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ABSTRACT

Optimization software has often been developed without any speci�c application in mind

This generic approach has worked well in many cases� but as we seek the solution of larger

and more complex optimization problems on high�performance computers� the development

of optimization software should take into account speci�c optimization problems that arise

in a wide range of applications This observation was the motivation for the development

of the MINPACK�� test problem collection Each of the problems in this collection comes

from a real application and is representative of other commonly encountered problems

There are problems from such diverse �elds as �uid dynamics� medicine� elasticity� com�

bustion� molecular conformation� nondestructive testing� chemical kinetics� lubrication� and

superconductivity
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THE MINPACK�� TEST PROBLEM COLLECTION

Brett M� Averick�� Richard G� Carter�� Jorge J� Mor�e� and Guo�Liang Xue�

� Introduction

The Army High Performance Computing Research Center at the University of Minnesota

and the Mathematics and Computer Science Division at Argonne National Laboratory

have collaborated on the development of the software package MINPACK�� As part of the

MINPACK�� project� we have developed a collection of signi�cant optimization problems to

serve as test problems for the package This report describes the problems in this collection

Optimization software has often been developed without any speci�c application in

mind This generic approach has worked well in many cases� but as we seek the solution

of larger and more complex optimization problems on high�performance computers� the de�

velopment of optimization software should take into account speci�c optimization problems

that arise in a wide range of applications This observation was the motivation for the main

requirement for inclusion in this collection� each problem must come from a real application

and be representative of other commonly encountered problems Problems in the collection

come from such diverse �elds as �uid dynamics� medicine� elasticity� combustion� molecular

conformation� nondestructive testing� chemical kinetics� lubrication� and superconductivity

Our interest in high�performance computers was the reason for the second requirement

for inclusion in this collection� each application selected must lead to a large�scale optimiza�

tion problem Many of the problems in the collection are �nite dimensional approximations

to problems that are naturally expressed in an in�nite dimensional setting Thus� the solu�

tion of these problems usually requires the solution of an optimization problem with a large

number of variables

We have also included in this collection small dimensional application problems with

interesting features In particular� we have included di�cult problems that are of especial

use in testing the robustness of an optimization algorithm Although such problems may

not be large�scale with respect to problem dimension� they can be computationally intensive

and di�cult to parallelize

The optimization problems in this collection are divided into three broad categories�

systems of nonlinear equations� nonlinear least squares� and general minimization problems

Most of the problems in the collection either are unconstrained or have only upper and lower
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bounds on the variables We are also interested in large�scale optimization problems with

more general constraints� but our e�orts have focused on bound constrained problems� in

view of our current work in developing software to solve these problems

The e�ort needed to develop a large�scale problem for this collection can be consid�

erable Inclusion of a problem in the collection requires code for the evaluation of the

functions associated with the application� and veri�cation that the code actually represents

the speci�ed application Our experience in developing these problems has shown that the

veri�cation process is important� because in several cases this process has unveiled errors in

the description of the application We have tried to minimize the e�ort needed to include

a problem in this collection by concentrating on model applications that can be described

�at least super�cially� in two pages

We also emphasize that we are developing code for the evaluation of the functions and

the associated derivatives in Fortran �� to enhance portability This is an important part of

our e�ort There are several collections of interesting optimization problems� but in many

cases software for these problems is either not available or is available in a restricted format

The primary purpose of this collection is to provide di�cult test cases for MINPACK��

We are interested in examining the following issues�

How robust is the software with respect to poor initial approximations�

How does the software perform on badly scaled problems�

How robust is the code with respect to noise in the user�supplied software�

How does the software perform on large�scale problems�

How does the software perform on diverse vector and parallel architectures�

A complete discussion of these issues is not in the scope of this report� but we mention

that with these problems it is entirely appropriate to use computing time as a measure

of e�ciency� the computational expense �as measured by the number of �oating�point

operations� of evaluating the functions in this collection is relatively small� roughly the

same order as the number of variables in the problem For optimization software designed

for cases in which the expense of the user�supplied software is dominant� these same test

problems can be used to evaluate the software by using the number of calls to the user�

supplied software as a measure of e�ciency

In the remainder of this report we describe the problems in this collection We have

not attempted to provide a detailed description of the applications The emphasis is on

the mathematical formulation of the application as an optimization problem We provide

background information on the application� details that are not needed to understand the

formulation of the application have been omitted

�



� Systems of Nonlinear Equations

The solution to a system of nonlinear equations speci�ed by a mapping f � IRn � IRn is a

vector x � IRn such that f�x� � � Algorithms for systems of nonlinear equations usually

approach this problem by seeking a local minimizer to the problem

minfkf�x�k � xl � x � xug�

where xl and xu are bounds on the solution x� and k�k is some norm on IRn Most algorithms

use the l� norm Interestingly enough� codes for systems of nonlinear equations do not tend

to have provisions for handling bounds �or more general constraints� on the variables

��� Flow in a Channel

The problem of �uid injection through one side of a long vertical channel leads to the

boundary value problem

u
����

� R�u�u�� � uu����� � � t � 	�

u��� � u���� � �� u�	� � 	� u��	� � ��

where u is the potential function� u� is the tangential velocity of the �uid� and R is the

Reynolds number This problem is interesting because it is easy to solve for small Reynolds

numbers but becomes increasingly di�cult to solve A plot of the computed tangential

velocity u� for several values of R appears in Figure �	

This problem was formulated by Huang ��	� In our formulation we have followed Ascher�

Mattheij� and Russell ��� p ��

We solve this nonlinear boundary value problem by a k�stage collocation method Con�

sider the general boundary value problem

u�m��t� � F �t� u�t�� u��t�� � � � � u�m����t��� t � �a� b��

with m total boundary conditions given at t � a and t � b� and let

a � t� � t� � � � �� tn� � tn��� � b

be a partitioning of �a� b�� with hi � ti�� � ti A k�stage collocation method is de�ned in

terms of k points

� � �� � �� � � � �� �k � 	�

We choose the collocation points �i as the roots of the Legendre polynomial of order k � m

This choice guarantees that superconvergence occurs at the mesh points ti The k�stage

collocation method approximates the solution to the boundary value problem by a piecewise

�
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polynomial u� � where u� is a polynomial of order m� k in each subinterval �ti� ti��� Thus�

u� is de�ned in terms of n��m� k� parameters We specify these parameters by requiring

that u� � Cm���a� b�� that u� satisfy the m given boundary conditions� and that u� satisfy

the di�erential equation at the collocation points

�ij � ti � hi�j � 	 � i � n�� 	 � j � k�

The piecewise polynomial approximation u� in the interval �ti� ti��� is of the form

mX
j��

�t� ti�j��

�j � 	��
vij � hmi

kX
j��

�j�
t� ti
hi

�wij� 	 � i � n��

where we choose the basis representation �Ascher� Mattheij� and Russell ��� pp ���������

�j�t� �
tm�j��

�m� j � 	��
� 	 � j � k�

A simple computation shows that in this representation

vij � u�j���� �ti�� 	 � i � n�� 	 � j � m�

and that

wij � hj��i u�m�j���
� �ti�� 	 � i � n�� 	 � j � k�

Thus� bounds on a derivative of u� at ti can be speci�ed by bounding vij or wij 

�



We guarantee that u� � Cm���a� b� by enforcing continuity at the interior grid points

The continuity equations are thus given by

u�l���� �t�i � � u�l���� �t�i �� 	 � l � m� 	 � i � n��

The collocation equations are then

u�m�
� ��ij� � F ��ij � u���ij�� u

�
���ij�� � � � � u

�m���
� ��ij��� 	 � j � k� 	 � i � n��

These equations� together with the m boundary conditions� lead to a system of n��m� k�

equations in the n��m� k� unknowns vij and wij

We choose k � � and n� � �� in our numerical results This choice leads to a system of

nonlinear equations with ��� variables A plot of the computed tangential velocity u� for

several values of R appears in Figure �	� similar results were obtained by Ascher ��� with

k � 
 Note� in particular� the steep gradient near t � � as R increases

The three plots in Figure �	 were generated by solving a sequence of �ve problems with

R� � �� R� � 	��� R� � 	�	� R	 �
�
�	�

�� and R� � 	�� The problem with R� � � is linear�

its solution is used as the initial approximation to the problem for R� The continuation

process continues in this manner� with the initial approximation to the problem for Ri��

being the solution to the problem for Ri The whole continuation process requires ��

function evaluations An interesting observation is that with the continuation process we

were able to obtain the solution for R � 	��� but this solution was not obtainable if we

started from the solution for R � �

��� Swirling Flow between Disks

The steady �ow of a viscous� incompressible� axisymmetric �uid between two rotating�

in�nite coaxial disks� located at t � � and t � 	� yields the boundary value problem

�f
����

� ff ��� � gg� � �� �g�� � fg� � f �g � �� � � t � 	�

f��� � f ���� � f�	� � f ��	� � �� g��� � ��� g�	� � ��

where f � is radial velocity� g is angular velocity ��� and �� are the angular velocities of the

in�nite disks�� and � � �� 	 is a viscosity parameter This problem is interesting since it is

easy to solve for � close to 	 but becomes increasingly di�cult to solve as � decreases Plots

of the computed radial velocity f � and the computed angular velocity g appear in Figures

�� and ��� respectively In these plots� �� � �	 and �� � 	

In our formulation of the swirling �ow problem we have followed Parter ���� �We note

that there is a typographical error in the formulation of Ascher� Mattheij� and Russell ���

p ���� in this reference the �rst equation is �f
����

� f ��� � g� � ��
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The swirling �ow problem is described by a �coupled� system of boundary value prob�

lems Systems of this type can be solved by a natural extension of the k�stage collocation

method discussed above A k�stage collocation method approximates the solution to a sys�

tem of p boundary value problems by a vector�valued function u� � �a� b�� IRp� where the

j�th component of u� is a polynomial of order mj�k in each subinterval �ti� ti���� and mj is

the degree of the j�th boundary value problem Thus u� is de�ned in terms of n��pk�m��

parameters� where m� is the sum of all the degrees In many cases all the boundary value

problems have the same degree �for example� in initial value problems�� and then u� is

de�ned in terms of n�p�k �m� parameters� where m is the common degree

The parameters that de�ne u� are determined by the continuity and collocation equa�

tions for each boundary value problem� together with the m� boundary conditions If all

the boundary value problem have the same degree� the continuity equations are

u�l���� �t�i � � u�l���� �t�i �� 	 � l � m� 	 � i � n��

Note that in this case these are vector equations Similarly� the collocation equations are

u�m�
� ��ij� � F ��ij � u���ij�� u

�
���ij�� � � � � u

�m���
� ��ij��� 	 � j � k� 	 � i � n��

If the boundary value problems have di�erent degrees �as in the swirling �ow problem��

then these equations have to be modi�ed in an obvious manner since m depends on the

component of F 

For the swirling �ow problem� p � � and m� � � For our numerical results� we choose

k � � and n� � �� This leads to a system of nonlinear equations with 
�� variables The

plots of the computed radial velocity f � and the computed angular velocity g appear in

Figures �� and ��� respectively In these plots� �� � �	 and �� � 	 For these values of

�� and ��� McLeod and Parter ���� have shown that there is a solution to the swirling �ow

problem such that the functions f and g are odd functions about t � �
� � the function g is

strictly monotone on ��� ���� and there is a t� in ��� ��� with f ��t� 	 � on ��� t�� and f ��t� � �

on �t��
�
�� These results are con�rmed by the plots

Continuation was used to solve these problems with �� � 	���� �� � 	��	� and �	 � 	���

The initial approximation to the problem with �� � 	��� was the solution of the boundary

value problem with � �� The continuation process required �� function evaluations

