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This paper addresses issues related to weights and acceptance ratios in generalized ensemble simu-
lation (GES), while comparing two algorithms of GES: serial (e.g., simulated tempering) and parallel
(e.g., parallel tempering or replica exchange). We derive a cumulant approximation formula for opti-
mal weights in the serial GES and discuss its effectiveness in practical applications. We compare the
acceptance ratios of the serial and parallel GES and prove that provided optimal weights are used,
the serial GES has higher acceptance ratios than does the parallel GES. The duality between forward
and reverse transitions is at the heart of the derivations throughout the paper.

I. INTRODUCTION

Computer simulation, such as molecular dynamics
and Monte Carlo, is a powerful technique for study-
ing complex systems. However, simulations of complex
systems are often hindered by trapping in local energy
minima and slow relaxations. One method to overcome
this difficulty is simulated tempering [1, 2], which at-
tempts to reduce relaxation times at low temperatures
by repeatedly heating and cooling the system.

The idea of simulated tempering can be readily ex-
tended to parameters other than temperature [2]. Here
we will use the term generalized ensemble simulation
(GES) to refer to this general context [3]. The motiva-
tion for running a GES is usually one or both of the fol-
lowing. First, as in simulated tempering, GES can be
used to enhance sampling of microstates by perform-
ing a random walk among different ensembles. Second,
GES provides a natural way to calculate relative free en-
ergies with respect to given parameters.

This paper focuses on two important elements of GES,
weights and acceptance ratios. A successful GES re-
quires rapid and uniform exploration of the given en-
semble space. In order to satisfy this criterion, accep-
tance ratios must be not only high but also symmetric
between forward and reverse transitions. These condi-
tions can be achieved by assigning weights, that is, by
performing weighted sampling of the ensemble space.
In the context of free energy calculations, estimating the
weights that lead to such optimal sampling is equivalent
to calculating the relative free energies with respect to a
given parameter.

To avoid the need to determine weights, researchers
have developed a parallel version of GES [4, 5], known
as parallel tempering or replica exchange. Not having to
determine weights is an advantage of the parallel GES,
whereas the serial GES has the advantage of being more
robust in various computing environments because it
does not require parallel simulation. The question re-
mains: Which is more efficient? An important measure
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of efficiency in this case is the acceptance ratio. Based
on empirical data, researchers have suggested that the
serial GES may have higher acceptance ratios [6], but no
definitive answer has been given so far.

This paper is organized as follows. In Section II, we
describe the serial and parallel algorithms of GES. In
Section III, we discuss the relationship between weights
in the serial GES and the cumulant expansion of free en-
ergies, which leads to a derivation of the weight deter-
mination method of Ref. [7] from a different perspective.
In Section IV, we derive general formulas for accep-
tance ratios and prove that, provided optimal weights
are used, the serial GES indeed has higher acceptance
ratios than does the parallel GES.

II. GENERALIZED ENSEMBLE SIMULATION

A generalized ensemble refers to a set of ensembles,
each associated with different values of chosen param-
eters such as temperature or pressure. That is, the nth
member of a generalized ensemble is described by the
partition function

Zn =

∫
dx exp[−hn(x)] , (1)

where x denotes a microstate of the system and hn is
the reduced Hamiltonian for the nth ensemble.1 Let us
list a few examples. Simulated tempering deals with a
generalized ensemble with respect to temperature:

hn(x) = βnH(x) , (2a)

where βn = 1/kBTn is the nth inverse temperature and
H is the original Hamiltonian of the system. We can also
construct a generalized ensemble for pressure:

hn(x) = β[H(x) + PnV(x)] , (2b)

where Pn is the pressure of the nth ensemble and V(x)
is the volume. When we want to calculate free energy

1 We use the terms such as reduced Hamiltonian and reduced free
energy to denote quantities that have been divided by kBT .
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as a function of a parameter λ, a generalized ensemble
with respect to λ can be useful:

hn(x) = βH(x, λn) . (2c)

It is also possible to construct a generalized ensemble
for multiple parameters; for instance, we can combine
the above three cases into

hn(x) = βn[H(x, λn) + PnV(x)] . (2d)

In this paper, we adhere to the most general context
without specifying any form of hn(x), except when we
discuss particulars of simulated tempering (Eq. 2a) and
free energy calculation (Eq. 2c).

