
AN INTERIOR POINT ALGORITHM FOR LINEARLYCONSTRAINED OPTIMIZATION�STEPHEN J. WRIGHTySIAM J. OPTIMIZATION. c
 1992 Society for Industrial and Applied MathematicsVol. 1, No. 4, pp. 000{000, Month 1992 012Abstract. We describe an algorithm for optimization of a smooth function subject to generallinear constraints. An algorithm of the gradient projection class is used, with the important featurethat the \projection" at each iteration is performed using a primal-dual interior point method forconvex quadratic programming. Convergence properties can be maintained even if the projection isdone inexactly in a well-de�ned way. Higher-order derivative information on the manifold de�ned bythe apparently active constraints can be used to increase the rate of local convergence.Key words. potential reduction algorithm, gradient porojection algorithm, linearly constrainedoptimizationAMS(MOS) subject classi�cations. 65K10, 90C301. Introduction. We address the problemminx f(x) s.t. ATx � b;(1)where x 2 Rn and b 2 Rm, and f is assumed throughout to be twice continuouslydi�erentiable on the level setL = fx j ATx � b; f(x) � f(x0)g;where x0 is some given initial choice for x. Recent literature on this problem canfor the most part be divided into two main classes. On the one hand, there are the\active set" approaches such as sequential quadratic programming, which are mostsuitable when the constraints ATx � b lack any special structure such as separability.In these algorithms a model of f (for example, the quadratic approximation f(x) +rf(x)T d+ (1=2)dTr2f(x)d) is formed at each \outer" iteration and minimized oversome subset of the feasible region. The algorithm tends to move along edges and facesof the boundary of the feasible set, changing its set of currently active constraints byat most one element on each \inner" iteration. A second class of methods, known as\gradient projection" methods, allow more substantial changes to the active set ateach iteration by choosing a direction g (for example, rf(x) or some scaled versionof it) and searching along the piecewise linear path P (x � �g), where � > 0 and Pis the projection onto the feasible set. These methods are best suited to the case inwhich the projection P (:) is easy to perform, for example, when the feasible region isa box whose sides are parallel to the principal coordinate axes.In this paper, our aim is to describe an algorithm of the gradient projection class,in which we allow the projections to be performed inexactly. We focus on the caseof Euclidean norm projections, which can be solved by using interior-point methodsfor convex quadratic programming problems. In this way, general polyhedral feasibleregions can be handled. We thus hope to combine the much-vaunted advantages of� Received by the editors July xx, 1990; accepted for publication (in revised form) Septemberxx, 1991. This research was partly performed at the University of Queensland, Australia, whosesupport is gratefully acknowledged. The work was also supported by the Applied MathematicalSciences subprogram of the O�ce of Energy Research, U. S. Department of Energy, under ContractW-31-109-Eng-38.y Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois, 60439.1



2 STEPHEN J. WRIGHTinterior-point methods with the desirable properties of gradient projection algorithms| most notably, rapid identi�cation of the �nal active set. In addition, we allowsecond-derivative information to be used in the de�nition of g (as is also done byDunn [4, 3] and Gafni and Bertsekas [5]) to speed up the asymptotic convergence rateafter the correct active set has been identi�ed.The \inexactness" in the projection is quanti�ed by a duality gap, which is up-dated at each iteration of the projection subproblem. The global convergence analysisin section 4 is not tied to the use of an interior-point method for the projection; anyalgorithm (including an active set method) that allows a duality gap to be calculatedfor each iterate may be used.The point x� is a critical point for (1) if there are scalars yi � 0 such that�rf(x�) =Xi2A yiai;where ai are columns of A, andA = fi = 1; � � � ;m j aTi x� = big:Equivalently, �rf(x�) 2 N (x�;X);(2)where X is the feasible set fx j ATx � bg, and N (x;X) is the normal cone to X atx, de�ned by N (x;X) = fv j vT (u� x) � 0; for all u 2 Xg:In the next section, we specify the algorithm. The interior-point method thatmay be used to perform the projection is discussed in section 3. The global andlocal convergence properties of the algorithm are analyzed in section 4 and section 5,respectively.In the remainder of the paper, the following notational conventions will be used:� kxk = (xTx) 12 (the Euclidean norm), unless otherwise speci�ed.� PY (x) denotes the Euclidean projection of the vector x onto the convex setY � Rn, that is PY (x) = argminz2Y kz � xk:If the subscript is omitted from P , projection onto X is assumed.� intY denotes the interior of Y , and @Y denotes its boundary.� When x is a vector, relations such as x > 0 are meant to apply componentwise.� Subscripts on vectors and matrices denote components, while superscripts areused to distinguish di�erent iterates. Subscripts on scalars denote iterationnumbers.� When f�kg and f��kg are non-negative sequences, the notation �k = O(��k)means that there is a constant s such that �k � s��k for all k su�ciently large.�k = o(��k) means that there is a non-negative sequence fskg converging tozero such that �k � sk ��k for all k su�ciently large.� The sequence fvkg is said to converge Q-quadratically to v� if kvk+1� v�k =O(kvk � v�k2). It is said to converge R-quadratically if there is a sequencef�kg that converges Q-quadratically to zero such that kvk � v�k � �k for allk.