��� Incompressible Elastic Rods

The shape of a thin incompressible elastic rod� or elastica� clamped at the origin and acted

on by a vertical force Q� a horizontal force P � and torque M is described by the solution of

the boundary value problem


��s� � Qx�s�� Py�s� �M� x��s� � cos�
�s��� y��s� � sin�
�s��

�



subject to the boundary conditions

x��� � y��� � 
��� � ��

where 
 is the local angle of inclination� and s is the arc length along the elastica

The inverse elastic rod problem is to determine Q� P � and M such that x���� y��� and

��� solve this boundary value problem and satis�es the boundary conditions

x�	� � a� y�	� � b� 
�	� � c�

for speci�ed values of a� b and c This formulation implies that x��s�� � y��s�� � 	� and

thus we must have x�s�� � y�s�� � 	 for all s � ��� 	� In particular� if the inverse elastic

rod problem has a solution then a� � b� � 	 Also note that since 
 is the local angle of

inclination� setting 
�	� � c � �� yields a rod with one or more loops See� for example�

the solutions shown in Figures �� and �


The problem can be attacked as a system of three nonlinear equations in the three

unknowns Q� P and M de�ned by

f�Q�P�M� �

�
BBBB�

x�	�� a

y�	�� b


�	�� c

�
CCCCA �

Given values of Q� P and M � the function can be evaluated by using a di�erential equation

solver to obtain values for x�	�� y�	�� and 
�	� This approach can be quite challenging

because the elastica is sensitive to end conditions� especially for more complicated shapes

which require large forces and torques See the discussion by Watson and Wang ����

We solve the inverse elastic rod problem with a k�stage collocation method Recall that

the k�stage collocation method is de�ned in terms of a partition ��

a � t� � t� � � � �� tn� � tn��� � b

of �a� b�� and a set of k collocation points in each interval �ti� ti��� The collocation method

approximates the solution of the system of di�erential equations by a vector valued function

u� � �a� b� � Rp� where each component of u� is a polynomial of order k � 	 in each

subinterval �ti� ti��� Thus u� is de�ned in terms of n�p�k � 	� parameters� where p is the

number of equations For the inverse elastic rod problem p � �

In our formulation of the inverse elastic rod problem� we use x � Rn as the vector

which de�nes u� with its �rst n � � components� and de�nes Q�P and M with its last �

components� where n � �n��k � 	� � � We have used k � � so that we have n � 	
n� � �

equations in n unknowns

�
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Solutions to the elastic rod problem can be obtained by using continuation For example�

Figure �� is obtained by a two phase continuation process In the �rst phase we solve a

sequence of problems with

a � sin�c��c� b � �	� cos�c���c� c � ��� ����

Once we obtain the solution to �a� b� c� � ��� �� ���� we �x b and c� and gradually increase

a to obtain Figure �� A similar process yields Figure �
 For this �gure the initial

continuation phase is continued until c � ��� the second phase proceeds as before This

continuation process can be interpreted as gradually bending the rod to the desired shape

In general� the elastic rod problem does not have a unique solution This is certainly the

case if c � �� in this case the solution �x�����y�����
���� can be obtained by re�ection about

the y�axis There can also be lack of uniqueness if c 	� � Indeed� an interesting aspect of the

elastic rod problem is that di�erent solutions can often be obtained by selecting di�erent

continuation paths Figure �� presents two di�erent solutions for �a� b� c� � ����� ���� ��	��

The solid line is a solution corresponding to

�Q�P�M� � �

�� � � � � �	�� � � � � ���� � � ���

while the dotted line corresponds to

�Q�P�M� � ����� � � � � ���� � � � ������ � � ���

Although the two solutions in Figure �� seem to be similar� a careful examination of the

two solution curves shows that they are not related in any obvious way

��	 Solid Fuel Ignition

A steady�state model of solid fuel ignition can be described in terms of the solution u� of

the boundary value problem

��u�x� �  exp�u�x��� x � D� u�x� � �� x � �D�

where � is the Laplace operator� D is a domain in IR� with boundary �D� and  � IR The

model simulates a thermal reaction process in a rigid material� where the process depends

on a balance between chemically generated heat addition and heat transfer by conduction

Aris �	� pages��������� and Bebernes and Eberly ���� discuss this problem in the context of

combustion problems

This problem is usually called the Bratu problem in the literature The main result

on the existence and multiplicity of solutions to the Bratu problem shows that there is a

FK 	 � �the Frank�Kamenetskii parameter� such that the steady state model has two

solutions for � �  � FK � but that there are no solutions for  	 FK 

	�
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Figure �� illustrates the lack of uniqueness in the Bratu problem This �gure is a plot

of ku�k� when D is the unit square Note that  increases along the solution curve until a

limit point is reached at  � FK 
 ���	 At this point ku�k� � u��� �
�
�� 
 	���

A �nite dimensional version of the Bratu problem on a rectangle D � �l�� u��� �l�� u��

can be obtained via a �nite�di�erence formulation Vertices zi�j � D are determined by

choosing grid spacings hx and hy and de�ning

zi�j � �l� � ihx� l� � jhy�� � � i � nx � 	� � � j � ny � 	�

such that znx���ny�� � �u�� u�� Approximations ui�j to u�zi�j� can be obtained by using

central di�erences to approximate the Laplacian operator This leads to the system of

n � nxny nonlinear equations

hy
hx

��ui�j � ui���j � ui���j� �
hx
hy

��ui�j � ui�j�� � ui�j��� � hxhy exp�ui�j �

where 	 � i � nx and 	 � j � ny 

The solution of the Bratu problem requires the determination of a path u��� such that

f�u��� � � � where f � IRn � IR � IRn is the mapping that de�nes the �nite dimensional

version of the Bratu problem The most interesting feature of the Bratu problem is that

the path u��� has a turning point at FK  We also note that solutions on the lower part of

the branch in Figure �� are relatively easy to obtain from the starting point u� � �� but

solutions on the upper part of the branch are di�cult to obtain without a close starting

point

		



0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

Figure ��� ku�k� for the solid fuel ignition problem

The classical approach to the solution of a sequence of nonlinear systems of the form

f�u� � � � is to solve f�u� k� � � for an increasing sequence of parameters k This

approach fails for the Bratu problem when k 	 FK 

Modern continuation methods do not assume that u is a function of  Given a

point �u�� �� on the solution curve� these methods generate a sequence f�uk� k�g where

�uk��� k��� solves the augmented system�
B� f�u� �

ak�u� �

�
CA � ��

and the additional equation ak�u� � � � is chosen so that the augmented system has a

nonsingular Jacobian matrix In the arclength continuation method used by Glowinski�

Keller� and Reinhart �	��� the parameter  is expressed in terms of arclength s� and the

additional equation

�u� uk�T �uk � uk���

�sk � sk����
�

�� k��k � k���

�sk � sk����
� 	�

is imposed Thus� given a sequence � � s� � s� � � � � � sk � and points �u�� ��� �u�� �� on

the solution curve� the solution path can be obtained by solving a sequence of augmented

systems

Motivation for this approach can be obtained by �rst noting that ak�u� � � 	 is a

hyperplane in IRn��� orthogonal to the line segment that passes through the points �uk� k�

	�



and �uk��� k��� Moreover� this line segment intersects the hyperplane at�
uk � �k�uk � uk���� k � �k �k � k���

�
for �k � �sk � sk���

� 	 � This argument suggests that if sk � sk�� is su�ciently small�

then the augmented system will have a solution

The solution curve in Figure �� was obtained by this arclength method Glowinski�

Keller� and Reinhart �	�� use

��uk � uk��� �k � k���

as the starting point to obtain �uk��� k��� Our experience indicates that this choice of

starting point is not crucial� we have used �uk� k� However� the continuation process is

sensitive to the distance between the initial values �u�� �� and �u�� ��

Glowinski� Keller� and Reinhart �	�� contains a thorough discussion of continuation

methods for the Bratu problem For additional numerical results on this problem see Kikuchi

����� and Brown and Saad ���

��
 Flow in a Driven Cavity

The steady �ow of a viscous incompressible �uid in a planar region D is described by the

Navier�Stokes equations

���v � �v � r�v �rp � �� r � v � �

where v � D � IR� is the velocity �eld for the �uid� p � D � IR is the pressure� and � is

the viscosity parameter �the reciprocal of the Reynolds number R� In the classical driven

cavity problem the region D is the unit square in IR�� and the boundary conditions are

v���� ��� �

���
�	

��� 	� if �� � 	

��� �� if � � �� � 	

One of the main di�culties associated with this formulation is that there are no boundary

conditions on the pressure p In the stream function�vorticity formulation� the pressure is

eliminated� and the problem is expressed in terms of the stream function � and vorticity

� The components v� and v� of the velocity vector v are expressed in terms of the stream

function � by

v� � �y�� v� � ��x��
Thus� the incompressibility condition r � v � � is automatically satis�ed The vorticity

� � �xv� � �yv� is thus given by ��� � � The stream function�vorticity formulation of

the driven cavity problem is then

���� �
h
��y����x��� ��x����y��

i
� �� ��� � �

	�



The formulation of the driven cavity problem in terms of the stream function requires the

solution of the boundary value problem

��� � R
h
��y����x���� ��x����y���

i
� ��

with boundary conditions

����� ��� � �x����� ��� � �� �y����� ��� �

���
�	

	 if �� � 	

� if � � �� � 	

The �nite dimensional formulation of the driven cavity problem follows Schreiber and Keller

���� Vertices zi�j � D are determined by choosing grid spacings hx and hy and de�ning

zi�j � �ihx� jhy�� � � i � nx � 	� � � j � ny � 	

such that znx���ny�� � �	� 	� Approximations ui�j to ��zi�j� are obtained by using central

di�erences to approximate the Laplacian operator and the partial derivatives �y� and �x�

These approximations lead to a system of n � nxny equations in the n unknown ui�j of the

form

f�u� � Au� b� R��u��

where A is the discrete biharmonic operator� b contains boundary information� and � is the

discrete representation of the nonlinear term

An interesting feature of this formulation is that the discrete biharmonic approximation

becomes poorly conditioned as the dimension n increases Thus� the problems becomes

di�cult to solve for even moderate values of the Reynolds number R This di�culty can

be overcome by preconditioning the problem

We have followed Brown and Saad ��� and preconditioned f with the fast biharmonic

solver bihar of Bj orstad �
� �available from netlib�� and solved the preconditioned problem

A��f�u� � �

with n � 	�� ��� variables and for various values of the Reynolds number R Figures

�� and �� show the streamlines for R � ��� and R � 	���� respectively� while Figures

�	� and �		 are the equivorticity contours These solutions were obtained by the simple

continuation process R � ��� ���� 	����

These �gures show a primary vortex in the center of the cavity and two secondary

vortices in the corners The stream function contour lines have � values of

��		� ��	� ����� ����� ����� ����� ���	�
������	� ������	� �����	� ����	� ���	� �����

while the equivorticity contours have � � ��� values of

�
��� ����� �	��� 	��� ���� 
��
These are the values used by Schreiber and Keller ����

	�
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��� Human Heart Dipole

The human heart dipole problem arises in the experimental electrolytic determination of

the resultant dipole moment in the human heart The problem is of the form

f��x� � x� � x� � �mx

f��x� � x	 � x� � �my

f	�x� � x
x� � x�x� � x�x	 � xx� � �A

f��x� � x�x� � xx� � x
x	 � x�x� � �B

f
�x� � x��x
�

 � x���� �x	x
x� � x��x

�
� � x��� �x�x�x � �C

f��x� � x	�x
�

 � x��� � �x�x
x� � x��x

�
� � x�� � �x�x�x � �D

f��x� � x�x
�x
�

 � �x��� � x	x��x

�
� � �x�
� � x�x��x

�
� � �x�� � x�x�x

�
 � �x���� �E

f�x� � x	x
�x�
 � �x���� x�x��x�� � �x�
� � x�x��x�� � �x��� x�x�x� � �x���� �F

with data �mx� �my� �A� �B� �C � �D� �E� �F  In this problem n � �

This problem was formulated by Nelson and Hodgkin ��	� In our formulation we have

followed Dennis� Gay� and Vu �		� They also propose a six�variable version of this problem�

obtained by using the �rst two equations to eliminate two of the �rst four variables Further

reductions are possible Indeed� Morgan� Sommese� and Watson ���� showed that the human

heart problem can be reduced to the solution of one quadratic equation in one unknown