The idea of GES is to enhance the sampling of mi-
crostates by allowing the system to explore all the given
ensembles. This is achieved by means of a random walk
on the ensemble space (serial GES) or exchanges of en-
sembles (parallel GES). Below we describe these two al-
gorithms.

A. Serial algorithm

Given K different ensembles, a generalized Hamilto-
nian for a serial GES is defined as

HS(x, n) = hn(x) − gn , (3)

where n = 1, . . . , K. The generalized partition function
is then given as

ZS =

K∑
n=1

∫
dx exp[−HS(x, n)] =

K∑
n=1

Znegn . (4)

We use the superscript S to denote the serial algo-
rithm. In this generalized ensemble, the nth ensemble
is weighted by egn ; gn is the logarithmic weight, but we
call it the weight for simplicity.

With the generalized Hamiltonian of Eq. 3, a serial
GES is performed as follows [1, 2]. A simulation is
started in one of the K ensembles, and at regular in-
tervals a transition is attempted to a randomly chosen
ensemble.2 Transitions are accepted according to the
Metropolis criterion [8]; a transition from the mth to the
nth ensemble, when the system is at microstate x, is ac-
cepted with probability

AS
m→n(x) = min

{
1, exp[−∆HS

m→n(x)]
}

, (5)

where

∆HS
m→n(x) = hn(x) − hm(x) − (gn − gm) . (6)

2 Typically, one allows nearest-neighbor transitions only.

Notice that adding a constant to the weights has no ef-
fect; only the relative weights (differences of weights)
matter.

A serial GES performs a random walk on the ensem-
ble space. The frequency that the nth ensemble is vis-
ited, as can be seen from Eq. 4, is proportional to Znegn .
Therefore, a uniform sampling of ensembles is obtained
if and only if

gn = fn + const. , (7)

where fn is the reduced free energy of the nth ensemble

fn = − ln Zn . (8)

The presence of an arbitrary constant means that the
weights and the reduced free energies are equal up to
an additive constant. The weights that satisfy this prop-
erty will be referred to as the optimal weights and will
be denoted by ĝn.

In free energy calculation with respect to a parameter
λ (Eq. 2c), the reduced free energy fn is related to the
free energy Fn = −kBT ln Zn by fn = βFn. Thus, the
relative reduced free energy fn − fm is proportional to
the relative free energy Fn − Fm, and finding the opti-
mal weights is equivalent to calculating the free energy
profile for λ. The free energy profile, therefore, naturally
comes out of a serial GES with respect to λ.

B. Parallel algorithm

In a parallel GES, a generalized Hamiltonian is de-
fined for a set of replicas:

HP(x) =

K∑
n=1

hn(xn) , (9)

where x := (x1, . . . , xK) denotes microstates of the repli-
cas; the nth replica is associated with the nth ensemble.
The generalized partition function is then given as

ZP =

∫
dx exp[−HP(x)] =

K∏
n=1

Zn . (10)

The superscript P denotes the parallel algorithm.
A parallel GES proceeds as follows [4, 5]. A set of

replicas is simulated in parallel, one replica for each en-
semble. At regular intervals, an exchange is attempted
between a chosen pair of ensembles. Exchanges are ac-
cepted according to the Metropolis criterion [8]; an ex-
change between the mth and the nth ensemble is ac-
cepted with probability

AP
m↔n(x) = min

{
1, exp[−∆HP

m↔n(x)]
}

, (11)

where

∆HP
m↔n(x) = hm(xn) + hn(xm) − hm(xm) − hn(xn) .

