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Abstract

We treat the evaluation of a fixed-amplitude variable-phase integral of the form∫ b

a
exp[ikG(x)]dx, where G′(x) ≥ 0 and has moderate differentiability in the integration

interval. In particular, we treat in detail the case in which G′(a) = G′(b) = 0, but
G′′(a)G′′(b) < 0. For this, we re-derive a standard asymptotic expansion in inverse
half-integer inverse powers of k. However, this derivation provides straightforward ex-
pressions for the coefficients in terms of derivatives of G at the end-points. Thus it can
be used to evaluate the integrals in cases where k is large. We indicate the generaliza-
tions to the theory required to cover cases where the oscillator function G has higher
order zeros at either or both end-points, but this is not treated in detail. In the simpler
case in which G′(a)G′(b) > 0, this approach recovers a special case of a recent result
due to Iserles and Nørsett.

1 Introduction

This paper is about the numerical evaluation of integrals of the form

I0 =
∫ b

a
F (x) exp[ikG(x)]dx, (1.1)

when k is large. We have in mind cases where F and G are straightforward smooth functions,
and function values of both are readily available. In Section 2 we provide an environment
in which integrals of this nature occur naturally.

Asymptotic expansions (in inverse powers of k) have recently been published for the
case in which G(x) is monotonic and has no stationary values in [a,b]. The principal result
of this paper is an asymptotic expansion,(in half-integer inverse powers of k) valid in the
case in which F (x) is constant, G(x) is symmetric about a and about b, G′(x) > 0 in (a, b),
G′(a) = G′(b) = 0, but G′′(a)G′′(b) < 0. The coefficients are readily calculable functions of
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G and its derivatives at the end-points, and so this expansion can be used to evaluate the
integral when k is large. This expansion in given in Theorem 6.1.

For small k such an integral is readily evaluated by using a standard quadrature formula.
But for large k this approach may become prohibitively expensive. The difficulty has little
to do with the nature of G and F . To see this, we look at a simple, well-known example.
Setting G(x) = 2πx, we find the integral representation of a Fourier coefficient,

Φ̂(k) =
∫ 1

0
Φ(x) exp[2πikx]dx. (1.2)

This integrand function is oscillatory, changing sign roughly 2k times in the integration
interval. Its evaluation using the trapezoidal rule requires at least 2k function values, which
for large k can be prohibitive. In this simple case the oscillations have constant phase 1/k;
and when Φ(x) is regular, this can be exploited to provide the classical Fourier coefficient
asymptotic expansion (FCAE) in k. (See Theorem 5.2.) This in turn can be exploited to
provide a less expensive approach to the calculation. But, when G(x) is not linear, the phase
of the oscillation varies with x, making direct numerical quadrature even more hazardous,
and invalidating the asymptotic expansion of that form. When F (x) is constant, integrals of
this type are sometimes referred to as constant-amplitude variable phase-integrals. In this
paper, we treat in detail only cases in which F (x) is constant. In the introductory sections,
we include a general F (x) in order to indicate its role in a more sophisticated theory.

The approach we develop is straightforward in concept. It involves two stages. First we
make a simple transformation to reduce the integral I0 in (1.1) to one of form (1.2). Then
we expand (1.2) in an asymptotic expansion in inverse powers of k.

In detail, however, things are far from straightforward. In the first stage, in order
to effect the transformation, G(x) must be monotonic in the integration interval (a, b). In
practice, the original integral may have to be subdivided into sections in each of which G(x)
is monotonic and each section treated separately. When this subdivision has been carried
out, we find that we are dealing with intervals (a, b) in which G′(x) may be zero at one or
both ends. It is the inverse of this function that is required to effect the transformation,
and this may take several significantly different forms depending on whether or not G′(a)
or G′(b) vanish. Sections 3 and 4 are devoted to information about inverse functions. We
find that, depending on the vanishing of these derivatives, the function Φ in (1.2) may or
may not have an algebraic singularity at an end point. If such a singularity is present,
the standard asymptotic expansion (FCAE) is not valid. However, a different asymptotic
expansion (see Theorem 5.1), due originally to Erdelyi, can be used. This is of a different
form, and is given in detail in Section 5.