We have not implemented any of these reduced problems

There are �ve versions of the eight�variable problem depending on the data and the

starting point The last three versions can be di�cult to solve� even from the standard

starting point

An interesting aspect of this problem is that the system is unchanged if the variables

are permuted according to the

�	� �� �� �� 
� �� �� ��� ��� 	� �� �� �� 
� �� ��

permutation This implies that solutions appear in pairs In all of these problems� we have

only found one pair of solutions If a unique solution is desired� the bound x� � � can be

imposed There are no natural bounds associated with this problem� but the components

of the solution lie in the interval ����� ���

��� Combustion of Propane � Full Formulation

This chemical equilibrium problem describes the combustion of propane in air Each un�

known represents the number of moles of a given product formed for each mole of propane�

	�



ten products are considered in this reaction The problem is of the form

f��x� � x� � x� � �

f��x� � �x� � x� � x� � x� � x � x� � �x�� � R

f	�x� � �x� � �x
 � x� � x� � �

f��x� � �x	 � x� � �R

f
�x� � K
x�x� � x�x


f��x� � K�x
���
� x

���
� � x

���
� x�



p

x��

����

f��x� � K�x
���
� x

���
� � x

���
� x�



p

x��

����

f�x� � Kx� � x�x



p

x��

�

f��x� � K�x�x
���
	 � x�x�



p

x��

����

f���x� � K��x
�
� � x��x��



p

x��

�

f���x� � x�� �
P��

j�� xj �

with data K
� � � � � K��� and parameters p and R The parameter p is the pressure in at�

mospheres and R expresses the relative amounts of air and fuel In this problem n � 		�

p � ��� and R � 	� In our formulation of this problem we have followed Meintjes and

Morgan ����

This problem may be di�cult to solve because of the presence of square roots in the

function components and the possibility of generating an iterate with a negative component

There are no di�culties in solving this problem from the standard starting point xs� but

an unconstrained algorithm is likely to generate an iterate with a negative component from

the starting point 	�xs The bounds xj � � can be used to solve this problem

��� Combustion of Propane � Reduced Formulation

This chemical equilibrium problem� like the preceding one� describes the combustion of

propane in air This formulation� however� uses the element variables of Meintjes and

Morgan ���� to avoid the square roots in the function evaluations The formulation of the

	�



problem in terms of element variables also reduces the problem to a system of the form

f��x� � x�x� � x� � �x


f��x� � �x�x� � x� � �R��x
�
� � x�x

�
	 � R�x�x	 � R�x�x� �Rx� �Rx


f	�x� � �x�x�	 � R�x�x	 � �R
x
�
	 �R�x	 � �x


f��x� � R�x�x� � �x�� � �Rx


f
�x� � x�x� � x� �R��x
�
� � x�x

�
	 �R�x�x	 �R�x�x� � Rx� �R
x

�
	 �R�x	 � x�� � 	

with data R
� � � � � R�� which depends on the parameters p and R described previously In

this problem n � 
� p � ��� and R � 	� �We note that there is a typographical error in

the paper of Meintjes and Morgan ����� the last term in the equation de�ning f� should be

��Rx
 and not ��Rx
�

This system of equations has four solutions with real components for p � �� and R � 	�

There is only one solution with all positive components� this is the desired solution to the

physical problem

This problem is not di�cult to solve� but unless bounds are imposed� the physical

solution may not be found An unconstrained algorithm usually �nds the physical solution

from the standard starting point xs but tends to converges to non�physical solutions from

the starting points 	�xs and 	��xs The bounds xj � � can be used to obtain the physical

solution

	�



� Least Squares Problems

Solutions to a nonlinear least squares problem subject to equality and inequality constraints

are local minimizers of the problem

minfkf�x�k�� � cl � c�x� � cug�

where f � IRn � IRm de�nes the residuals of the least squares problem� c � IRn � IRp is

the constraint function� and cl and cu are bounds Equality constraints are obtained when

components of cl and cu have the same value Problems in this section include bound�

constrained problems where c�x� � x� and equality constrained problems where cl � cu

��� Isomerization of ��pinene � Direct Formulation

This problem requires the determination of the reaction coe�cients in the thermal isomer�

ization of ��pinene The linear kinetic model proposed for this problem is of the form

y�� � ��
� � 
��y�

y�� � 
�y�

y�	 � 
�y� � �
	 � 
��y	 � 

y
 ��	�

y�� � 
	y	

y�
 � 
�y	 � 

y


where 
�� � � � � 

 are the unknown coe�cients Initial conditions for the di�erential equation

are known In this problem the relative concentrations of ��pinene and three by�products

are measured at eight time points� while the relative concentration of a fourth by�product is

derived from the other concentrations Thus� at a set of eight time points ��� � � � � �� vectors

of concentration measurements zj are given for y at �j � where y is the solution to the system

of di�erential equations which governs the reaction The ��pinene problem is to minimize

X
j��

ky��j � 
�� zjk�� �����

where 
 is the vector with components 
�� � � � � 

 of unknown reaction coe�cients This

formulation of the ��pinene problem is based on the work of Box� Hunter� MacGregor� and

Erjavac ���

The ��pinene problem is a typical example of inverse problems involving di�erential

equations that arise in chemical kinetics In the general case the reaction is governed by a

system of p di�erential equations

y��t� � F �t� y�t�� 
�� a � t � b�

��



which depend on a vector 
 � IRq of unknown parameters Initial conditions for y � IRp

may also be provided� and may also depend on 
 In the ��pinene problem p � q and F is

bilinear in 
 and y� but these conditions do not hold in general

We formulate the ��pinene problem as an unconstrained nonlinear least squares problem

involving a numerical approximation u�t� 
� to y�t� 
� obtained from a fourth�order Runge�

Kutta scheme over n� time intervals The optimization problem is then to determine a

parameter vector 
 � IR
 that solves the problem

min

��
	

X
j��

ku��j� 
�� zjk� � 
i � �� i � 	� � � � � 


�
� � ����

This is a nonlinear least squares problem with m � �� equations and n � 
 variables The

constraints 
i � � arise from physical considerations For su�ciently large n�� we expect

that solutions to problem ���� will be close to a solution of problem ����

An approximation to the Jacobian matrix for this formulation of the ��pinene problem

can be obtained by solving a system of coupled ordinary di�erential equations consisting of

the original ��pinene equations and �
 additional equations The additional equations are

obtained by di�erentiating each of the ��pinene equations ��	� by 
j for j � 	� � � � � 
� and

noting that if

wi�j�� � 
� � ��jyi�� � 
��

then

w�i�j�� � 
� � ��jy
�
i�� � 
��

The approximation to the Jacobian matrix obtained by this method is more accurate than

an approximation based on di�erences of function values

In our numerical results we used a Runge�Kutta method with n� � �� time intervals

The solution of this version of the ��pinene problem is not di�cult to obtain from the

standard start 
s� but becomes increasingly di�cult to solve from remote starting points

The approximation u�t� �� for the optimal 
� shown in Figure �	� is an excellent �t to the

data

Numerical di�culties in solving this version of the ��pinene problem are mainly due to

the result that with �xed�steplength Runge�Kutta techniques and su�ciently large values

of 
� the approximation u�t� 
� becomes unbounded as t increases In contrast� the true

solution y�t� 
� of the di�erential equations problem remains bounded for t � � for any

nonnegative choice of 
�� � � � � 

 Hence� our test problem becomes di�cult to solve given

poor initial estimates for 
 We illustrate this remark by noting that while the initial residual

norm computed at the standard starting point was ����� the residual computed at 
� times

this starting point was ����� 	���� Hence� this problem is quite challenging with respect

to choice of initial estimates

�	
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Figure �	� The �ve components of u�t� 
� for the ��pinene problem with the optimal 


In general� extreme sensitivity to initial 
 estimates is a hallmark of problems of this type

As with the ��pinene example� integration may be done using a �xed�steplength numerical

solver of initial value problems Decreasing the steplength does not a�ect the size of the

optimization problem and may enlarge the set of possible 
 for which the solver is stable� but

of course adds to the computational expense of residual and Jacobian evaluations A more

interesting approach is to use an adaptive solver� which automatically adjusts steplengths

to correspond to the level of accuracy requested by the user� and can be expected to be

more stable than �xed steplength solvers The resultant approximation u�t� 
� may not be

smooth with respect to small variations in 
 �Lyness ��
� provides an interesting discussion

of this point�� but this approach allows the possibility of using optimization software that

makes use of variable�accuracy evaluations to avoid the expense of full accuracy solutions

whenever possible This challenging category of test problems has been neglected in the

literature

��� Isomerization of ��pinene � Collocation Formulation

The second ��pinene problem requires the determination of the reaction coe�cients in

the thermal isomerization of ��pinene� in this problem� however� collocation is used to

approximate the solution of the di�erential equations that de�ne the kinetics of the problem

This formulation of the ��pinene problem is based on the work of Tjoa and Biegler ����

The collocation method for initial value problems is a special case of the collocation

method for boundary value problems that was used in Sections �	 and �� Recall that the

��



k�stage collocation method is de�ned in terms of a partition

a � t� � t� � � � �� tn� � tn��� � b

of �a� b�� and a set of k collocation points in each interval �ti� ti��� The collocation method

approximates the solution of the system of di�erential equations by a vector�valued function

u� � �a� b� � IRp� where each component of u� is a polynomial of order k � 	 in each

subinterval �ti� ti��� Thus u� is de�ned in terms of n�p�k�	� parameters In the collocation

formulation these parameters are determined by requiring that u� � C�a� b� and that u�

satisfy the di�erential equation at the collocation points In the usual case we are given

p initial values� these initial values together with the continuity and collocation equations

lead to a system of n�p�k � 	� equations in the n�p�k � 	� parameters that de�ne u�

We now formulate the ��pinene problem as a minimization problem subject to equality

constraints Let x � IRn be the vector that de�nes u�� with n � n�p�k � 	� We de�ne

u��� � x� � u���� to make explicit the dependence of u� on x If we write the initial value�

continuity� and collocation equations as constraints of the form

c�x� 
� � ��

where c � IRn�q � IRn� then the optimization problem is

min

��
	

mX
j��

ku���j� x�� zjk� � c�x� 
� � �

�
� �

The l� penalty approach to the solution of this problem leads to a least squares problem of

the form

min

��
	

mX
j��

ku���j � x�� zjk� � �
�

nX
i��

�ici�x� 
�
�

�
� �

where �i 	 �� while the augmented Lagrangian approach leads to a problem of the form

min

��
	

mX
j��

ku���j � x�� zjk� � �
�

nX
i��

�i

�
ci�x� 
� �

i
�i

���
� �

where �i 	 � and i � IR is an estimate of the Lagrange multiplier for the constraint ci

Both approaches lead to least squares problem with mp� n equations and n� q variables

Recall that n � n�p�k�	� and that n� is the number of subintervals� k�	 is the order of the

polynomials that de�ne u� in each subinterval� p is the number of di�erential equations in

the model� q is the number of components in the parameter vector 
� andm is the number of

data points Note that n� and k can be speci�ed� while the other parameters are dependent

on the problem Arbitrarily large�dimensional test problems can be generated by selecting

larger values of n�

��
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Figure ��� Spurious solution u�t� 
� to the ��pinene problem