INTERIOR POINT ALGORITHM FOR LINEAR CONSTRAINTS 3� If fvkg and f�vkg are two sequences of vectors, the notation \vk ! �vk" meansthat limk!1 kvk � �vkk = 0.� In sections 4 and 5, we introduce constants denoted by C and �C with asubscript. In all cases these represent strictly positive constants, even wherenot stated explicitly.2. The Algorithm. We start this section by giving an outline of the majoroperations at each iteration of the basic algorithm. Then we state a formal outlineand conclude by mentioning possible variations.The algorithm �rst de�nes an \almost active" set of constraints at each iteratexk. It partitions the gradient into two orthogonal components (which are orthogonalto and tangent to the manifold de�ned by the almost active set, respectively) andthen scales the tangent component by a matrix with suitable positive de�nitenessproperties (possibly an inverse reduced Hessian or a quasi-Newton approximation toit). A projected Armijo-like line search is then performed along the resulting direction.The activity tolerance at the point xk is �k, where for the moment we requireonly that �k � 0. The almost active set Ik is de�ned byIk = fi = 1; � � � ;m j aTi xk � bi � �kkaikg:(3)We use T k to denote the tangent manifold corresponding to this set:T k = fz j aTi z = 0; all i 2 Ikg:(4)The negative gradient is then decomposed using T k by settingdk = PTk(�rf(xk)); dk+ = �[rf(xk) + dk]:(5)The tangent component dk is modi�ed by setting~dk = Dkdk;(6)where Dk is a matrix such that PTk �Dk � PTk = Dk and�1zT z � zTDkz � �2zT z; all z 2 T k ;(7)where �1 and �2 are positive constants. The search direction is assembled asgk = �( ~dk + dk+):(8)A projected Armijo search is carried out along the pathxk(�) = P (xk � �gk);where the values � = 1; �; �2; �3; � � � (where � 2 (0; 1) is some constant) are tried.For each such value of �, the projection is calculated with the algorithm described inthe next section. This algorithm generates a sequence of feasible approximations toxk(�), which we denote by xkj(�). For each such estimate, the algorithm produces aduality gap 
kj(�). De�ning the more convenient quantity�kj(�) =q2
kj(�);we can obtain upper and lower bounds on the distance from xk � �gk to X, that iskxkj(�)� (xk ��gk)k2� �kj(�)2 � kxk(�)� (xk ��gk)k2 � kxkj(�)� (xk��gk)k2:



4 STEPHEN J. WRIGHTThese \inner iterations" are stopped at a value of j for which �kj(�) becomes su�-ciently small according to the following criteria:�kj(�) � ���=2max kxkj(�)� (xk + � ~dk)k� ; kdkk!2(9)and �kj(�) � C1��=2:(10)Here � , C1, and � are constants that satisfy the conditions� > 2; �C1 < 1:We denote the �nal computed �kj(�) by �k(�), and the corresponding xkj(�) byxk(�; �k(�)). The step � is then accepted if the following \su�cient decrease" test issatis�ed:f(xk) � f(xk(�; �k(�))) � �(�dkTDkdk + kxk(�; �k(�)) � (xk + � ~dk)k2� ) ;(11)where � 2 (0; 1) is a constant.The algorithm can be summarized as follows:Step 1: Choose �k. Compute Ik from (3), and gk according to (5){(8).Step 2: For � = �p, p = 0; 1; 2; � � � (in sequence) approximately calculate xk(�) =P (xk � �gk), terminating when xk(�; �k(�)) = xkj(�) and its associated �k(�) =�kj(�) are found that satisfy (9),(10). If the test (11) is passed for this value of �,set �k = � = �p, xk+1 = xk(�; �k(�)), k  k + 1, and go to the next iteration.Otherwise, increase p by 1, and try the next � = �p.In its \exact" form (i.e., �k(�) � 0), and when Dk is de�ned as the reduced Hes-sian or a quasi-Newton approximation to it, the step gk is the same as that obtainedby specializing the algorithm of Dunn [4] to the linearly constrained case. The calcu-lation of gk is somewhat di�erent in Gafni and Bertsekas [5]. They de�ne an \almosttangent cone" at xk by Ck = fz j aTi z � 0; all i 2 Ikg;and then de�ne dk as the projection of �rf(xk) onto this