In Section 6 we apply the results of the two previous sections to construct an asymptotic
expansion for I0 in what we term the flat symmetric ends case. This is one in which
G′(a) = G′(b) = 0 and G′′(a)G′′(b) �= 0 and G(x) is symmetric about both x = a and x = b.
Finally, in Section 7.1 we give a numerical example.
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2 Background

2.1 Application

A practical application, which motivated this investigation, arises in the theory of the
photoinjector drive laser. There Li and Lewellen (2006) found it necessary to integrate a
function

exp[ik(R1 − R2 −
√

R2
1 − r2 −

√
R2

2 − r2)]
{

exp[ik(
√

r2 + ν2 + z2 − 2rν cos φ − z)]
}

(2.1)

over a disc of radius R. A natural approach is to express this as a double integral

I(k) =
∫ R

0
exp[ikH(r)]

{∫ π

0
exp[ik G(r, φ)]dφ

}
rdr (2.2)

and to use nested numerical quadrature.
The incidental parameters are

R1 = R2 = 150mm;R = 25mm; ν = 2mm; z = 150mm.

The numerical values of the integral are required for values of k in the range [0, 22520](mm)−1

Both functions H(r) and G(r, φ), though of somewhat forbidding expression, have an inno-
cent and harmless appearance when these incidental parameters are inserted.

For each value of k, one has to integrate a function over variable r in which each func-
tion value involves an integration over φ. For both integrations, standard one-dimensional
quadrature routines are available. Numerical values for a range of values of k, both large
and small, are required. For small values of k, this approach worked well. But for larger
values, the cost became prohibitive. A calculation taking less than one second for small k
was reported as taking 32 hours for k at the upper end of the range, and giving a suspect
numerical result. This seems to be a consequence of using a polynomial-based, or a locally
polynomial-based, integration routine for a highly oscillatory integrand.

Each function value for the outer integral requires a separate numerical evaluation of
the inner integral. In this note, we are concerned only with the numerical evaluation of
this inner integral. In Section 6, we derive an asymptotic expansion, using which this inner
integral can be evaluated just as rapidly for large k as for small k. The coefficients in this
expansion may have to be determined by using series inversion, which is treated in detail
in Sections 3 and 4. To our knowledge, this problem (as stated in (2.1)) has not been
completed. Only the inner integral described above is treated in this paper.
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2.2 Recent literature

The numerical quadrature of highly oscillatory integrand functions has long been recognised
as a major challenge. Until very recently, attention has been restricted to constant phase
oscillators, those having constant G′(x).

In the late nineteenth century, a common approach involved expanding the integral in
what would nowadays be termed a truncated asymptotic expansion with a remainder term.
Possibly the doyen of these is the FCAE which has a linear oscillator G(x). In fact, Poisson
used the FCAE (Theorem 5.2) in his proof of the Euler-Maclaurin expansion. (Titchmarsh
1948). These methods are valid for large k and require numerical values of F (x) and its
derivatives at the interval end-points.

In the early twentieth century, Filon developed a variant of Gauss-Jacobi quadrature us-
ing weight function exp[ikG(x)] for these integrals. Naturally, this requires having available
the values of the first few moments

μm(k) =
∫ b

a
xm exp[ikG(x)]dx, (2.3)

preferably in explicit form.
Recent developments, near the very end of the twentieth century led to the recognition

that the appropriate numerical approach depends critically on the location of the points for
which G′(x) = 0. These are termed critical points. In the earlier work G′(x) is constant
and there are no critical points.

More recently, amongst other results, Iserles has derived a generalisation of the FCAE
for those oscillator functions G(x) having no critical points in the integration interval. The
coefficients depend on the early derivatives of F (x) and G(x) at the end-points and a very
convenient recurrence for providing expressions for these coefficients is provided. The FCAE
and this generalisation are classical in nature; they include inverse powers of k and may be
established using integration by parts.

The asymptotic expansions mentioned above are valid only when G(x) has no critical
points, (points for which G′(x) = 0). When G′(x) has critical points, the method of station-
ary phase can be exploited to provide corresponding expansions ( which typically involve
other inverse fractional powers of k). The coefficients in these expansions are difficult to
extract. And, of course, specific forms of these coefficients are needed for direct numerical
use.