For the ��pinene problem� p � q � 
� and m � � We selected k � � and n� � 	�� so our

least squares problem has ��� equations and �

 variables Convergence from the standard

starting point is not di�cult The �nal approximation obtained for y was identical to that

shown in Figure �	

The collocation approach demonstrates the value of using simple constraints on the

variables to enforce the known nonnegativity of the components of 
 For su�ciently remote

starting points� unconstrained least squares algorithms applied to this problem may converge

to a di�erent local minimizer with some components of 
 negative� with u as shown in

Figure �� A bound version would not have encountered this spurious local solution

Simple bound constraints on the variables de�ning the approximation u� can also be used

to enforce u��tj� � � at the node points tj ! a desirable feature in chemical engineering

problems where negative concentrations have no physical meaning Similarly� if physical

considerations dictate that a given component of u� be increasing or decreasing� simple

constraints on the variables can ensure that a given component of u���tj� is of the correct

sign These capabilities for constraining u are not present in the direct approach

��� Coating Thickness Standardization

The coating thickness problem arises from the need to nondestructively determine any

nonuniformity in the lead�tin coating on samples of standard reference materials This is

a multiple�response data��tting problem communicated by Janet Rogers of the National

Institute of Standards and Technology

��



Figure ��� Coating thickness standards model z����� ��� for optimal x�� � � � � x�

At each of n� isolated points on the surface� we have measurements yi for the coating

thickness� the relative abundance yi�n� of lead to tin� and the surface coordinates ���� ���i

at which the measurements were made All four of these values are subject to error We

model the thickness of the coating and the relative abundance of tin to lead using simple

bilinear tensor�product functions

z����� ��� � x� � x��� � x	�� � x������

z����� ��� � x
 � x��� � x��� � x�����

We seek values of the parameters x�� � � � � x� and small perturbations x�� � � � � x��n� to the

measured coordinates ���� ���i which �t the data in a least squares sense This formulation

leads to a least squares problem with residuals of the form

fi�x� � z�����i � x�i � ���i � x�i�n� �� yi� 	 � i � n��

fi�n� �x� � z�����i � x�i � ���i � x�i�n� �� yi�n� � 	 � i � n��

and

fi��n� �x� � wi x�i� 	 � i � �n��

where yi and ���i� ���i are the measured data and wi is a set of weights These residuals

de�ne a least squares problem with n � � � �n� variables and m � �n� equations In the

data supplied by Susannah Shiller of the National Institute of Standards and Technology�

n� � ��� so that n � 	�� and m � �
�

�
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Figure ��� Exponential data �tting problem I

This problem is not di�cult to solve from any of the starting values Convergence always

takes place to the same minimizer At the solution x� we have

kf�x��k � ���	������

which reveals an excellent �t of the model to the data� since yi is of order 	�

A plot of the model z� as a function of ���� ���� with x�� � � � � x� set to the optimal values

for the parameters� appears in Figure �� This plot suggests that the model is almost linear

in the region of interest However� the relationship is not exactly linear because a calculation

shows that in this region the �rst component of the gradient of the model varies over the

interval �	���� 	����� while the second component varies over the interval �	�	�� 	����

We have omitted a plot of the model z� with optimal x
� � � � � x because the plot is

similar Moreover� for this model we also conclude that the relationship between the model

and the independent parameters is almost linear in the region of interest

��	 Exponential Data Fitting I

This is an exponential data �tting problem using data supplied by A M Sargeson from the

Research School of Chemistry of the Australian National University The problem is of the

form

fi�x� � yi �
�
x� � x� exp��tix�� � x	 exp��tix
�

�
�

with ti � 	��i� 	� and data yi In this problem m � �� and n � 
 The formulation of this

problem is due to Osborne ��
�

��
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Figure �
� Exponential data �tting problem II

This problem is not di�cult to solve from the standard starting point xs and from

the starting point 	�xs� but under�ows occur from the starting point 	��xs The bounds

�	� � xj � 	� for 	 � j � 
 can be used to solve this problem At the solution x� we have

kf�x��k � ���������� 	����

A plot of the data and the model with the optimal parameters appears in Figure ��

��
 Exponential Data Fitting II

This is an exponential data �tting problem using data supplied by W J Caelli from the

Research School of Physical Sciences of the Australian National University The problem

is of the form

fi�x� � yi �
�
x� exp��tix
� � x� exp���ti � x��

�x��

� x	 exp���ti � x���
�x�� � x� exp���ti � x���

�x�
�
�

with ti � �i � 	��	� and data yi In this problem m � �
 and n � � The formulation of

this problem is due to Osborne ��
�

This problem is not di�cult to solve from the standard starting point xs� but under�ows

occur from other starting points The bounds � � xj � 	� for 	 � j � 	� can be used to

solve this problem At the solution x� we have

kf�x��k � ����������

A plot of the data and the model with the optimal parameters appears in Figure �


��
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Figure ��� The thermistor resistance problem

��� Analysis of Thermistor Resistance

The thermister resistance problem arises in the analysis of the resistance of a thermistor

as a function of the temperature The data was supplied by J H Hadley of the Shell

Development Company The problem is of the form

fi�x� � x� exp



x�

�ti � x	�

�
� yi�

with data yi at the time points ti � 
 � �
i for i � 	� � � � � m In this problem m � 	� and

n � � The formulation of this problem is due to Meyer ����

This problem is di�cult to solve even from the standard starting point xs At the

solution x� we have

kf�x��k � �������
 �

An algorithm can fail from other starting points because the dependence of this problem on

ti is lost for large values of x	 In particular� if x	 is su�ciently large� this problem reduces

to a one�variable problem in the variable

z � x� exp



x�
x	

�
�

This situation can be avoided by imposing the bound x	 � 	�	 This bound is fairly tight

since at the solution� x	 � ��
���

A plot of the data and the model with the optimal parameters appears in Figure ��

��
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Figure ��� The enzyme problem

��� Analysis of an Enzyme Reaction

This problem arises in the analysis of the kinetic data for an enzyme reaction The problem

is of the form

fi�x� � yi � x��u
�
i � uix��

u�i � uix	 � x�
�

with data yi and ui In this problem m � 		 and n � � This problem was formulated by

Kowalik and Morrison ����

This problem can be solved from the standard starting point xs without di�culty At

the solution x� we have

kf�x��k � ��	�
�
��� 	����

From the starting point 	�xs� algorithms may be attracted to a local minimizer at in�nity

with x� � �	����
 For this minimizer

kf�x��k � �����
�	�� 	����

There are no bounds in this problem� but imposing the bounds x	 � � and x� � � guarantees

that the function is well de�ned� since ui � � for all i The local minimizer at in�nity can

be avoided by imposing the bounds xj � 	�� for 	 � j � �

A plot of the data and the model with the optimal parameters appears in Figure ��

��



��� Chebyshev Quadrature

The Chebyshev problem arises from the determination of the nodes of a quadrature formula

with equal weights The problem is of the form

fi�x� �
	

n

nX
j��

Ti�xj��
Z �

�
Ti��� d��

where Ti is the i�th Chebyshev polynomial shifted to the interval ��� 	� In this problem any

m � n is allowed� but in the discussion below it is assumed that m � n This problem was

formulated by Fletcher �	��

The Chebyshev problem has a zero residual solution for 	 � n � � and for n � �

Note that the solution is not unique because any permutation of the variables also yields a

solution Thus� there are n� distinct zero residual solutions Such a zero residual solution can

be obtained without di�culty from the standard starting point� but the problem becomes

di�cult to solve from the starting point 	�xs unless bounds are imposed Since the nodes

are required to be in the interval ��� 	�� the bounds � � xj � 	 for 	 � j � n are natural

There seems to be a unique minimum of the least squares problem for n � � and n � 		

They are given by

kf�x��k � ��
������� 	���� n � ��

kf�x��k � ��
��	���� 	���� n � 		�

We have found two local minima for n � 	� They are given by

kf�x��k � ���������� 	���� kf�x��k � �������	�� 	����

If an algorithm is started from the standard starting point� it will usually converge to the

second minimum given above There are multiple local minima for n 	 		

��



� Minimization Problems

The problem of minimizing a function f � IRn � IR subject to equality and inequality

constraints can be expressed in the form

minff�x� � cl � c�x� � cug�

where c � IRn � IRp is the constraint function� and cl and cu are bounds Equality constraints

are obtained when components of cl and cu have the same value Many of the problems in

this section are bound�constrained problems� in this case c�x� � x

	�� Elastic�Plastic Torsion

The elastic plastic torsion problem arises from the determination of the stress �eld on an

in�nitely long cylindrical bar The in�nite�dimensional version of this problem is of the

form

minfq�v� � v � Kg�
where q � K � IR is the quadratic

q�v� �

Z
D
n
�
�krv�x�k�� cv�x�

o
dx

for some constant c� and D is a bounded domain with smooth boundary The convex set

K is de�ned by

K � fv � H�
��D� � jv�x�j � dist�x� �D�� x � Dg�

where dist��� �D� is the distance function to the boundary of D� and H�
��D� is the Hilbert

space of all functions with compact support in D such that v and krvk� belong to L��D�
This formulation and the physical interpretation of the torsion problem are discussed�

for example� in Glowinski �	�� pp �	�

� A plot of the solution to the torsion problem

with D � ��� 	�� ��� 	� and c � �
 appears in Figure �	

A �nite element approximation to the torsion problem is obtained by triangulating D
and replacing the minimization of q over H�

��D� by the minimization of q over the set of

piecewise linear functions that satisfy the constraints speci�ed by K The �nite element

approximation thus gives rise to a �nite�dimensional minimization problem whose variables

are the values of the piecewise linear function at the vertices of the triangulation

We develop a �nite element approximation to a minimization problem with a quadratic

q of the general form

q�v� �

Z
D
n
�
�wq�x�krv�x�k�� wl�x�v�x�

o
dx� ���	�

where wq � D � IR and wl � D � IR are functions de�ned on the rectangle D In the torsion

problem wq � 	 and wl � c

�	



Figure �	� Torsion problem with c � �


Let D � �l�� u��� �l�� u�� be a rectangle in IR� Vertices zi�j � D for a triangulation of

D are obtained by choosing grid spacings hx and hy and de�ning grid points

zi�j � �l� � ihx� l� � jhy�� � � i � nx � 	� � � j � ny � 	�

such that znx���ny�� � �u�� u�� The triangulation consists of triangular elements TL with

vertices at zi�j � zi���j � and zi�j�� and elements TU with vertices at zi�j � zi���j � and zi�j��

A �nite element approximation to the torsion problem is obtained by minimizing q over

the space of piecewise linear functions v with values vi�j at zi�j  The approximation to the

integral Z
D wq�x�krv�x�k�dx

over the element TL is the quadratic qLi�j � where

qLi�j�v� � �Li�j

��
	


vi���j � vi�j

hx

��
�

�
vi�j�� � vi�j

hy

��
�
� �

�Li�j �
hxhy
�

fwq�zi�j� � wq�zi���j� � wq�zi�j���g �

Similarly� the approximation over the element TU is the quadratic qUi�j � where

qUi�j�v� � �Ui�j

��
	


vi���j � vi�j

hx

��
�

�
vi�j�� � vi�j

hy

��
�
� �

��



�Ui�j �
hxhy
�

fwq�zi�j� � wq�zi���j� � wq�zi�j���g �
These calculations show that the �nite element approximation to the quadratic ��	� leads

to a quadratic programming problem of the form

minfq�v� � v � �g� �����

where q is the quadratic

q�v� �
	

�

X�
qLi�j�v� � qUi�j�v�

�
� hxhy

X
wl�zi�j�vi�j � �����

Note that in this formulation the quadratic qLi�j is de�ned only when � � i � nx and

