 = D i a g n o s t i c s (” c h a n n e l 0 c u r r e n t ”)
6

7 p y l a b . p l o t (d0 . s , d0 . s t d [: , d i a g n o s t i c s . x] , ’ gx ’ ,
8 l a b e l = ’ Syne rg i a2 , no s p a c e c h a r g e ’)
9 p y l a b . x l a b e l (’ s (m) ’)

10 p y l a b . y l a b e l (’ s t d <x> (m) ’)
11

12 e = l o a d f i l e (” e n v m a t c h c h n l 0 . 5A. d a t ”)
13 p y l a b . p l o t (e [: , 0] , e [: , 1] ,
14 l a b e l = ’ e n v e l o p e e q u a t i o n ’)
15

16 do ld = d i a g n o s t i c s . D i a g n o s t i c s (” . ”)
17 p y l a b . p l o t (d . s , d . s t d [: , d i a g n o s t i c s . x] , ’ ro ’ ,
18 l a b e l = ’ S y n e r g i a 2 wi th s p a c e c h a r g e ’)
19 p y l a b . l e g e n d (l o c =0)
20

21 p y l a b . show ()

Figure 3 represents the envelope equation for a single
FODO cell. Shown is a plot of the root mean squared of the
observable portion of the x-coordinate of the beam bunch
distribution versus the beam bunch’s location in the acceler-
ator lattice. In this example, the maximum beam compres-
sion effects of the focusing quadrupole can be seen at ap-
proximately 0.10 m. The defocusing quadrupole and its cor-
responding expansion effects are greatest at 0.32 m. The “no

space charge” result is included as a comparison to demon-
strate that the space charge routines are working.

5. Conclusion
We introduced our prototype design and implementation of
a series of new beam dynamics-specific components for ac-
celerator simulations. The components support the develop-
ment of collective effects-based charged particle accelera-
tor simulations: particle and bunch representation, particle
tracking by transfer map application, and collective effects
modeling in the form of space charge momentum kicks. The
CCA framework provided the necessary language interop-
erability tools and component runtime infrastructure to de-
ploy our prototype openchannel simulation. The flexibility
and completeness of the CCA framework’s support for the
Python scripting language made the translation of an exist-
ing Synergia2 simulation a straightforward exercise. Future
work plans include generalizing some of the port definitions
and comparing the performance of component-based simu-
lations to those using the original Synergia2 packages. Due
to the coarse granularity of the new components, we don’t
expect the fixed component overhead to have a significant
impact.

Acknowledgments
Portions of this work were supported by an SBIR Phase I re-
search grant (grant number: DE-FG02-06ER84520) from
the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Dept. of Energy. This work was
supported by the Mathematical, Information, and Com-
putational Sciences Division subprogram of the Office of
Advanced Scientific Computing Research, Office of Sci-
ence, U.S. Dept. of Energy, under Contract DE-AC02-
06CH11357. The authors wish to thank the following people
for their discussions and implementation work: Dr. Hong
Zhang, Dr. Barry Smith, Dr. Dan Abell, Dr. Eric Stern, and
Dr. Lois Curfman McInnes.

References
[1] B. Allan, R. Armstrong, S. Lefantzi, J. Ray, E. Walsh, and

P. Wolfe. Ccaffeine – A CCA component framework for
parallel computing. www.cca-forum.org/ccafe, 2005.

[2] B. A. Allan and R. C. Armstrong. CCA tutorial: Introduc-
tion to the Ccaffeine framework. www.cca-forum.org/

tutorials/archives/2002/tutorial-2002-06-24/

tutorialM%odFramework.pdf, 2002.

[3] B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E.
Bernholdt, and J. A. Kohl. The CCA core specification in
a distributed memory SPMD framework. Concurrency and
Computation: Practice and Experience, (14):1–23, 2002.

[4] J. Amundson, P. Spentzouris, J. Qiang, and R. Ryne.
Synergia: An accelerator modeling tool with 3-D space
charge. Journal of Computational Physics, 211:229–248,
Jan. 2006.

[5] D. M. Beazley and P. S. Lomdahl. Building flexible
large-scale scientific computing applications with scripting
languages. 1997.

[6] D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand,
K. Chiu, T. L. Dahlgren, K. Damevski, W. R. Elwasif,
T. G. W. Epperly, M. Govindaraju, D. S. Katz, J. A. Kohl,
M. Krishnan, G. Kumfert, J. W. Larson, S. Lefantzi, M. J.
Lewis, A. D. Malony, L. C. McInnes, J. Nieplocha, B. Norris,
S. G. Parker, J. Ray, S. Shende, T. L. Windus, and S. Zhou.
A component architecture for high-performance scientific
computing. Intl. J. High Perf. Comp. Appl., 20(2):163–202,
2006.

[7] CCA Forum homepage. www.cca-forum.org, 2007.

[8] CCA specification. cca-forum.org/specification,
2007.

[9] M. Conte and W. M. MacKay. An Introduction to the Physics
of Particle Accelerators. World Scientific, Singapore, 1991.

[10] David Bernholdt (PI). Technology for Advanced Scientific
Component Software (TASCS). SciDAC2 CET, http:
//www.scidac.gov/compsci/TASCS.html, 2006.

[11] L. C. M. et al. Numerical Solution of Partial Differential
Equations on Parallel Computers, chapter Parallel PDE-
Based Simulations Using the Common Component Archi-
tecture, pages 327–381. Number 51 in Lecture Notes in
Computational Science and Engineering. Springer, 2006.
Preprint ANL/MCS-P1179-0704.

[12] R. R. et al. SciDAC advances and applications in computa-
tional beam dynamics. Journal of Physics Conference Series,
16:210–214, Jan. 2005.

[13] H. Grote, F. C. Iselin, E. Keil, and J. Niederer. The
MAD program. In Particle Accelerator Conference, 1989.
’Accelerator Science and Technology’., Proceedings of the
1989 IEEE. IEEE, 1989.

[14] Lawrence Livermore National Laboratory. Babel. www.

llnl.gov/CASC/components/babel.html, 2007.

[15] MPI Forum. MPI: A message-passing interface standard.
International Journal of Supercomputer Applications and
High Performance Computing, 8(3/4):159–416, Fall-Winter
1994.

[16] B. Norris, S. Balay, S. Benson, L. Freitag, P. Hovland,
L. McInnes, and B. Smith. Parallel components for PDEs
and optimization: Some issues and experiences. Parallel
Computing, 28(12):1811–1831, 2002.

[17] J. K. Ousterhout. Scripting: Higher-level programming for
the 21st century. Computer, 31(3):23–30, 1998.

[18] Panagiotis Spentzouris (PI). Community Petascale Project
for Accelerator Science and Simulation (COMPASS). FNAL
DOCDB, CD-doc-2098, version 1, 2007.

[19] Python programming language – Official website. python.
org, 2007.

[20] J. Qiang, R. D. Ryne, S. Habib, and V. Decyk. An Object-
Oriented Parallel Particle-in-Cell Code for Beam Dynamics
Simulation in Linear Accelerators. Journal of Computational
Physics, 163:434–451, Sept. 2000.