However, Iserles and Nørsett (2004) have established a powerful approach for these
problems too. Using a tecnique akin to subtracting out the singularity, which could be
described as suppressing the critical point contribution, the integral is expressed as the sum
of two terms. One is an asymptotic expansion in inverse powers of k, not unlike one valid
when there are no critical points. The other is a moment, μ0(k), or, depending on the
nature of the critical point, a weighted sum of several early moments.

The effect of these recent contributions is major. In cases where there are no critical
points, or in which the moments are available, these problems may now be tackled success-
fully. But there remain problems, such as the one highlighted in this paper, in which there
are critical points, and the integral μ0(k) is not available. In fact, the problem treated in
this paper is simply that of calculating μ0(k) for large k.
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2.3 Scaling

The integrals treated in this paper are all of the form

I0 =
∫ b

a
F (x) exp[ikG(x)]dx, (2.4)

where
F (x), G(x) ∈ C∞[a, b]; G′(x) �= 0 ∀ x ∈ (a, b). (2.5)

As a preliminary, we rescale the problem using elementary linear transformations. We
find immediately

I0 = exp[ikG(a)]((b − a)/π)
∫ π

0
f(x) exp[iKg(x)]dx, (2.6)

where

f(x) = F (a + x(b − a)/π); g(x) = (G(a + x(b − a)/π) − G(a))/(G(b) − G(a))

and
K = k(G(b) − G(a)).

The required properties (2.5) for F (x), G(x) over [a, b] transform into identical properties for
f(x), g(x) over [0, π]. Thus, the initial problem (2.4) has been scaled to that of evaluating

I1 =
∫ π

0
f(x) exp[iKg(x)]dx, (2.7)

where

f(x), g(x) ∈ C∞[0, π]; g′(x) > 0 ∀ x ∈ (0, π); g(0) = 0; g(π) = 1. (2.8)

These conditions on g(x) allow an elementary transformation x = h(t), where

t = g(x) (2.9)

in (2.7). The integral I1 may be re-expressed in the form

I2 =
∫ 1

0
f(h(t))h′(t) exp[iKt]dt. (2.10)

Here h′(t) is the derivative of h(t), the inverse function of t = g(x). That is, h(g(x)) =
g(h(t)) = 1 for all values of x and of t for which these expressions are defined.

The requirement that g(x) be monotonic is needed so that this inverse function x = h(t)
is single valued and can be used to transform the integral.

At this point, we specialize to the case F (x) = f(x) = 1. In straightforward cases in
which g′(t) has no zeros, only marginal additional computation would be required to take
into account the function f(h(t)). But, in general, h(t) may have derivative singularities,
so that, even when f(x) is straightforward, complications introduced by these singularities
into f(h(t)) may lead to a considerably more sophisticated theory. In this paper, we confine
ourselves to the simpler theory, having F (x) = 1, that is, the fixed-amplitude variable phase
integral.
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3 Inverse Functions

Interest then centers on the nature of the function h′(t) where h is the inverse function of g.
This appears to be critically dependent on the behavior of g at the end-points. For example,
when t = g(x) = g1x, we find immediately that x = h(t) = t/g1 In this case h′(t) is a finite
constant, and the FCAE (5.5) is available, leading to an asymptotic expansion in inverse
powers of K. On the other hand, when t = g(x) = g2x

2, we find x = h(t) =
√

(t/g2).
In this case h′(t) has a weak singularity at t = 0. This implies we shall require at some
point expansion (5.3) with α = −1/2 leading to an expansion including half-integer inverse
powers of K.

These remarks illustrate how the nature of the smooth function g(x) at the end points
plays a major role in the theory. The nature of the inverse function h(x) determines the
form of the asymptotic expansion through its derivative h′(x).

In this paper we are addressing a situation in which G(x) and by extension g(x) are
available in functional form. To exploit the asymptotic expansions in Section 5 we require
information about h′(t). A plot of h(t) may be obtained by reflecting a plot of g(x) about
the line t = x.

In some cases one can proceed analytically to derive an analytic expression for h(t). In
Section 7 we report a numerical example with

t = g(x) = (1 − cos x)/2. (3.1)

Elementary analysis leads to

x = h(t) = 2 arcsin
√

t =
√

t(c0 + c1t + c2t
2 + ...)

with
cq =

1.3...2q − 1
2.4....2q

2
2q + 1

(3.2)

and
h′(t) = [t(1 − t)]−1/2 = t−1/2ψ(t) = t−1/2(c̄0 + c̄1t + c̄2t

2 + ...) (3.3)

with
c̄q = (2q + 1)cq/2.