� � j � ny � while qUi�j is de�ned when 	 � i � nx � 	 and 	 � j � ny � 	 Also note that

for the torsion problem wq � 	 and wl � c and that the feasible set � is

� � fv � IRnxny � jvi�j j � di�jg�

where di�j is the value of dist��� �D� at zi�j 
In general� the problem becomes easier to solve as c increases because then the linear

term in q dominates Numerical results for the elastic�plastic torsion problem are presented�

for example� by O"Leary and Yang ����� Elliott and Ockendon �	�� pp 	���	�
�� and Mor#e

and Toraldo ����

	�� Pressure Distribution in a Journal Bearing

The journal bearing problem arises in the determination of the pressure distribution in a

thin �lm of lubricant between two circular cylinders The in�nite�dimensional version of

this problem is of the form

minfq�v� � v � Kg�
where q � K � IR is the quadratic ��	� with

wq���� ��� � �	 � � cos ���
	� wl���� ��� � � sin ��

for some constant � in ��� 	�� and D � ��� ���� ��� �b� for some constant b 	 � The convex

set K is de�ned by

K � fv � H�
��D� � v � � on Dg�

In the formulation of Cimatti ���� all functions in K were required to be periodic in the �rst

argument with period ��� in our formulation we have neglected the periodicity conditions

A �nite element approximation to the journal bearing problem is obtained as in the

torsion problem The result is a quadratic programming problem of the form ����� where q

��



Figure ��� Journal bearing problem with b � 	� and � � ��	

is the quadratic de�ned by ���� For the journal bearing problem wq���� ��� � �	�� cos ���	

and wl���� ��� � � sin ��� and the feasible set � is

� � fv � IRnxny � vi�j � �g�

A plot of the solution to the �nite�dimensional approximation to the journal bearing

problem with b � 	� and � � ��	 appears in Figure �� This problem is harder to solve

than the elastic�plastic torsion problem unless the problem is scaled so that the diagonal

elements in the matrix that represents q are unity Numerical results for the journal bearing

problem are presented� for example� by Lin and Cryer ����� Cimatti and Menchi �	��� and

Mor#e and Toraldo ����

	�� Minimal Surfaces

The determination of the surface with minimal area and given boundary values in a convex

domain D is an in�nite�dimensional optimization problem of the form

minff�v� � v � Kg�

where f � K � IR is the functional

f�v� �
Z
D
�
	 � krv�x�k�

����
dx�

and the set K is de�ned by

K �
n
v � H��D� � v�x� � vD�x� for x � �D

o

��



Figure ��� Enneper"s minimal surface

for some boundary data function vD � �D � IR The boundary function vD uniquely de�nes

the solution to the minimal surface problem

An interesting minimal surface discovered by A Enneper is obtained by de�ning vD on

D � ���
� �

�
��� ���

� �
�
�� by

vD���� ��� � u� � v��

where u and v are the unique solutions to the equations

�� � u� uv� � 	

�
u	� �� � �v � u�v �

	

�
v	�

For more information on this minimal surface� see Nitsche ���� pp ����
� A plot of this

minimal surface appears in Figure ��

A �nite element approximation to the minimal surface problem is obtained by minimiz�

ing f over the space of piecewise linear functions v with values vi�j at zi�j � where zi�j � IR�

are the vertices of a triangulation of D with grid spacings hx and hy  The values vi�j are

obtained by solving the minimization problem

minf
X�

fLi�j�v� � fUi�j�v�
�
� v � IRng�

where the functions fLi�j and fUi�j are de�ned by

fLi�j�v� �
hxhy
�

��
		 �



vi���j � vi�j

hx

��
�

�
vi�j�� � vi�j

hy

��
�
�
���

�




fUi�j�v� �
hxhy
�

��
		 �



vi���j � vi�j

hx

��
�

�
vi�j�� � vi�j

hy

��
�
�
���

�

Note that in this formulation fLi�j is de�ned only when � � i � nx and � � j � ny � while

fUi�j is de�ned when 	 � i � nx � 	 and 	 � j � ny � 	

	�	 Optimal Design with Composite Materials

This optimal design problem requires determining the placement of two elastic materials

in the cross�section of a rod with maximal torsional rigidity Our formulation follows the

approach of Goodman� Kohn� and Reyna �	��

Let D in IR� be a bounded domain� and let w � jDj� where jDj denotes the area of D
The solution of the optimal design problem is a subset � of D that solves the problem

minfF�v��� � v � H�
��D�� j�j � wg

where

F�v��� �
Z
D
n
�
���x�krv�x�k�� v�x�

o
dx�

and

��x� � ��� x � �� ��x� � ��� x �� ��

The reciprocals of the constants �� and �� are the shear moduli of the elastic materials in

the rod We assume that �� � ��

Goodman� Kohn� and Reyna �	�� formulate the optimal design problem in terms of a

family of problems of the form

minff��v� � v � H�
��D�g�

where f� � H�
��D�� IR is the functional

f��v� �
Z
D
n
�� �krv�x�k� � v�x�

o
dx

and �� � IR � IR is a piecewise quadratic In this formulation  is a Lagrange multiplier

associated with the optimal design problem� and the piecewise quadratic �� � IR� IR is of

the form

���t� �

������
����	

�
���t

�� � � t � t��

��t��t � �
� t��� t� � t � t��

�
����t

� � t��� � ��t��t� � �
� t��� t� � t�

with the breakpoints t� and t� de�ned by

t� �



�

��
��

��
�
� t� �



�

��
��

��
�
�

��



The de�nition of the breakpoints implies that ��t� � ��t�� and thus � is continuously

di�erentiable The solution of the optimum design requires determining a  that maximizes

the mapping � � IR � IR de�ned by

��� � ��� � ���� � ���w��

where ��� is the minimum value of f� Goodman� Kohn� and Reyna �	�� describe how the

solution of the problem de�ned by � can be used to generate a minimizing sequence for the

optimal design problem

In the sequel we consider only the problem of minimizing f� for a �xed value of  In

our numerical results we used �� � 	 and �� � �� so that t�� �  and t�� � � A plot of

the norm krvk of the gradient of the stress �eld v with D � ��� 	�� ��� 	� and  � �����

appears in Figure �� Figure �
 is the contour plot for this surface In both �gures we

have used nx � ny � 	�� so that n � 	��

A �nite element approximation to this problem is obtained by minimizing f� over the

space of piecewise linear functions v with values vi�j at zi�j � where zi�j � IR� are the vertices

of a triangulation of D with grid spacings hx and hy  The values vi�j are obtained by solving

the minimization problem

minf
X�

fLi�j�v� � fUi�j�v� � hxhyvi�j
�
� v � IRng�

where the functions fLi�j and fUi�j are de�ned by

fLi�j�v� �
hxhy
�

��
�
d�i�j�v�

�
� fUi�j�v� �

hxhy
�

��
�
d�i�j�v�

�

with

d�i�j�v� �

��
	


vi���j � vi�j

hx

��
�

�
vi�j�� � vi�j

hy

��
�
�
���

Note that in this formulation fLi�j is de�ned only when � � i � nx and � � j � ny � while

fUi�j is de�ned when 	 � i � nx � 	 and 	 � j � ny � 	

Figures �� and �
 show that krvk is changing slowly in the center of D� where

krv�x�k � t� On the other hand� the gradient changes quite rapidly in the region where

t� � krv�x�k � t� We are not even guaranteed a continuous gradient rv in this region

Thus� approximation by piecewise linear elements seems to be fully justi�ed in this problem

The rod has the material with greater shear modulus 	��� where the shear krv�x�k 	 t��

and the weaker material where krv�x�k � t� Figure �� shows that in the optimal design�

the weaker material is placed in the center and corners of the rod

The region where t� � krv�x�k � t� is the homogenized region The geometry and

placement of the region of homogenization are of interest in the optimal design It is

��



Figure ��� Norm krvk for the stress �eld v in a design with composite materials
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Figure �
� Contours of krvk for the stress �eld v in a design with composite materials
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Figure ��� Region of homogenization in a design with composite materials � n � 	�� �

known� for example� that in general the boundary of this region is not smooth The plot of

this region in Figure �� indicates the unusual nature of this region

The contour plot in Figure �
 and the plots of the region of homogenization in Figure

�� are similar to those obtained by Goodman� Kohn� and Reyna �	�� Note� however� that

in these plots we used  � ������ while Goodman� Kohn� and Reyna �	�� used  � �����

Another di�erence is that the homogenized region in these plots is connected� while this is

not the case in the results of Goodman� Kohn� and Reyna �	��

	�
 Inhomogeneous Superconductors� ��D Ginzburg�Landau

This problem arises in the solution of the Ginzburg�Landau equations for inhomogeneous

superconductors in the absence of a magnetic �eld The one�dimensional system under

consideration consists of alternating layers of lead and tin Our formulation is based on the

work of Garner and Benedek �	
�

The optimization problem is to minimize the Gibbs free energy as a function of the

temperature The in�nite�dimensional version of this problem is of the form

minff�v� � v��d� � v�d�� v � C���d� d�g�

where �d is the width of the material� and f is the Gibbs free energy function In this

problem

f�v� �
	

�d

Z d

�d

�
����jv���j�� �

�����jv���j��
$h�

�m
jv����j�

�
d��

��



76.84

76.86

76.88

76.9

76.92

76.94

76.96

76.98

77

77.02

77.04

-4 -3 -2 -1 0 1 2 3 4

Figure ��� Solution to the superconductivity problem with t � 


the functions � and � are piecewise constant for a �xed value of the temperature� $h is

Planck"s constant� and m is the mass of the electron

The functions � and � are constant in the intervals that correspond to the lead and the

tin Since in this problem the lead in the material corresponds to the interval ��ds� ds� and
tin in the remaining part of the interval ��d� d�� the function � is de�ned by

���� �

������
����	

�N � �d � � � �dS
�S � �dS � � � dS �

�N � dS � � � d

Similarly� the function � is de�ned by

���� �

������
����	

�N � �d � � � �dS
�S � �dS � � � dS �

�N � dS � � � d

The constants �S and �N are negative� but �S and �N are positive

As noted above the functions � and � are piecewise constant for a �xed value of the

temperature� Thus� the solution to the one�dimensional Ginzbug�Landau problem depends

on the temperature t Values of interest are t � ������ ������ a typical value is t � 
 A plot

of the solution to the superconductivity problem with t � 
 is shown in Figure ��

A �nite element approximation to the superconductivity problem is obtained by mini�

��



mizing f over the space of piecewise linear functions v with values vi at ti� where

�d � t� � t� � � � � � tn � tn�� � d�

We assume that there are indices n� and n� such that tn� � �dS and tn� � dS � where

	 � n� � n� � n This guarantees that the ti do not straddle a point of discontinuity of

the functions � and � The values vi are obtained by solving the minimization problem

minf 	

�d

nX
i��

fi�v� � v � IRng�

where

fi�v� � hi

�
�i
�

v	i�� � v	i
vi�� � vi

�
�i
	�

v
i�� � v
i
vi�� � vi

�
$h�

�m



vi�� � vi

hi

���
�

with hi � ti�� � ti the length of the i�th interval� and the constants �i and �i the values of

the functions � and � in the interval �ti� ti��� The constraint that v��d� � v�d� is taken

into account by requiring that vn�� � v�

	�� Lennard�Jones Clusters

The determination of the minimum energy con�guration of a cluster of atoms or molecules

is known as the molecular conformation problem This is a central problem in the study of

cluster statics For additional background on this problem� see Hoare ����

Given the positions p�� p�� � � � � pn of n molecules �points� in IRd� the energy potential

function is de�ned as

Vd�p� �
nX
j��

j��X
i��

v�jjpj � pijj���

where v � IR � IR is the potential function between pairs of atoms We consider the