cone. Additionally, theconditions on Dk are slightly di�erent, and ~dk is the projection of Dkdk onto Ck. Ourreason for following Dunn [4] and using the simpler decomposition relative to T k is ourassumption that projection onto the subspace T k can be done exactly and cheaply.This is not unreasonable | the cost would normally be comparable to one iteration ofthe interior-point algorithm used for the projection onto X. Projection onto Ck may,on the other hand, be as expensive as projection onto X. Still, there are intuitivereasons for preferring Ck to T k, and it would be of interest to see whether the extracost per iteration (and the extra algorithmic complexity of doing the projection ontoCk inexactly) is justi�ed.



INTERIOR POINT ALGORITHM FOR LINEAR CONSTRAINTS 5The steplength rule (11) reduces to the one proposed by Gafni and Bertsekas [5](and also used by Dunn [3]) when �k(�) � 0. Another obvious possibility, to whichwe will return brie
y in section 5, isf(xk)� f(xk(�; �k(�)) � � n�dkTDkdk +rf(xk)T [xk + � ~dk � xk(�; �k(�))]o :(12)3. Projection onto X. Projection onto the polyhedral set X can be achievedby solving a convex quadratic program or, equivalently, a linear complementarityproblem (LCP). In this section, we formulate the problem and outline a primal-dualpotential reduction algorithm for solving it. The discussion will be brief, since otherpapers such as [6, 7, 10, 11] can be consulted for details about motivation, analysis,and implementation issues for this class of interior-point algorithms.Throughout the remainder of the paper, we use the following assumptions:(A) The feasible set X has an interior in Rn.(B) At the solution z� = P (t) of the projection subproblem, the set of vectorsfai j aTi z� = bigis linearly independent.The (unique) vector P (t) is obtained by solvingmin 12kz � tk2 s.t. AT z � b;or, equivalently, min 12kz � tk2 s.t. AT z + � = b; � � 0:(13)Introducing Lagrange multipliers y for the constraints, we �nd that (13) is equivalentto the (mixed) LCP� 0� � = � I A�AT 0 � � zy �+ � �tb � ; � � 0; y � 0; �Ty = 0:(14)The coe�cient matrix in (14) is clearly positive semi-de�nite.The progress of the interior-point algorithm can be gauged by using the potentialfunction de�ned by  (�; y) = �P log(�Ty) � mXi=1 log(�iyi);(15)where �P � m+pm. In Kojima, Mizuno, and Yoshise [7], the step from iterate j toiterate j + 1 is obtained by solving the linear system� 0�� � = � I A�AT 0 � � �z�y � ;(16)together with�ji�yji + yji��i = � ��j1� �j����ji yji + 
j�j � ; i = 1; � � � ;m;(17)



6 STEPHEN J. WRIGHTwhere 
j = Pmi=1 �ji yji and the value of �j is discussed below. A steplength �j ischosen such that �j �������i�ji ����� � �; �j �������i�ji ����� � �; i = 1; � � � ;m;(18)for some � 2 (0; 1). Trivial modi�cations of the results of Kojima, Mizuno, andYoshise [7] indicate that for the choices �j � �P = m+pm and � = 0:4, we have that (�j + �j��; yj + �j�y) �  (�j ; yj)� 0:2:(19)When some iterate (zj ; �j; yj) satis�es  (�j; yj) � �O(pmL), it can easily be shownthat (�j)T yj � 2�O(L). This suggests that, provided the initial point (z0; �0; y0) sat-is�es  (�0; y0) = O(pmL), convergence to a point with duality gap less than 2�O(L)can be achieved in O(pmL) iterations. (For purposes of the complexity analysis, Lis taken to be the \size" of the problem.) Although this choice of �j yields the bestcomplexity result to date, it has been observed that, in practice, larger values of �jlead to fewer iterations. In Han, Pardalos, and Ye [6], the choice �j � m2 is madefor convex quadratic programs. In the context of linear programs, Zhang, Dennis,and Tapia [11] observe that it is even desirable to let �j grow unboundedly large asthe solution is approached. (The steps produced by (16),(17) are then very close tobeing Newton steps for the nonlinear equations formed by the equalities in (14).) Yeet al. [10] have shown such \large" choices of �j are not incompatible with obtainingreductions in the potential function. In practical implementations, the line searchparameter �j is also chosen di�erently. In Han, Pardalos, and Ye [6], the followingchoice appeared to give good experimental results:�j = 0:99 min mini=1;���;m; ��i<0 � �ji��i ; mini=1;���;m; �yi<0 � yji�yi! :An issue of particular concern in this context is the choice of a feasible initialpoint at which to start the interior-point iteration. Such a point can be found byaugmenting the problem in a simple way. We can reasonably assume that a vectorz0 that satis�es AT z0 < b is available from some previous iteration. If y0 is alsochosen from a previous iteration, we usually have, from the �rst equation in (14),that z0 + Ay0 is similar in magnitude to the primal quantities z and t. We can thusde�ne a (reasonably scaled) vector q byq = �(z0 � t+ Ay0)and obtain the following augmented version of (14):24 0��m+1 35 = 24 I A q�AT 0 0�qT 0 0 3524 zyym+1 35+ 24 �tbbm+1 35 ;(20) � � 0; �m+1 � 0; y � 0; ym+1 � 0; �T y + �m+1ym+1 = 0:The corresponding projection problem ismin 12kz � tk2 s.t. AT z � b; qT z � bm+1:(21)



INTERIOR POINT ALGORITHM FOR LINEAR CONSTRAINTS 7If we choose bm+1 to satisfy bm+1 > max(qT z0; qTP (t));then we �nd that a feasible initial point for (20) is(z; �; �m+1; y; ym+1) = (z0; b�AT z0; bm+1 � qT z0; y0; 1):At the optimal solution, ��m+1 = bm+1� qTP (t) and y�m+1 = 0. A practical choice forbm+1 can be made as follows: when t = x� �g with x feasible, note thatqTP (t) = qT [P (x��g)�(x��g)]+qT t � kqkkP (x��g)�(x��g)k+qT t � �kqkkgk+qT t:Hence bm+1 can be chosen as any number greater thanmax(qT z0; �kqkkgk+ qT t):We tacitly assume throughout the remainder of the paper that bm+1 is chosen largeenough that the extra constraint in (21) does not come into play during the projectionprocess (that is, �m+1 stays reasonable large).Two more points about the computational aspects of the projection should bemade since, for many variants of the algorithm described in this paper, it will be themost time-consuming step, apart from the function evaluations. First, note that thecost per interior-point iteration, which is dominated by the cost of solving augmentedversions of the linear system (16),(17), is similar to the cost of decomposing thegradient as in (5). (The latter operation may be performed by solving a systemwhose coe�cient matrix is a submatrix of the matrix in (16).) Second, the number ofinterior-point iterates which will be necessary for a given � should not be too large.A rule of thumb seems to be that around 20{30 iterates are required for an accuratesolution when no a priori information about the solution is known. In our case,the situation is better: good starting points will usually be available from previousiterates and from approximate projections for larger values of �. A priori informationhas been observed to signi�cantly decrease the number of interior-point iterations(see, for example [9]).In section 5, we assume that the points (zj ; �j; �jm+1; yj ; yjm+1) generated by theinterior-point algorithm do not stray too far from the central path de�ned by((z; �; �m+1; y; ym+1) feasible in (20) j �iyi = m+1Xl=1 �lyl=(m + 1); i = 1; � � � ;m + 1) :The following assumption is used to prove that unit steps �k = 1 are always eventuallyused by the method.(C)There is a constant � > 1 such that the �nal iterate (z; �; �m+1; y; ym+1) generatedby the projection algorithm, each time it is called, satis�es�iyi � Pm+1l=1 �lyl=(m+ 1)� :Although this assumption con
icts to some extent with the desire for fast asymptoticconvergence of the interior-point method, Zhang, Dennis, and Tapia [11, Theorem3.1] observed that, at least in the case of linear programming that they consider, itappears to hold in practice.