In a similar manner one readily obtains

h′(t) = (1 − t)−1/2φ(t) = (1 − t)−1/2(d̄0 + d̄1(t − 1) + d̄2(t − 1)2 + ...). (3.4)

In this particular example, d̄q = (−1)q c̄q; these coefficients are needed in the asymptotic
expansion in Section 5. The functions φ and ψ are termed the regular parts of h′ at 0 and
at 1 respectively.
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4 Series Inversion

Obtaining a simple analytic form for h(t) is not to be expected. In point of fact, we need
information about h′(t) only at the end-points, and this can be obtained from information
about g(x) at the end points using series inversion. To do this we need only some of the
early derivatives g(s)(0) and g(s)(π); these may be obtained readily from the analytic form
of g(x). Depending on the properties of g(x), several different forms of series inversion may
occur. In this section we describe some of them.

4.1 g′(0) �= 0

When the power series

t = g(x) = g1x + g2x
2 + . . . g1 �= 0 (4.1)

is absolutely convergent in a neighborhood of the origin, the inverse series

x = h(t) = b1t + b2t
2 + . . . (4.2)

exists, is unique, and is also absolutely convergent in a neighborhood of the origin. Expres-
sions for bi in terms of gi may be obtained by substituting (4.2) into (4.1) and comparing
coefficients of powers of x. This gives;

b1 = 1/g1, (4.3)
b2 = −g2/g

3
1

b3 = (2g2
2 − g1g3)/g5

1

b4 = (−5g3
2 + 5g1g2g3 − g2

1g4)/g7
1

Naturally, the relations in (4.3) may be reversed by interchanging gi and bi throughout.

4.2 g(s)(0) = 0 for all s odd; and g′′(0) �= 0

The previous development of h′(t) is valid only when g′(0) �= 0. When g′(0) = 0, these
formulas no longer apply. We shall be interested in a particular special case in which in
addition g(x) is symmetric about x = 0, that is:

g′(0) = 0 g′′(0) > 0 g(s)(0) = 0 ∀ s odd,

giving
t = g(x) = g2x

2 + g4x
4 + . . . g2 > 0. (4.4)

This inversion can be related to the previous results simply by setting X = x2, replacing
(4.1) by

t = g2X + g4X
2 + . . . g2 �= 0.

The result corresponding to (4.2) takes the form

X = b1t + b2t
2 + . . . b1 �= 0.
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This gives
x = X

1
2 = t

1
2 (b1 + b2t + . . .)

1
2 ,

which may be re-expressed in the form

x = h(t) = t
1
2 (c0 + c1t + c2t

2 + . . .). (4.5)

It appears the the early cofficients are;

c0 = 1/g1/2
2 , (4.6)

c1 = −g4/2g
5/2
2

c2 = (7g2
4 − 4g2g6)/8g

9/2
2

c3 = (−33g3
4 + 36g2g4g6 − 8g2

2g8)/16g
13/2
2

These coefficients are used in the application in Section 6.

4.3 g′(0) = 0 and g′′(0) > 0

The previous inversion depends on the symmetry of g(x) about the origin. It is instructive
to see how critical the nature of g(x) at the end-point is to the solution. If, for example,
g′(0) = 0 but the symmetry condition is not valid, we have to replace (4.4) by

t = g(x) = g2x
2 + g3x

3 + . . . g2 > 0. (4.7)

Using the same sort of manipulation as before, we find successively

t
1
2 = x(g2 + g3x + g4x

2 + ...)
1
2

= x(a1 + a2x + a3x
2 + ...)

= a1x + a2x
2 + a3x

3 + ...

Applying the inversion that produced (4.2), we find

x = h(t) = b1t
1
2 + b2t + b3t

3
2 + . . . (4.8)

= t
1
2 (b1 + b3t + b5t

2 + . . .)
+(b2t + b4t

2 + b6t
3 + . . .).