Lennard�Jones potential function de�ned by

v�r� � r��� � �r���

The molecular conformation problem is to determine a con�guration �positions for the n

points� such that the energy function Vd is minimized

In the sequel we consider both the ��dimensional �d � �� and the ��dimensional �d � ��

case of the total energy potential function In both cases we determine con�gurations

that are minimal in the sense that they correspond to a local minimizer of the molecular

conformation problem with the least known value of the energy function� we do not claim

that these minimizers produce the global minimum

A minimal con�guration for the ��dimensional case with n � 	��� is shown in Figure ���

while Figure �� is a minimal con�guration for the ��dimensional case with n � ��� atoms

The con�guration in Figure �� clearly shows that minimal on�gurations are obtained by

�	



packing the atoms into a structured tight con�guration The same remark applies to the

con�guration in Figure ��� but now the structure is not clear� this is an advantage of the

��dimensional case Note that the bonding that is shown in Figure �� is created by the

program used to produce this �gure� the molecular conformation problem does not specify

any bonding

The potential function Vd is invariant with respect to permutations� translations� and

rotations of the n molecules Invariance with respect to translations can be eliminated� for

example� by translating the cluster so that the center of gravity is at the origin Also note

that the Lennard�Jones potential function v��� is a non�convex function that is bounded

below Indeed� v�r� approaches �� as r approaches �� while v�r� converges to zero as r

approaches �� The global minimum of v occurs at r � 	

The minimization of Vd is an unconstrained optimization problem in dn variables Find�

ing the global minimum

Ed � min
n
Vd�p� � p � IRdn

o
of Vd is a di�cult problem because the number of local minima grows exponentially with

the number of atoms n Algorithms that use random multiple starts or simulated annealing

techniques often fail to �nd the best known solution

Two�Dimensional Lennard�Jones Clusters

Table �	 lists the best known minima of the potential function Vd for the ��dimensional

�d � �� case We have only listed values for n � 	�� because of our interest in large

problems� but other values are of interest Details on the algorithm used to generate these

results will be published at a later date

The computational results in Table �	 show that the relationship between the best

known minima of V� and n is nearly linear A plot of the data clearly shows this linear

behavior Also note that the linear function

v��x� � ��x� ��� �� � ����� �� � �	����

�ts the data with less than a �% error� the largest relative error between the values predicted

by v� and the data in Table �	 is ���	�

There is partial theoretical justi�cation for the conjecture that the relationship between

the global minimum of V� and n is nearly linear because Xue� Maier� and Rosen ��	� have

shown that the minimum energy function value has a linear lower bound of the form ��n
for some positive constant � if the minimum pair distance is bounded away from zero If

the assumption that the minimum pair distance is bounded away from zero is dropped then

the lower bound is of the form ��np for some positive constant � and p � 	��	�

The minimal con�guration for n � 	��� is shown in Figure �� Note the regular

arrangement of the minimal con�guration This arrangement is fairly typical of minimal

��
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Figure ��� Minimal con�guration for a 	����cluster

Figure ��� Minimal con�guration for a ����cluster
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Table �	� Minima for the potential function Vd when d � �

con�gurations Figure �� suggests that in a minimal con�guration the atoms are arranged

by rows where the rows in the middle have k of atoms and the extreme rows have �k�	���

atoms A con�guration with k atoms in the middle row and �k�	��� atoms in the extreme

rows is possible if k is odd and the number of atoms is ��k� � 	��� In this con�guration

the number of atoms in the middle row is ���n� 	�������

The above argument suggests that in a minimal con�guration the number of atoms

in the middle rows should be approximately ���n � 	������� Note� in particular� that if

n � 	�	� the number of atoms in the middle row should be ���
 A careful inspection of

Figure �� shows that the rows in the middle have �� atoms

Three�Dimensional Lennard�Jones Clusters

Northby ���� has made an extensive study of the ��dimensional molecular conformation

problem Northby used an isocahedral con�guration search to �nd a lattice con�guration

with lowest possible function value� followed by a local minimization procedure from that

con�guration With this approach Northby ���� was able to compute minimal con�gurations

for n � 	
�� a table with the results can be found in his paper

Table �� lists the best known minima of the potential function Vd for the ��dimensional

�d � �� case The algorithm used to generate these results relies on some of the techniques

used by Northby� the details of this algorithm will be published at a later date

The computational results in Table �� show that the relationship between the best

��



n 	�� ��� ��� ��� 
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Table ��� Minima for the potential function Vd when d � �

know minima of V	 and n is nearly linear In this case the linear function

v	�x� � ��x� ��� �� � ���	� �� � 	���	��

�ts the data with less than a �% error� the largest relative error between the values predicted

by v	 and the data is Table �� is ���	� Note that linear function v	 can be used to predict

the best known minimum for 	�� � n � ��� For example� the minimal con�guration for

n � ��� is �������	� while the global minimum predicted by v	 is ���	����
We also note that the computational results in Table �� conform to the result of Xue�

Maier� and Rosen ��	� that the minimum energy function value has a linear lower bound of

the form ��n for some positive constant � if the minimum pair distance is bounded away

from zero The assumption that the the minimum pair distance is bounded away from zero

can be relaxed� but then the lower bound is of the form ��np for some positive constant �

and p � 	��	�

	�� Steady�State Combustion

The study of the steady�state in solid fuel ignition models leads to the in�nite�dimensional

optimization problem

minff��v� � v � H�
��D�g�

where f� � H�
��D�� IR is the functional

f��v� �
Z
D
n
�
�krv�x�k��  exp�v�x��

o
dx�

and  � � is a parameter This problem is the variational formulation of the boundary

value problem

��v�x� �  exp�v�x��� x � D� v�x� � �� x � �D
where � is the Laplacian operator Aris �	� pages��������� and Bebernes and Eberly ����

discuss this problem in the context of combustion problems

A local minimizer of the variational formulation is a solution of the boundary value

problem The converse of this statement fails Indeed� the boundary value problem has

two solutions� but only one of these solutions is a local minimizer of the variational Bratu

problem

�




Figure �	�� Solution to the variational Bratu problem with  � 


An interesting property of the variational Bratu problem is that f� is unbounded below

for any  	 � This can be seen by noting that if v is any constant� positive function� then

f���v� � �� as � � � Another interesting property of the variational Bratu problem

is that if FK 	 � is the Frank�Kamenetskii parameter then f� has a unique minimizer for

 � ��� FK�� but no minimizers for  	 FK If D is the unit square then FK 
 ���	 The

solution for  � 
 is shown in Figure �	�

A �nite element approximation to this problem is obtained by minimizing f over the

space of piecewise linear functions v with values vi�j at zi�j � where zi�j � IR� are the vertices

of a triangulation of D with grid spacings hx and hy  The values vi�j are obtained by solving

the minimization problem

minf
X�

fLi�j�v� � fUi�j�v�
�
� v � IRng�

where the function fLi�j and fUi�j are de�ned by

fLi�j�v� �
hxhy
�

��
	


vi���j � vi�j

hx

��
�

�
vi�j�� � vi�j

hy

��

� �Li�j �

�
� �

�Li�j �
�
	 fexp�vi�j� � exp�vi���j� � exp�vi�j���g �

fUi�j�v� �
hxhy
�

��
	


vi���j � vi�j

hx

��
�

�
vi�j�� � vi�j

hy

��

� �Ui�j

�
� �

�Ui�j �
�
	 fexp�vi�j� � exp�vi���j� � exp�vi�j���g �

��



Note that in this formulation fLi�j is de�ned only when � � i � nx and � � j � ny � while

fUi�j is de�ned when 	 � i � nx � 	 and 	 � j � ny � 	

The �nite element discretization of the variational Bratu problem shares many of the

properties of the in�nite dimensional version of the problem In particular� if D is the

unit square then FK 
 ���	 for reasonable values of the mesh size The solution of the

variational Bratu problem for  � FK is not di�cult provided the starting point is chosen

carefully� otherwise a minimization algorithm diverges

	�� Homogeneous Superconductors� ��D Ginzburg�Landau

In the Ginzburg�Landau model for superconductivity the Gibbs free energy isZ
D

�
��x�jv�x�j�� ��x�

�
jv�x�j�� 	

�m

����


$h

i
r� �e

c
A�x�

�
v�x�

����� � 	

��

����r�A��x�
����
�

dx�

where D is a three�dimensional region� v � IR	 � jC is a complex�valued function �the order

parameter� such that jvj� represents the local density of the superconducting electrons� and

the vector�valued function A � IR	 � IR	 is the vector potential In general� the functions

� � D � IR and � � D � IR vary with temperature and position The physical constants m�

e� c� and $h have the usual meaning

The solution of the Ginzburg�Landau equations for superconductors in the presence of

a magnetic �eld requires the determination of the functions v � IR	 � jC and A � IR	 � IR	

that minimize the Gibbs free energy In the formulation of this problem� we follow Doria�

Gubernatis and Rainer �	�� by considering a homogeneous superconductor with a vector

potential perpendicular to the superconductor These assumptions imply that v and A

depend only on the �rst two coordinates� and allow the Gibbs free energy functional to be

expressed in the dimensionless formZ
D
�
�jv�x�j�� �

� jv�x�j��
����r� iA�x��v�x�

���� � ��
����r� A��x�

����� dx�

where v � IR� � jC is the order parameter� A � IR� � IR� is the vector potential� and � is the

Ginzburg�Landau constant Boundary conditions are imposed on v and A The Gibbs free

energy functional is invariant under the transformation

v � v exp�iw�� A� A�rw�

for any function w � D � IR� and thus it is natural to require that jvj and r�A be periodic

In addition� the vector potential A must satisfyI
A�x� dx � ��nv�

where nv is an integer The periodicity conditions are satis�ed if we require that

v��� ly� � v��� ��� A��� ly� � A��� ��� � � � � lx�

��



v�lx� �� � v��� �� exp�iw��� ���� A�lx� �� � A��� �� �rw��� ��� � � � � ly�

Note that with this choice r � A is periodic for any function w � D � IR If we choose

w���� ��� � ��nv��� then the vector potential also satis�es the line integral condition

The �nite dimensional approximations to the Ginzburg�Landau equations used in this

problem follow the work of Doria� Gubernatis and Rainer �	��� Wang and Hu ����� and

Garner� Spanbauer� Benedek� Strandburg� Wright� and Plassmann �	�� Vertices zi�j � D
for a ��dimensional superconductor of the form D � ��� lx����� ly� are obtained by choosing

grid spacings hx and hy and de�ning grid points

zi�j � ��i� 	�hx���j � 	�hy�� 	 � i � nx � 	� 	 � j � ny � 	�

such that znx���ny�� � �lx� ly� The solution of the Ginzburg�Landau equations then leads

to the minimization problem

min
nX�

�jvi�j j� � �
� jvi�j j� � fi�j�v� a�

�
� v � jCn� a � IR�n

o
�

where

fi�j�v� a� �

������
vi���j � vi�j exp�ihxa

���
i�j �

hx

������
�

�

������
vi�j�� � vi�j exp�ihya

���
i�j �

hy

������
�

�

��

�
�a

���
i���j � a

���
i�j

hx
� a

���
i�j�� � a

���
i�j

hy

�
A
�

�

In this formulation vi�j is an approximation to V at zi�j � and the vector
�
a
���
i�j � a

���
i�j

�
is an

approximation to A at zi�j  The periodicity conditions are used to express the problem in

terms of the variables vi�j � a
���
i�j � a

���
i�j for 	 � i � nx and 	 � j � ny  Thus� this problem has

�nxny variables

The approximations used in this formulation are only �rst�order accurate� but on the

other hand� this formulation preserves the invariance properties of the Gibbs free energy

functional� that is� this formulation is invariant under the transformation

vi�j � vi�j exp�iwi�j��

w
���
i�j � w

���
i�j �



wi���j � wi�j

hx

�
� w

���
i�j � w

���
i�j �



wi�j�� � wi�j

hx

�
�

This invariance property is the discrete form of the invariance of the Gibbs free energy

functional under the transformations v � v exp�iw� and A� A�rw
The solutions of interest in the Ginzburg�Landau model correspond to vortex con�gu�

rations� where the order parameter is nonzero except at a set of isolated points �vortices�

Surface and contour plots of the order parameter �see Figures �		 and �	�� show the vor�

tex structure for � � 
 and nv � � These plots are obtained by using the periodicity of

��



Figure �		� Surface plot of the order parameter for � � 
 and nv � �
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Figure �	�� Contour plot of the order parameter for � � 
 and nv � �

��



v to extend v to the domain ��� �lx� � ��� �ly�� and plotting v in the larger domain Thus�

these plots show a solution v with � vortices in D
The integer nv controls the number of vortices in D provided the average magnetic �eld

Bav �
��nv�

lxly

is �xed In Figures �		 and �	�� nv � � and lxly � ��
p
� Thus� if we want to obtain a

solution with nv � � vortices in D we need to decrease the area of D to �
p
�

The regular structure shown in Figures �		 and �	� is only obtained if the sides lx� ly

of D have the ratio
ly
lx

�
p
��

An interesting exercise is to explore the vortex structure for other ratios� while �xing nv � �

and lxly � ��
p
�

Numerical results for this ��dimensional Ginzburg�Landau model have been obtained

by Doria� Gubernatis and Rainer �	�� with simulated annealing� Wang and Hu ���� with

steepest descent� and Garner� Spanbauer� Benedek� Strandburg� Wright� and Plassmann

�	�� with limited memory quasi�Newton methods and Newton"s method


�



� Software for Systems of Nonlinear Equations

The subroutines described in this section de�ne systems of nonlinear equations of the form

f�x� � �� xl � x � xu�

where f � IRn � IRn de�nes the residuals� and xl� xu are bounds on the solution Each

subroutine has a six letter name The �rst letter denotes arithmetic precision� d for double

precision and s for single precision �we assume double precision in the description below�

The second through fourth letters describe the problem �for example� fdc corresponds to

the flow in a driven cavity problem� The �fth and sixth letters denote the purpose of the

subroutine� for systems of nonlinear equations they can be fj� sp� or js

Subroutines with names ending in fj compute the standard starting point and evaluate

the function f and Jacobian matrix of f at x � IRn Where appropriate� these subroutines

also provide upper and lower bounds on the solution The action of these subroutines

depends on the character variable task as follows�

Evaluate the function if task � �F�

Evaluate the Jacobian matrix if task � �J�

Evaluate the function and the Jacobian matrix if task � �FJ�

Evaluate the standard starting point xs if task � �XS�

Evaluate the lower bound xl if task � �XL�

Evaluate the upper bound xu if task � �XU�

The function value is returned in the array fvec� the Jacobian matrix is returned in the

array fjac �with leading dimension ldfjac�� and the starting point xs and bounds xl� xu

are returned in the array x

Subroutines with names ending in js compute the products Js� where s is any vector

and J is the Jacobian matrix at x The result is returned in the array y

Subroutines with names ending in sp compute the sparsity structure of the Jacobian

matrix These subroutines provide the number nnz of nonzeroes in the Jacobian matrix�

and arrays indrow� and indcol that specify the row and column indices� respectively� of

the nonzeroes in the Jacobian matrix

Several of the problems arise from the discretization of systems of boundary value prob�

lems by a k�stage collocation method If boundary conditions are given at t � a and t � b�

and

a � t� � t� � � � �� tn� � tn��� � b


	



is a partitioning of �a� b� into n� subintervals� the collocation method approximates the

solution to a system of p boundary value problems by a vector�valued piecewise polynomial

function u� � �a� b�� IRp The use of the collocation method leads to a system of nonlinear

equations An advantage of the implementation of the collocation method used in these test

problems is that� if ms is the order of the s�th boundary value problem� the s�th component

of

u�j���� �ti�� 	 � i � n�� 	 � j � ms�

is directly available from the solution vector to the system of nonlinear equations The s�th

component of u
�j���
� �ti� is stored in the �p�i� 	� � �s�� � j location of the array x� where

�r � rk�
rX
l��

ml�

This information is useful for obtaining plots of the j�th derivative of the s�th component

of u�  If the variable nint is the number n� of subintervals� and the variables np and ns

contain �p and �s��� respectively� then the pseudo�code

do i � �� nint
v�i� � x��i���np�ns�j�

end do

stores in the array v the value of the s�th component of u
�j���
� �ti� Given the array v�

standard plotting subroutines can be used to obtain plots of u�j���� 


�� Flow in a Channel

The subroutine

dficfj�n�x�fvec�fjac�ldfjac�task�r�nint�

computes the function� Jacobian� and standard starting vector for the �ow in a channel

problem The parameter r is the Reynolds number R� and must be positive The parameter

nint is the number n� of subintervals in the collocation method The user must provide a

positive value of nint and set n � 	
nint

The subroutine

dficsp�n�nint�nnz�indrow�indcol�

computes the sparsity structure of J and the subroutine

dficjs�n�x�s�y�r�nint�

computes the product Js where J is the Jacobian matrix

The tangential velocity u� is of interest in this problem Plots of the tangential velocity

can be obtained by noting that u��ti� for 	 � i � n�� is stored in location ��i� 	�� � of the

array x


�




�� Swirling Flow between Disks

The subroutine

dsfdfj�n�x�fvec�fjac�ldfjac�task�eps�nint�

computes the function� Jacobian� and standard starting vector for the swirling �ow between

disks problem The parameter eps is the viscosity parameter �� and must be positive The

parameter nint is the number n� of subintervals in the collocation method The user must

provide a positive value of nint and set n � ��
nint

The subroutine

dsfdsp�n�nint�nnz�indrow�indcol�

computes the sparsity structure of J and the subroutine

dsfdjs�n�x�s�y�eps�nint�

computes the product Js where J is the Jacobian matrix

The radial velocity f �� and the angular velocity g� are of interest in this problem Plots

of the radial velocity can be obtained by noting that f ��ti� for 	 � i � n�� is stored in

location 	��i�	��� of the array x Plots of the angular velocity can be obtained by noting

that g�ti� for 	 � i � n�� is stored in location 	��i� 	� � � of the array x


�� Incompressible Elastic Rods

The subroutine

dierfj�n�x�fvec�fjac�ldfjac�task�a�b�c�nint�

computes the function� Jacobian� and standard starting vector for the inverse elastic rod

problem The parameters a� b� and c are the x�coordinate a� the y�coordinate b� and the

local angle of inclination c� respectively� of the free end of the elastic rod The parameter

nint is the number n� of subintervals in the collocation method The user must provide a

positive value of nint and set n � ��
nint � 

The subroutine

diersp�n�nint�nnz�indrow�indcol�

computes the sparsity structure of J and the subroutine

dierjs�n�x�s�y�a�b�c�nint�

computes the product Js where J is the Jacobian matrix

The shape of the deformed elastic rod is of interest in this problem Plots of the deformed

elastic rod can be obtained by noting that the coordinates �x�ti�� y�ti�� for 	 � i � n�� of

points on the elastica are stored in locations 	
�i� 	�� 	 and 	
�i� 	�� �� respectively� of

the array x


�




�	 Solid Fuel Ignition

The subroutine

dsfifj�nx�ny�x�fvec�fjac�ldfjac�task�lambda�

computes the function� Jacobian� and standard starting vector for the solid fuel ignition

problem The parameters nx and ny are the number of interior gridpoints� nx and ny � in each

of the respective coordinate directions The parameter lambda is the Frank�Kamenetskii

parameter  Values of  in the interval �����	� are of interest A typical value is  � 


The subroutine

dsfisp�nx�ny�nnz�indrow�indcol�

computes the sparsity structure of J and the subroutine

dsfijs�nx�ny�x�s�y�lambda�

computes the product Js where J is the Jacobian matrix

Plots of the solution surface v can be obtained by noting that the value of the approxi�

mation v at the �i� j� grid point is stored in x��j���
nx�i�


�
 Flow in a Driven Cavity

The subroutine

dfdcfj�nx�ny�x�fvec�fjac�ldfjac�task�r�

computes the function� Jacobian� and standard starting vector for the �ow in a driven cavity

problem The parameters nx and ny are the number of interior gridpoints� nx and ny � in

each of the respective coordinate directions The parameter r is the Reynolds number R�

and must be positive

The subroutine

dfdcsp�nx�ny�nnz�indrow�indcol�

computes the sparsity structure of J and the subroutine

dfdcjs�nx�ny�x�s�y�r�

computes the product Js where J is the Jacobian matrix

Streamlines and equivorticity lines of the �ow are of interest in this problem Streamlines

are the contours of the stream function � with discrete �nite di�erence approximation psi

where


�



do j � �� ny
do i � �� nx

psi�i�j� � x��j���nx�i�
end do

end do

Equivorticity lines are the contours of ��� with discrete �nite di�erence approximation v

where

do j � �� ny
do i � �� nx

v�i�j� � ��psi�i���j� � �
psi�i�j� � psi�i���j����hx
hx�
��psi�i�j��� � �
psi�i�j� � psi�i�j������hy
hy�

end do
end do

psi���j� � psi�nx���j� � psi�i��� � psi�i�ny��� � �

where hx is the grid spacing hx � 	��nx � 	� in the x�direction� and hy is the grid spacing

hy � 	��ny � 	� in the y�direction


�� Human Heart Dipole

The subroutine

dhhdfj�n�x�fvec�fjac�ldfjac�task�prob�

computes the function� Jacobian� and standard starting vector for the human heart dipole

problem The user must set n � � The parameter prob speci�es one of �ve versions of

the problem The user must set prob to the string �HHDK� where K must be replaced by an

integer k with 	 � k � 
 Lower and upper bounds are provided


�� Combustion of Propane � Full Formulation

The subroutine

dcpffj�n�x�fvec�fjac�ldfjac�task�

computes the function� Jacobian� and standard starting vector for the full formulation of

the combustion of propane problem The user must set n � 		 Lower bounds are provided


�� Combustion of Propane � Reduced Formulation

dcprfj�n�x�fvec�fjac�ldfjac�task�

computes the function� Jacobian� and standard starting vector for the reduced formulation

of the combustion of propane problem The user must set n� 
 Lower bounds are provided







� Software for Nonlinear Least Squares Problems

The subroutines described in this section de�ne nonlinear least squares problems of the

form

minfkf�x�k�� � xl � x � xug�
where f � IRn � IRm de�nes the residuals of the least squares problem� and xl� xu are

bounds on the solution Each subroutine has a six letter name The �rst letter denotes

arithmetic precision� d for double precision and s for single precision �we assume double

precision in the description below� The second through fourth letters describe the problem

�for example� iac corresponds to the isomerization of ��pinene � collocation formulation

problem� The �fth and sixth letters denote the purpose of the subroutine� for the least

squares problems they can can only be fj

Subroutines with names ending in fj compute the standard starting point and evaluate

the function f and Jacobian matrix of f at x � IRn Where appropriate� these subroutines

also provide upper and lower bounds on the solution The action of these subroutines

depends on the character variable task as follows�

Evaluate the function if task � �F�

Evaluate the Jacobian matrix if task � �J�

Evaluate the function and the Jacobian matrix if task � �FJ�

Evaluate the standard starting point xs if task � �XS�

Evaluate the lower bound xl if task � �XL�

Evaluate the upper bound xu if task � �XU�

The function value is returned in the array fvec� the Jacobian matrix is returned in the

array fjac �with leading dimension ldfjac�� and the starting point xs and bounds xl� xu

are returned in the array x

��� Isomerization of ��pinene � Direct Formulation

The subroutine

diadfj�m�n�x�fvec�fjac�ldfjac�task�nh�

de�nes the direct formulation of the ��pinene problem The user must set m � �� and

n � 
 The parameter nh is the number n� of consecutive Runge�Kutta steps taken between

observations A typical value is nh � 	� Lower bounds are provided


�



��� Isomerization of ��pinene � Collocation Formulation

The subroutine

diacfj�m�n�x�fvec�fjac�ldfjac�task�nint�sigma�

de�nes the collocation formulation of the ��pinene problem The parameter nint is the

number n� of subintervals in the collocation method The user must provide a positive

value of nint and set m � �
  nint � �� and n � �
  nint � 
 The parameter sigma is

the weight � used for each constraint equation in the l� penalty approach A typical value

is � � 	��

In this problem the approximate solution u��� 
� to the linear kinetic problem is of inter�

est Plots of the components of u��� 
� can be obtained by noting that the s�th component

of u�ti� 
� for 	 � i � n�� is stored in location �
�i� 	� � 
�s� 	� � 	 of the array x