(12)
In this algorithm, no weighting is needed because the
sampling of ensembles is already uniform; at any instant
there is one replica for each ensemble.
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III. CUMULANT APPROXIMATION FOR WEIGHTS

In this section, we derive an approximate formula
for optimal weights from the cumulant expansion of re-
duced free energies and discuss the validity of the ap-
proximation in the context of simulated tempering and
free energy calculation. This section, therefore, concerns
only the serial GES, in which the weight is a relevant
concept. Since transitions take place pairwise, namely
from one ensemble to another, what we need for a serial
GES is the relative weights between pairs of ensembles
for which transitions are allowed. Therefore, without
loss of generality, we consider transitions between en-
sembles 1 and 2.

As shown in Eq. 7, uniform sampling of the two en-
sembles is obtained with

∆ĝ = ∆f , (13)

where ∆ĝ := ĝ2 − ĝ1 and ∆f := f2 − f1. The relative
reduced free energy ∆f can be written as

∆f = − ln〈e−∆h〉1 , (14)

where ∆h := h2 − h1 and 〈·〉1 denotes an average over
ensemble 1. This is known as the free energy pertur-
bation formula [9] and is a special case of Jarzynski’s
equality [10]. The right-hand side can be expanded in
terms of cumulants:

∆f = −

∞∑
k=1

(−1)k

k!
Qk

1(∆h)

= 〈∆h〉1 −
1

2
var1(∆h) + · · · ,

(15)

where Qk
1(∆h) is the kth-order cumulant of ∆h over en-

semble 1. This represents an expansion of ∆f with re-
spect to ensemble 1. Similarly, ∆f can also be written in
terms of ensemble 2:

∆f = ln〈e∆h〉2 , (16)

which can be expanded as

∆f =

∞∑
k=1

1

k!
Qk

2(∆h)

= 〈∆h〉2 +
1

2
var2(∆h) + · · · .

(17)

Symmetrizing Eqs. 15 and 17 and using Eq. 13, we find

∆ĝ =
1

2
(〈∆h〉1 + 〈∆h〉2)+

1

4
[var2(∆h)−var1(∆h)]+ · · · ,

(18)
which, upon truncation, can be used for approximate es-
timation of optimal weights.

The effectiveness of this approximation scheme de-
pends on whether we can truncate the cumulant expan-
sions, Eqs. 15 and 17, at a low order without losing much

Δh

ρ2 ρ1

Δf

FIG. 1: Schematic diagram of ρ1 and ρ2, the distributions of
∆h over ensemble 1 and 2. The two distributions intersect at a
single point, ∆f. As shown in Section IV, the acceptance ratio
of the serial GES is identical to the shaded area of overlap.

accuracy. Cumulant expansion has been discussed pre-
viously in the context of Jarzynski’s equality [10, 11, 12].
If the distribution in question is nearly Gaussian, cumu-
lant expansion generally leads to a good approximation.
One complication, however, is that the exponential av-
erage may be dominated by a distant tail region of the
distribution. In such a case, cumulant expansion may
yield a poor approximation if the distribution is far from
Gaussian in the region that dominates the exponential
average, no matter how close it is to Gaussian in the cen-
tral region.

In the present case, there are two relevant distribu-
tions: ρ1 and ρ2, the distributions of ∆h over ensemble
1 and 2, respectively. These two distributions are not in-
dependent. In fact, one completely determines the other
because they are related by

ρ1(ε) =
1

Z1

∫
dx e−h1(x) δ(∆h(x) − ε)

=
e−∆f

Z2

∫
dx e−h2(x)+ε δ(∆h(x) − ε)

= eε−∆f ρ2(ε) ,

(19)

which is a special case of Crooks’ fluctuation theo-
rem [13]. This duality relation implies that ρ1(ε) and
ρ2(ε), where they are nonzero, intersect at a single point
ε = ∆f. And, by applying Jensen’s inequality to Eqs. 14
and 16, we find that 〈∆h〉2 ≤ ∆f ≤ 〈∆h〉1. Thus, the two
distributions must be situated as shown schematically
in Fig. 1. In Section IV, we show that the acceptance ra-
tio of the serial GES is identical to the area of overlap
between ρ1 and ρ2.