4.4 g(q)(0) = 0 for q < r; and g(r)(0) �= 0

One might not be surprised to encounter any of the three cases above. But it could happen
that G(x) has a horizontal point of inflexion, a situation in which g′(0) = g′′(0) = 0. A
more general result, based on

t = g(x) =
∑
q≥r

gqx
q, gr �= 0, (4.9)

is

x = h(t) =
∞∑

j=1

bjt
j/r =

r∑
j=1

tj/rb[j](t), (4.10)

each function b[j](t) being regular at the origin.
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5 Asymptotic Expansions for Fourier Integrals

The key item in the theory of this paper is the asymptotic expansion in k for the Fourier
coefficient f̂(k) of a function f(x) that has algebraic singularities at the end points a and b
but is otherwise regular. Let

f(x) = (x − a)α(b − x)βr(x) α, β > −1, (5.1)

where r(x) is analytic in a region containing [a, b]. We define the regular parts of f(x) at
the ends a and b respectively as

ψ(x) = (x − a)−αf(x), φ(x) = (b − x)−βf(x). (5.2)

Theorem 5.1 When f(x) is given by (5.1) and ψ(x) and φ(x) are defined by (5.2), and
r(x) is analytic in a region containing the interval [a,b], then for all positive integer p1 and
p2 ∫ b

a
f(x)eikxdx = −eikb−iπβ/2

p1−1∑
q=0

φ(q)(b)iq+1(q + β)!
kq+β+1 q!

(5.3)

+eika+iπα/2
p2−1∑
q=0

ψ(q)(a)iq+1(q + α)!
kq+α+1 q!

+O(k−(p1+β+1)) + O(k−(p2+β+1)) as k → ∞.

This theorem is proved, using contour integration, in Lyness (1971). Earlier proofs
known to the author are by Erdelyi (1955), using neutralizer functions and general integra-
tion by parts, and by Lighthill (1958), using generalized function theory. Erdelyi’s proof
requires only that r(x) is Cpj(a, b) and need not be analytic. This is discussed in Lyness
(1971).

A more familiar case of this theorem arises when one sets α = β = 0, making f(x) ana-
lytic in [0, 1]. This reduces to a classical expansion, which may be established independently
using integration by parts. Iterating the relation∫ b

a
f(x) exp[ikx]dx =

eikbf(b) − eikaf(a)
ik

− 1
ik

∫ b

a
f ′(x) exp[ikx]dx (5.4)

we readily establish the following classical theorem.

Theorem 5.2 (FCAE) For all positive integer p, and k > 0, when f(x) ∈ C(p)(a, b)∫ b

a
f(x)eikxdx = −eikb

{
i

k
f(b) +

i2

k2
f ′(b) + · · · + ip

kp
f (p−1)(b)

}
(5.5)

+eika

{
i

k
f(a) +

i2

k2
f ′(a) + · · · + ip

kp
f (p−1)(a)

}

+
ip

kp

∫ b

a
f (p)(x)eikxdx.

The previous theorem reduces to this one when both α and β are nonnegative integers. In
fact, the remainder term in (5.3) can be expressed as a sum of contour integrals that, of
course, reduces to the straightforward remainder term in (5.5) in the simpler case.
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6 The Flat Symmetric Ends Case

All integrands treated in this paper satisfy (2.8) namely,

g(x) ∈ C∞[0, π]; g′(x) > 0 ∀ x ∈ (0, π); g(0) = 0; g(π) = 1. (6.1)

Possibly the most common special case (which occurs naturally in the inner integral case
(2.1)) is one in which, in addition,

g′(0) = g′(π) = 0; g′′(0).g′′(π) < 0; g(−x) = g(x); g(π − x) = g(π + x).
(6.2)

These conditions assert that g(x) is flat at both ends and is symmetric about each end.
To proceed, we need numerically based information about the derivative of h(t), the

inverse function of g(x). This function g(x) satisfies precisely the conditions specified in
Subsection 4.2 both at the end x = 0 and at the end x = π. Reference to (4.5) shows that
h(t) ∈ C∞(0, 1) but that t−1/2h(t) is regular at t = 0. A corresponding examination of the
form of h(t) at t = 1 gives the same situation; that is, (1 − t)1/2h(t) is regular at t = 1. It
follows that h(t) has the form h(t) = t1/2(1− t)1/2h̄(t), where h̄(t) ∈ C∞[0, 1]. Incidentally,
as indicated in Section 4, h(t) is not of this form unless both symmetry conditions in (6.2)
are satisfied. From this, it follows that

h′(t) = t−1/2(1 − t)−1/2r(t), (6.3)

where r(t) is C∞[0, 1].
It follows from (2.7) and (2.10) that, in this case, the scaled version of the original

integral can be written:

I1 =
∫ π

0
exp[iKg(x)]dx =

∫ 1

0
h′(t) exp[iKt]dt =

∫ 1

0
t−1/2(1 − t)−1/2r(t) exp[iKt]dt. (6.4)

The reader will recognize this final integral as a special case of the one expanded in Theorem
5.1 , obtained by applying it to f = h′ in (6.3) with parameters a = 0, b = 1, α = β = −1/2.
Replacing this integral by its asymptotic expansion (5.3) we obtain the principal result in
this paper:

Theorem 6.1 When the oscillator function g(x) satisfies the conditions (6.1) and (6.2)

∫ π

0
exp[iKg(x)]dx =

s∑
q=0

−eiKTq(1) + Tq(0)

Kq+ 1
2

+ O(K−s− 3
2 ), (6.5)

where

Tq(1) = eiπ/4 φ(q)(1)
q!

iq+1(q − 1
2
)! Tq(0) = e−iπ/4 ψ(q)(0)

q!
iq+1(q − 1

2
)!. (6.6)

It is important to appreciate that our use of this expansion involves using numerical values
of these coefficients. These have to be obtained from g(x). If possible, the analytic approach
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described towards the end of section 3 should be used. But, in general, the series inversion
approach of Subsection 4.2 will be needed.

Inverting the series t = g(x) as explained in subsection 4.2 will provide the numerical
values of the coefficients in

x = h(t) = t
1
2 (c0 + c1t + c2t

2 + . . .) = (1 − t)
1
2 (d0 + d1(t − 1) + d2(t − 1)2 + . . .).

In the asymptotic expansion (6.5) we need the Taylor Coefficients c̄q of φ(t) = t
1
2 h′(t) and

d̄q of φ(t) = (1 − t)
1
2 h′(t) and these are

ψ(q)(0)
q!

= c̄q = (q +
1
2
)cq,

φ(q)(0)
q!

= −d̄q = −(q +
1
2
)dq

respectively.
Note that (6.5) is an asymptotic expansion. Trivial cases apart, it does not converge.

For large K the terms first diminish and then increase. Also there is no reason to suppose
that this is semi-convergent. That is, in general the truncation error is not necessarily
bounded by the first omitted term.

7 Notes on Application

For all k or K, the integrals I0 or I1 may be approximated by applying an n−panel trape-
zoidal rule

R[n][a, b]f =
b − a

n

n∑
j=0

′′
f

(
a +

(b − a)j
n

)
(7.1)

either in (2.4) directly or in (2.7). One way of organizing this is to calculate R[1]f , R[2]f ,
R[4]f , accepting the result when |R[k]f − R[k/2]f | < ε, the required tolerance. Other rules
and strategies can be used. But for larger k or K, this approach and others of the same
character may become too expensive. In general, the trapezoidal rule is needed for small k
and is of occasional use for large k as a check on the overall result to verify the programming
of the asymptotic expansion coefficients.

To apply the theory in this paper, the user must first subdivide his integral (2.4) at all
points where G′(x) = 0. The method is viable only to the extent that this a step is carried
out exactly. We note that the contributions to the asymptotic expansion arise only from
the interval end-points and from points where G′(x) = 0. The behavior of G(x) in between
these points affects the result only through the derivatives of G at these points which occur
in the coefficients. Moreover, further subdivision at a point where G′(x) �= 0 affords no
advantage, since the contribution from this point to the interval on the left is equal and
opposite to the corresponding contribution to the interval on the right.

In the examples, we treat a flat symmetric ends case using the asymptotic expansion
of the previous section. This particular oscillation function has been discussed in section
3 where the expansion coefficients ψ(q)(0)/q! = c̄q and φ(q)(1)/q! = d̄q may be obtained
analytically from the oscillator g(x).
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7.1 Numerical Examples

We report approximations to four integrals, namely∫ π

0
exp[iK(1 − cos x)/2]dx

with K = 2π, 8π, 128π and 800π.