8 STEPHEN J. WRIGHT4. Global Convergence. In this section we prove that all accumulation pointsof the algorithm of section 2 are critical. The result depends crucially on the followinglemma, which bounds the distance between xk(�; 0) and xk(�; �k(�)) in terms of�k(�).Lemma 4.1. Suppose that (A) holds and that (B) holds at z� = xk(�; 0). Thenkxk(�; 0)� xk(�; �k(�))k � �k(�):Proof. Setting t = xk � �gk, we obtainkt� xk(�; 0)k2 � kt� xk(�; �k(�))k2 � �k(�)2) �k(�)2 � 2[t� xk(�; 0)]T [xk(�; 0)� xk(�; �k(�))] + kxk(�; 0)� xk(�; �k(�))k2:Now since t� xk(�; 0) 2 N (xk(�; 0) ; X) and xk(�; �k(�)) 2 X, the �rst term on theright-hand side above is non-negative and can be omitted from the inequality. Theresult follows.Under appropriate nondegeneracy assumptions, application of the implicit func-tion theorem to a subset of the equalities in (13) (or (20)) would suggest that, locally,a stronger bound of O(
k(�)) = O(�k(�)2) might be obtained. In fact, some of thelocal convergence analysis in section 5 relies on just this observation. In general,however, given a point xk and a search direction gk, there are usually values of �such that the solution of (13) (or (21)) for t = xk � �gk is degenerate. Our result inLemma 4.1 is similar to, but more speci�c than, the bound that would be obtainedby applying the analysis of Mangasarian and Shiau [8] to (13).We state without proof the following well-known result, which actually appliesfor any closed convex X � Rn.Lemma 4.2. For any x 2 X and z 2 Rn,a) kP (x+ �z)� xk=� is a nonincreasing function of � > 0,b) kP (x+ �z)� xk=� � kzk.Before proving the main result (Theorem 4.5), we show that the conditions(9),(10) ensure that the projection is computed exactly when xk is critical (Lemma4.3) and, in a technical result, show that the algorithm produces descent at a non-critical point (Lemma 4.4).Lemma 4.3. Suppose that (A) holds and that (B) holds at z� = xk. When xk iscritical, then �k(�) = 0 for all � 2 [0; 1], and xk(�; �k(�)) = xk for all � 2 [0; 1].Proof. Clearly the result is true for � = 0. For the remainder of the proof, weassume that � 2 (0; 1].All vectors in the subspace T k are orthogonal to N (xk;X). Hence by (2) and (5),dk = ~dk = 0 and dk+ = �rf(xk). Also, by (2),xk(�; 0) = P (xk � �rf(xk)) = xk;and sokxk(�; �k(�)) � (xk + � ~dk)k � kxk(�; 0)� xkk+ kxk(�; �k(�))� xk(�; 0)k � �k(�):Substituting this expression in (9), we have�k(�) � ���=2 �k(�)2�2and hence �k(�)[1� ���=2�2�k(�)] � 0:(22)