These properties have important implications on the
validity of the cumulant approximation for ∆ĝ. Since
ρ1(ε) e−ε is proportional to ρ2(ε), the region that dom-
inates the exponential average 〈e−∆h〉1 coincides with
the central region of ρ2. Similarly, 〈e∆h〉2 is dominated
by the central region of ρ1. (This has been discussed by
Jarzynski [14] in a more general context.) Now, since the
overlap determines the acceptance ratio, the central re-
gions of ρ1 and ρ2 cannot be far apart unless the two en-
sembles have been chosen so poorly as to yield very low
acceptance ratios. In other words, the aforementioned
situation in which an exponential average is dominated



4

by a distant tail region will not occur as long as we en-
sure (e.g., by adding intermediate ensembles if neces-
sary) that reasonable acceptance ratios are obtained.

In simulated tempering, ∆h(x) = ∆β H(x), where
H(x) is the original Hamiltonian of the system and
∆β := β2 − β1. The cumulant approximation of Eq. 18
thus becomes

∆ĝ =
∆β

2
(〈H〉1 +〈H〉2)+

∆β2

4
[var2(H)−var1(H)]+ · · · .

(20)
The first term is O(∆β), but the second term is O(∆β3)
because var2(H) − var1(H) is O(∆β); the absence of
O(∆β2) terms is a consequence of the symmetrization of
Eqs. 15 and 17. If we keep only the first term, we recover
the method of Ref. [7], which was derived based on a
heuristic argument of detailed balance. When the sys-
tem contains many degrees of freedom, the distribution
of H is likely to be nearly Gaussian at least in its central
region. In such cases, assuming that there is significant
overlap between the distributions of H at the two tem-
peratures, the cumulant approximation is expected to be
excellent, as was the case in Ref. [7]. Inclusion of higher
orders in Eq. 20 could improve the estimate of ∆ĝ, but it
is generally unnecessary because weights are to be ad-
justed through adaptive weighting anyways.

The situation is not quite the same in free energy cal-
culation where ∆h(x) = βH(x, λ2)−βH(x, λ1). Depend-
ing on how the parameter λ is coupled to the system,
∆h may or may not contain a significant portion of the
system’s degrees of freedom. Consequently, the preced-
ing argument for simulated tempering does not always
apply in free energy calculation.

IV. ACCEPTANCE RATIOS

A successful GES requires rapid exploration of the
given ensemble space, which means high acceptance ra-
tios for transition attempts in the serial GES and ex-
change attempts in the parallel GES. In this section,
we derive general formulas for the acceptance ratios in
the serial and parallel GES and address the question of
which algorithm has higher acceptance ratios. As in Sec-
tion III, we focus on two ensembles, 1 and 2, without loss
of generality.

A. Serial GES

An individual transition attempt in the serial GES is
accepted with the probability of Eq. 5, expressed as a
function of microstate x. Thus, the average acceptance
ratio for the 1 → 2 transition is

〈AS〉1→2 =

∫
dx

e−h1(x)

Z1
min

{
1, e−∆h(x)+∆g

}
=

∫
−

dx
e−h1(x)

Z1
+

∫
+

dx
e−h2(x)+∆g

Z1
,

(21)

where
∫

−
and

∫
+

denote integrals restricted to the re-
gions ∆h(x) < ∆g and ∆h(x) > ∆g, respectively. This
expression can be rewritten in terms of ρ1 and ρ2, the
distributions of ∆h over ensembles 1 and 2:

〈AS〉1→2 =

∫∆g

−∞ dε ρ1(ε) +
e∆g

e∆f

∫∞
∆g

dε ρ2(ε) . (22)

The average acceptance ratio for the reverse transition
can be written similarly:

〈AS〉2→1 =
e∆f

e∆g

∫∆g

−∞ dε ρ1(ε) +

∫∞
∆g

dε ρ2(ε) . (23)