Table 1: Approximations using n-panel trapezoidal rule (7.1)

n K = 2π K = 8π K = 128π K = 800π
8 0.95580499 0.639724837 -0.46355326 -0.543395827

16 0.95580499 0.494824067 -0.746887558 0.524104174
32 0.95580499 0.494824067 -0.196868068 0.132966687
64 0.95580499 0.494824067 -0.183399531 -0.105532816

128 0.95580499 0.494824067 0.124922071 0.194571162
256 0.95580499 0.494824067 0.124922071 0.200483897
512 0.95580499 0.494824067 0.124922071 0.230534403

1024 0.95580499 0.494824067 0.124922071 0.0499950242
2048 0.95580499 0.494824067 0.124922071 0.0499950242

Table 2: The asymptotic series coefficients: Values of (−eiKTq(1) + Tq(0)).

q all even K/π

0 2.50662827
1 -0.626657069
2 -0.704989202
3 1.4687275

Table 3: The asymptotic series: Individual terms, values of (−eiKTq(1) + Tq(0))/Kq+1/2

q K = 2π K = 8π K = 128π K = 800π
0 1. 0.5 0.125 0.05
1 -0.03978873580 -0.00497359197 -7.77123746E-05 -4.97359197E-06
2 -0.00712414572 -0.00022262955 -2.17411674E-07 2.22629554E-09
3 0.00236217293 1.8454476E-05 1.12637183E-09 1.8454476E-12

Table 4: Truncated asymptotic series evaluation: Values of
∑s

q=0(−eiKTq(1)+Tq(0))/Kq+1/2

s K = 2π K = 8π K = 128π K = 800π
0 1. 0.5 0.125 0.05
1 0.960211264 0.495026408 0.124922288 0.0499950264
2 0.953087119 0.494803778 0.124922071 0.0499950242
3 0.955449291 0.494822233 0.124922071 0.0499950242
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7.2 Remarks on the Numerical Example

In the example, we have restricted ourselves to values of K for which all results are real. In
general all entries in these tables would be complex numbers.

We note the behavior of the ”brute force” trapezoidal rule approximations. The results
appear to be arbitrary until n exceeds K/π when they rapidly converge. (This convergence
is not really as sudden as it seems. We are doubling the value of n at each entry.)

Tables 2,3 and 4 outline some of the steps taken in using the asymptotic expansion. The
calculation of the four coefficients in Table 2 may be a significant undertaking. Once this is
done, evaluation of the truncated asymptotic series (illustrated in Tables 3 and 4) requires
little more than the evaluation of a cubic in K−1.

The final lines in Table 1 and in Table 4 are approximations to the integral. Undoubtedly,
the final entries in Table 1 give the correct results to the number of figures shown. Compar-
ison of these with the entries in Table 4 illustrates the quality of the truncated asymptotic
expansion. For small K, the trapezoidal rule provides economic approximations, (8 or 16
function values) while the corresponding results in Table 4 are not convincingly accurate.
For larger values of K, the trapezoidal rule approximations are expensive ( perhaps 2K
function values), while the truncated asymptotic series if anything, becomes cheaper. In
making these comparisons, one should bear in mind that, for each value of K a separate
trapezoidal rule evaluation is necessary, requiring n function values. However, once the
values of Tq(0) and Tq(1) are available, evaluation for any large value of K uses the same
coefficients and requires a single calculation of a cubic.

8 Concluding Remarks

This paper extends slightly the availability of asymptotic expansions for the evaluation of
integrals

I0 =
∫ b

a
F (x) exp[ikG(x)]dx, (8.1)

for large k. We consider only cases in which F (x), G(x) ∈ C(∞)[a, b] and G′(x) ≥ 0 in
[a, b]; in which the moment integrals are not avalable; the coefficients in these asymptotic
expansions have straightforward expressions in terms of low order derivatives of F and
of G at a and at b. Recently, Iserles and Nørsett (2004) have provided an asymptotic
expansion in inverse powers of k, valid only for G satisfying G′(a)G′(b) > 0. In this paper,
a corresponding expansion, in inverse half integer powers of k is derived for the cases in
which F (x) = 1, G′(a) = G′(b) = 0, but G′′(a)G′′(b) < 0, and G(x) is symmetric both
about a and about b.

Finally, I would like to thank Dr Iserles for, at an earlier stage, encouraging me to
consider this sort of problem and for keeping me abreast of the recent literature.
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