��� Coating Thickness Standardization

The subroutine

dctsfj�m�n�x�fvec�fjac�ldfjac�task�

de�nes the coating thickness standardization problem The user must set m � �
� and

n � 	��

��	 Exponential Data Fitting I

The subroutine

ddf�fj�m�n�x�fvec�fjac�ldfjac�task�

de�nes the exponential data �tting I problem The user must set m � �� and n � 
 Lower

and upper bounds are provided

��
 Exponential Data Fitting II

The subroutine

ddf�fj�m�n�x�fvec�fjac�ldfjac�task�

de�nes the exponential data �tting II problem The user must set m � �
 and n � 		

Lower and upper bounds are provided

��� Analysis of Thermistor Resistance

The subroutine

datrfj�m�n�x�fvec�fjac�ldfjac�task�

de�nes the analysis of thermistor resistance problem The user must set m � 	� and n � �


�



��� Analysis of an Enzyme Reaction

The subroutine

daerfj�m�n�x�fvec�fjac�ldfjac�task�

de�nes the analysis of an enzyme reaction problem The user must set m � 		 and n � �

��� Chebyshev Quadrature

The subroutine

dchqfj�m�n�x�fvec�fjac�ldfjac�task�

de�nes the Chebyshev quadrature problem Any positive values of m � n are permissible

Lower and upper bounds are provided


�



� Software for Minimization Problems

The subroutines described in this section de�ne minimization problems of the form

minff�x� � xl � x � xug�

where f � IRn � IR� and the vectors xl� xu specify bounds on the solution Each subroutine

has a six letter name The �rst letter denotes arithmetic precision� d for double precision

and s for single precision �we assume double precision in the description below� The second

through fourth letters describe the problem �for example� msa corresponds to the minimal

surface area problem� The �fth and sixth letters denote the purpose of the subroutine� for

minimization problems they can be fg� sp� or hs

Subroutines with names ending in fg compute the standard starting point and evaluate

the function f and gradient rf at x � IRn Where appropriate� these subroutines also

provide upper and lower bounds on the solution The action of these subroutines depends

on the character variable task as follows�

Evaluate the function if task � �F�

Evaluate the gradient if task � �G�

Evaluate the function and the gradient if task � �FG�

Evaluate the standard starting point xs if task � �XS�

Evaluate the lower bound xl if task � �XL�

Evaluate the upper bound xu if task � �XU�

The function value is returned in the variable f� the gradient is returned in the array fgrad�

and the starting point xs and bounds xl� xu are returned in the array x

Subroutines with names ending in hs compute the products Hs� where s is any vector�

and H is the Hessian matrix at x The result is returned in the array y

Subroutines with names ending in sp compute the sparsity structure of the Hessian

matrix of the problem These subroutines provide the number nnz of nonzeroes in the

lower triangle of the Hessian matrix� and arrays indrow� and indcol that specify the row

and column indices� respectively� of the nonzeroes in the lower triangle of the Hessian matrix

In most of the problems� the vector x � IRn de�nes a piecewise linear approximation v to

the solution of the variational problem The approximation v is de�ned on a triangulation

of a rectangular domain D with nx interior points in the x�direction and ny interior points

in the y�direction The value of v at the �i� j� vertex of the triangulation is stored in the

�j � 	�nx � i location of the array x Thus� the pseudo�code segment


�



do j � �� ny
do i � �� nx

v�i�j� � x��j���nx�i�
end do

end do

stores in the array v the values of the approximation v Given the array v� standard surface

and contour plotting routines can be used to view the approximation v In this formulation

ny � 	 for 	�dimensional domains

��� Elastic�Plastic Torsion

The subroutine

deptfg�nx�ny�x�f�fgrad�task�c�

computes the function� gradient� and standard starting vector for the elastic�plastic torsion

problem The parameters nx and ny are the numbers of interior gridpoints� nx and ny � in

each of the respective coordinate directions The parameter c is the angle of twist� c� per

unit length on the bar A typical value is c � 
 Lower and upper bounds are provided

The subroutine

deptsp�nx�ny�nnz�indrow�indcol�

computes the sparsity structure of the Hessian matrix and and the subroutine

depths�nx�ny�s�y�

computes the product y � Hs where H is the Hessian matrix

The resulting stress �eld v on the cylindrical bar is of interest in this problem The

value of the �nite element approximation to the v at the �i� j� grid point is stored in

x��j���
nx�i�

��� Pressure Distribution in a Journal Bearing

The subroutine

dpjbfg�nx�ny�x�f�fgrad�task�ecc�b�

computes the function� gradient� and standard starting vector for the pressure distribution

in a journal bearing problem The parameters nx and ny are the numbers of interior

gridpoints� nx and ny � in each of the respective coordinate directions The parameter ecc

is the eccentricity� �� of the journal bearing� and b speci�es the domain D � ��� ���� ��� b�

Typical values for these parameters are � � ��	 and b � 	� Lower bounds are provided

The subroutine

��



dpjbsp�nx�ny�nnz�indrow�indcol�

computes the sparsity structure of the Hessian matrix and the subroutine

dpjbhs�nx�ny�s�y�ecc�b�

computes the product y � Hs where H is the Hessian matrix The subroutine

dpjbds�nx�ny�w�ecc�b�

determines a diagonal scaling matrix w as the square root of the diagonal elements of H 

The resulting pressure distribution v on the �lm of lubricant is of interest in this problem

The value of the �nite element approximation to the v at the �i� j� grid point is stored in

x��j���
nx�i�

��� Minimal Surfaces

The subroutine

dmsafg�nx�ny�x�f�fgrad�task�bottom�top�left�right�

computes the function� gradient� and standard starting vector for the minimal surface area

problem The parameters nx and ny are the numbers of interior gridpoints� nx and ny � in

each of the respective coordinate directions The arrays bottom�top�left�right specify

the boundary conditions for the surface

The subroutine

dmsabc�nx�ny�hx�hy�bottom�top�left�right�

determines the boundary conditions for Enneper"s minimal surface Other boundary con�

ditions can be obtained by modifying dmsabc The subroutine

dmsasp�nx�ny�nnz�indrow�indcol�

computes the sparsity structure of the Hessian matrix and the subroutine

dmsahs�nx�ny�x�s�y�bottom�top�left�right�

computes the product y � Hs where H is the Hessian matrix at x

The resulting surface v is of interest in this problem The value of the �nite element

approximation to v at the �i� j� grid point is stored in x��j���
nx�i�

�	



��	 Optimal Design with Composite Materials

The subroutine

dodcfg�nx�ny�x�f�fgrad�task�lambda�

computes the function� gradient� and standard starting vector for the optimal design with

composite materials problem The parameters nx and ny are the numbers of interior grid�

points� nx and ny � in each of the respective coordinate directions The parameter lambda

is the Lagrange multiplier  Values of interest are  � ��� 	�� a typical value is  � �����

The subroutine

dodcps�t�mu��mu��t��t��result�task�lambda�

computes ��
p
t�� ���

p
t��t� and ����

p
t��t Other functions can be obtained by modifying

dodcps The subroutine

dodcsp�nx�ny�nnz�indrow�indcol�

computes the sparsity structure of the Hessian matrix and the subroutine

dodchs�nx�ny�x�s�y�lambda�

computes the product y � Hs where H is the Hessian matrix at x

The norm of the gradient of the stress �eld krvk is of interest in this problem The value

of the �nite element approximation to v at the �i� j� grid point is stored in x��j���
nx�i�

The gradient of v can be extracted from v by a standard �nite di�erence scheme with the

pseudo�code

do j � �� ny
do i � �� nx

dv�i�j� � ��v�i���j� � �
v�i�j� � v�i���j����hx
hx�
��v�i�j��� � �
v�i�j� � v�i�j������hy
hy�

end do
end do

v���j� � v�nx���j� � v�i��� � v�i�ny��� � �

where hx is the grid spacing hx � 	��nx � 	� in the x�direction� and hy is the grid spacing

hx � 	��nx � 	� in the y�direction

��
 Inhomogeneous Superconductors� ��D Ginzburg�Landau

The subroutine

dgl�fg�n�x�f�fgrad�t�

��



computes the function� gradient� and standard starting vector for the one�dimensional

Ginzburg�Landau problem The parameter n is the number of interior gridpoints n The

parameter t speci�es the temperature t Values of interest are t � ������ ������ a typical

value is t � 


The subroutine

dgl�sp�n�nnz�indrow�indcol�

computes the sparsity structure of the Hessian matrix and the subroutine

dgl�hs�n�x�s�y�t�

computes the product y � Hs where H is the Hessian matrix at x

��� Molecular Conformation� Leonard�Jones Clusters

The subroutine

dlj�fg�n�x�f�fgrad�task�natoms�

computes the function� gradient� and standard starting vector for the two�dimensional

Leonard�Jones problem The parameter natoms is the number of atoms in the cluster

The user must provide a positive value of natoms and set n � �
natoms The structure� or

molecular conformation� assumed by the atoms is of interest in this problem The coordi�

nates of the k�th atom are stored in �x��k����x��k��

The subroutine

dljfg�n�x�f�fgrad�task�natoms�

computes the function� gradient� and standard starting vector for the three�dimensional

Leonard�Jones problem The parameter natoms is the number of atoms in the cluster

The user must provide a positive value of natoms and set n � 
natoms The structure�

or molecular conformation� assumed by the atoms is of interest in this problem The

coordinates of the k�th atom are stored in �x�k����x�k����x�k��

��� Steady�State Combustion

The subroutine

dsscfg�nx�ny�x�f�fgrad�task�lambda�

computes the function� gradient� and standard starting vector for the steady�state combus�

tion �Bratu� problem The parameters nx and ny are the numbers of interior gridpoints�

nx and ny � in each of the respective coordinate directions The parameter lambda is the

��



Frank�Kamenetskii parameter  of the steady�state combustion problem Values of interest

are  � ��� ���	�� a typical value is  � 
��

The subroutine

dsscsp�nx�ny�nnz�indrow�indcol�

computes the sparsity structure of the Hessian matrix and the subroutine

dsschs�nx�ny�x�s�y�lambda�

computes the product y � Hs where H is the Hessian matrix at x

The maximum value of v as a function of  is of interest in this problem This value

can be obtained for a �xed lambda by setting vmax � max�j x�k� j�� 	 � k � nxny

��� Homogeneous Superconductors� ��D Ginzburg�Landau

The subroutine

dgl�fg�nx�ny�x�f�fgrad�task�w�

computes the function� gradient� and standard starting vector for the ��D Ginzburg�Landau

problem The parameters nx and ny are the numbers of interior gridpoints� nx and ny � in

each of the respective coordinate directions

The subroutine

dgl�sp�nx�ny�nnz�indrow�indcol�

computes the sparsity structure of the Hessian matrix and the subroutine

dgl�hs�nx�ny�x�s�y�

computes the product y � Hs where H is the Hessian matrix at x

The magnitude of the complex valued order parameter v is of interest in this problem

The real and imaginary parts of the �nite di�erence approximation to v at the �i� j� grid

point are stored in x��j���
nx�i� and x�nx
ny��j���
nx�i�� respectively

��
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