For an arbitrary choice of ∆g, 〈AS〉1→2 and 〈AS〉2→1

are different. Only with the optimal choice ∆ĝ = ∆f do
they become identical:

〈ÂS〉 =

∫∆f

−∞ dε ρ1(ε) +

∫∞
∆f

dε ρ2(ε) , (24)

where the hat indicates the use of optimal weights. The
subscripts 1 → 2 and 2 → 1 have been dropped because
the acceptance ratio now is the same in both directions.
Since ρ1(ε) and ρ2(ε) intersect at a single point ε = ∆f,
〈ÂS〉 is identical to the area of overlap between the two
distributions (Fig. 1). For reasonable acceptance ratios,
significant overlap between ρ1 and ρ2 is required.

B. Parallel GES

In the parallel GES, individual exchange attempts are
accepted with the probability given in Eq. 11. Therefore,
the average acceptance ratio for the 1 ↔ 2 exchange is

〈AP〉 =

∫
dx1dx2

e−h1(x1)

Z1

e−h2(x2)

Z2
min

{
1,

e∆h(x2)

e∆h(x1)

}
=

∫
∗
dx1dx2

e−h1(x1)

Z1

e−h2(x2)

Z2

+

∫
†
dx1dx2

e−h1(x2)

Z1

e−h2(x1)

Z2
.

(25)

The subscript 1 ↔ 2 has been dropped because it is the
only exchange possible when we consider two ensem-
bles. The integrals

∫
∗ and

∫
† are restricted to the regions

∆h(x1) < ∆h(x2) and ∆h(x1) > ∆h(x2), respectively.
The two integrals are in fact identical as we can verify
by swapping the dummy variables x1 and x2:

〈AP〉 = 2

∫
∗
dx1dx2

e−h1(x1)

Z1

e−h2(x2)

Z2
. (26)

Using ρ1 and ρ2, we rewrite this as

〈AP〉 = 2

∫∞
−∞ dε2

∫ε2

−∞ dε1 ρ1(ε1) ρ2(ε2) . (27)
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ε1 = Δf

ε2 = Δf

ε1 = ε2

I
IIIII

IV
V

VI

FIG. 2: Three lines, ε1 = ∆f, ε2 = ∆f, and ε1 = ε2, divide the
(ε1, ε2) plane into six regions.

Geometrical interpretation of acceptance ratios is not as
straightforward as in the serial GES, but it is clear that
the parallel GES also requires significant overlap be-
tween ρ1 and ρ2 for reasonable acceptance ratios.

C. Comparison

We now prove 〈ÂS〉 ≥ 〈AP〉. To compare Eq. 24
(a single-integral form) with Eq. 27 (a double-integral
form), we convert Eq. 24 into a double-integral form:

〈ÂS〉 =

∫∆f

−∞ dε1 ρ1(ε1) +

∫∞
∆f

dε2 ρ2(ε2)

=

∫∞
−∞ dε2

∫∆f

−∞ dε1 ρ1(ε1) ρ2(ε2)

+

∫∞
∆f

dε2

∫∞
−∞ dε1 ρ1(ε1) ρ2(ε2) .

(28)

We have thus expressed both quantities in terms of dou-
ble integrals of ρ1(ε1) ρ2(ε2). Let us examine what re-
gions of the (ε1, ε2) plane each quantity covers. As il-
lustrated in Fig. 2, three lines, ε1 = ∆f, ε2 = ∆f, and
ε1 = ε2, divide the plane into six regions, labeled I
through VI. The first term of Eq. 28 covers III, IV, and
V, and the second term covers I, II, and III, which leads
to

〈ÂS〉 =

(∫
I
+

∫
II

+2

∫
III

+

∫
IV

+

∫
V

)
dR , (29)

where dR := dε1dε2 ρ1(ε1) ρ2(ε2). And, Eq. 27 can be
written as

〈AP〉 = 2

(∫
II

+

∫
III

+

∫
IV

)
dR . (30)

The difference between the two quantities is

〈ÂS〉− 〈AP〉 =

(∫
I
−

∫
II

−

∫
IV

+

∫
V

)
dR . (31)

Taking advantage of the symmetry between regions I
and II (and regions IV and V) with respect to the reflec-
tion in the line ε1 = ε2, we compare

∫
I dR and

∫
II dR

1 2 3 4 5

1

0

0

<Â
S >

 , 
 <

A
P >

σ

0

10

20

30

<Â
S >

 /
 <

A
P >

FIG. 3: Acceptance ratios, assuming Gaussian distributions.
Top: 〈ÂS〉 for the serial GES (solid line) and 〈AP〉 for the par-
allel GES (dashed line). Bottom: the ratio between the two
acceptance ratios.

(and
∫

IV dR and
∫

V dR) as follows. By swapping the
dummy variables ε1 and ε2,

∫
I dR can be turned into

an integral over II:∫
I
dR =

∫
II

dε1dε2 ρ1(ε2) ρ2(ε1) . (32)

Then, we use the duality relation of Eq. 19 to obtain∫
I
dR =

∫
II

dε1dε2 ρ1(ε1) ρ2(ε2) eε2−ε1

≥
∫

II
dε1dε2 ρ1(ε1) ρ2(ε2) =

∫
II

dR ,

(33)

where the inequality holds because eε2−ε1 ≥ 1 in region
II. It can be shown similarly that∫

IV
dR ≤

∫
V

dR . (34)

From Eqs. 31, 33, and 34, we obtain

〈ÂS〉 ≥ 〈AP〉 , (35)

which completes the proof.
The actual difference between 〈ÂS〉 and 〈AP〉 depends

on the specific forms of ρ1 and ρ2. As a typical exam-
ple, let us consider the cases where they are Gaussian.
Suppose ρ1 is given as

ρ1(ε) =
1

σ
√

2π
exp

[
−

(ε − µ)2

2σ2

]
. (36)
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Then, Eqs. 14 and 19 yield

∆f = µ − σ2/2 (37)

and

ρ2(ε) =
1

σ
√

2π
exp

[
−

(ε − µ + σ2)2

2σ2

]
. (38)

Namely, if ρ1 is a Gaussian distribution with mean µ
and variance σ2, then ρ2 must be another Gaussian dis-
tribution with the mean shifted by −σ2 and the same
variance. Plotted in Fig. 3 are the acceptance ratios, 〈ÂS〉
(Eq. 24) and 〈AP〉 (Eq. 27), calculated with these Gaus-
sian distributions. Notice that since µ has no effect on
the acceptance ratios, σ is the only relevant parameter.
When σ = 0, two ensembles are identical and both ac-
ceptance ratios are unity. As σ increases, the overlap
between ρ1 and ρ2 decreases; both acceptance ratios fall
towards zero, but their ratio 〈ÂS〉/〈AP〉 diverges to in-
finity.

V. CONCLUSIONS

This paper has addressed two important issues of
GES, weights and acceptance ratios. We have derived
a cumulant approximation formula for optimal weights
in the serial GES and argued why such an approxima-
tion is likely to be effective, especially in simulated tem-
pering. We have also derived formulas for acceptance

ratios and proved that the serial GES has higher accep-
tance ratios than does the parallel GES. Having higher
acceptance ratios also means that a certain desired ac-
ceptance ratio can be achieved with fewer ensembles. It
is interesting to note that the duality between forward
and reverse transitions is at the heart of these deriva-
tions.

In contrast to the recent popularity of the parallel
GES (e.g., parallel tempering), the serial GES (e.g., sim-
ulated tempering) has gained relatively little attention,
possibly due to the difficulty of weight determination.
As demonstrated in Ref. [7], however, optimal weights
can be readily obtained by using the cumulant approx-
imation formula combined with an adaptive weighting
scheme. Now that we know it has higher acceptance ra-
tios, the serial GES looks even more attractive.
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