INTERIOR POINT ALGORITHM FOR LINEAR CONSTRAINTS 9From (10) and the fact that �C1 < 1,1� ���=2�2�k(�) � 1� �C1���2 > 1� ���2 � 0;since � 2 [0; 1] and � > 2. Since �k(�) � 0, the inequality (22) can hold only if�k(�) = 0. Thus, the �rst statement is proved. Proof of the second statement followsimmediately.Lemma 4.4. Suppose Ik is de�ned by (3), where �k is any positive number.Suppose that (A) holds and that (B) holds for all z� = xk(�; 0) for � 2 [0; 1]. Then,given any �� 2 (0; 1) there exists an ��(��) 2 (0; �k=kgkk) such thatrf(xk)T [xk � xk(�; �k(�))]� �� h�dkTDkdk + 1�kxk(�; �k(�)) � (xk + � ~dk)k2i(23)Hence, provided xk is not critical, there is an �̂(��) 2 (0; ��] such that f(xk) >f(xk(�; �k(�)) for all � 2 (0; �̂].Proof. rf(xk)T [xk � xk(�; �k(�))]= rf(xk)T [xk � xk(�; 0)] +rf(xk)T [xk(�; 0)� xk(�; �k(�))](24)and for � 2 (0; �k=kgkk), it can be proved by using a similar argument to that in [5,Proposition 1 (b)] that rf(xk)T [xk � xk(�; 0)]� �dkTDkdk + 1�kxk(�; 0)� (xk + � ~dk)k2:By the smoothness assumptions on f , there is a constant B such thatkrf(x)k � B for all x 2 L:Since all xk 2 L, we have, using Lemma 4.1, that��rf(xk)T [xk(�; 0)� xk(�; �k(�))]�� � B�k(�):(25)Now kxk(�; 0)� (xk + � ~dk)k2 = kxk(�; �k(�))� (xk + � ~dk)k2(26)+2[xk(�; 0)� xk(�; �k(�))]T [xk(�; �k(�)) � (xk + � ~dk)] + kxk(�; 0)� xk(�; �k(�))k2� kxk(�; �k(�)) � (xk + � ~dk)k2 � 2�k(�)kxk(�; �k(�))� (xk + � ~dk)k;and so from (24){(26) rf(xk)T [xk � xk(�; �k(�))]� �dkTDkdk + 1�kxk(�; �k(�)) � (xk + � ~dk)k2(27) � 2��k(�)kxk(�; �k(�))� (xk + � ~dk)k �B�k(�):Now, 1�kxk(�; �k(�))� (xk + � ~dk)k� 1�kxk(�; �k(�))� xk(�; 0)k+ 1�kxk(�; 0)� (xk + � ~dk)k(28) � 1��k(�) + 1�kP (xk + �dk+ + � ~dk)� (xk + � ~dk)k:



10 STEPHEN J. WRIGHTThe following simple argument shows that xk + � ~dk 2 X for � 2 (0; �k=kgkk):i =2 Ik ) aTi [xk + � ~dk] � bi � �kkaik+ �kgkkkaik < bii 2 Ik ) aTi [xk + � ~dk] = aTi xk � bi:Hence by Lemma 4.2(b), (28) becomes1�kxk(�; �k(�))� (xk + � ~dk)k � 1��k(�) + kdk+k � 1��k(�) +B:(29)Hence (27) becomes rf(xk)T [xk � xk(�; �k(�))](30) � �dkTDkdk + 1�kxk(�; �k(�))� (xk + � ~dk)k2 � 2��k(�)2 � 3B�k(�):We now consider two cases. First, suppose that1�kxk(�; �k(�)) � (xk + � ~dk)k � kdkk:Then from (9) it follows that�k(�) � ���=2 kxk(�; �k(�))� (xk + � ~dk)k2�2 :Using this, together with (10) and the fact that �C1 < 1, we have from (30) thatrf(xk)T [xk � xk(�; �k(�))]� �dkTDkdk + 1�kxk(�; �k(�)) � (xk + � ~dk)k2(31) � � 2� (C1��=2)���=2 + 3B���=2� ( 1�2 )kxk(�; �k(�)) � (xk + � ~dk)k2� �dkTDkdk + 1� h1� 2���2 � 3B�� ��22 ikxk(�; �k(�))� (xk + � ~dk)k2:The inequality (23) will be satis�ed provided1� 2���2 � 3B�� ��22 � ��:(32)Setting � = � ��22 , we �nd that the quadratic 2�2+(3B�)� +(��� 1) has one positiveroot. Hence we can �nd an ��1 > 0 such that the required inequality will be satis�edfor all � 2 (0; ��1].For the second case, assume that1�kxk(�; �k(�)) � (xk + � ~dk)k � kdkk:Then from (9), �k(�) � ���=2kdkk2;and so from (30), rf(xk)T [xk � xk(�; �k(�))](33)� �dkTDkdk + 1�kxk(�; �k(�))� (xk + � ~dk)k2 � 2��C1��kdkk2 � 3B���=2kdkk2:



INTERIOR POINT ALGORITHM FOR LINEAR CONSTRAINTS 11From (7) it follows that kdkk2 � 1�1 dkTDkdk;and so using �C1 < 1, we haverf(xk)T [xk � xk(�; �k(�))]� � h1� 2�1���2 � 3B��1 � ��22 i dkTDkdk + 1�kxk(�; �k(�)) � (xk + � ~dk)k2:(34)For (23), it is su�cient that1� 2�1���2 � 3B��1 � ��22 � ��:A similar argument to that above shows that a positive value ��2 can be found so thatthis inequality is satis�ed for � 2 (0; ��2]. Hence the �rst part of the result follows bysetting ��(��) = min(1; �k=(2kgkk); ��1; ��2):The second part of the result (i.e., that f(xk) > f(xk(�; �k(�))) for su�cientlysmall�) is obtained by modifying the argument of Gafni and Bertsekas [5, Proposition1 (b)]. By the mean value theorem, we can �nd a point �k(�) on the line joining xkto xk(�; �k(�)) such thatf(xk) � f(xk(�; �k(�))) = rf(�k(�))T [xk � xk(�; �k(�))]:Hence from (23), for � 2 (0; ��),1� [f(xk) � f(xk(�; �k(�)))]� �� hdkTDkdk + 1�2kxk(�; �k(�))� (xk + � ~dk)k2i(35) + 1� [rf(�k(�))�rf(xk)]T [xk � xk(�; �k(�))]:Again, writingxk � xk(�; �k(�)) = xk � xk(�; 0) + xk(�; 0)� xk(�; �k(�))and usingkxk � xk(�; 0)k2�2 � kgkk2 = k ~dkk2 + kdk+k2 � (�2 + 1)krf(xk)k2 � (�2 + 1)B2;(36)we have 1� [rf(�k(�))�rf(xk)]T [xk � xk(�; �k(�))]� �krf(�k(�)) �rf(xk)k �Bp�2 + 1 + 1��k(�)�� �krf(�k(�)) �rf(xk)k �Bp�2 + 1 +C1��=2�1� = O(�):When dk 6= 0, it follows from (35) thatlim�!0 f(xk)� f(xk(�; �k(�)))� � ��dkTDkdk > 0:



12 STEPHEN J. WRIGHTOn the other hand, when dk = 0,f(xk)� f(xk(�; �k(�)))� � ���2kxk(�; �k(�)) � xkk2 +O(�)� ���2kxk(�; 0)� xkk2 � 2���2 �k(�)kxk(�; 0)� xkk+O(�):(37)A straightforward application of Lemma 4.2(a) shows that1�kxk(�; 0)� xkk � kxk(1; 0)� xkk:Also, from Lemma 4.2(b), we have for � 2 (0; ��) thatkxk(�; 0)� xkk � �kdk+k � �B:Using these inequalities, together with (10), we have from (37) thatf(xk)� f(xk(�; �k(�)))� � ��kxk(1; 0)� xkk2 � 2��B� �k(�) + O(�)� ��kxk(1; 0)� xkk2 � 2��BC1��=2�1 + O(�):Taking the limit, we havelim�!0 f(xk)� f(xk(�; �k(�)))� � ��kxk(1; 0)� xkk2 > 0:In either case, there is an �̂ � �� with the desired property.For the main result of this section, we need to be more speci�c about the choiceof �k. We now assume that �k = min(�; ĉk�̂(xk));(38)where there is a constant B̂ such that̂ck 2 [1; B̂];and �̂(x) is a continuous function of x that is zero only when x is critical.Theorem 4.5. Suppose that �k satis�es condition (38), that (A) holds, and that(B) holds for xk(�; 0), for all � 2 [0; 1] and all k su�ciently large. Then everyaccumulation point xk generated by the algorithm is critical.Proof. The proof is quite similar to the proof of Proposition 2 of Gafni andBertsekas [5]. Some modi�cations are necessary because of the inexactness in xk(�)and because of the need for the quantity �� in Lemma 4.4. We include most of thedetails here, and refer the reader to [5] for the remainder.Suppose for contradiction that there is a noncritical point x� and a subsequenceK such that limk2K xk = x�. If �k denotes the steplength used in the step from xkto xk+1, (11) implies that limk2K�kdkTDkdk = 0(39)



INTERIOR POINT ALGORITHM FOR LINEAR CONSTRAINTS 13limk2K 1�k kxk(�k; �k(�k)) � (xk + �k ~dk)k2 = 0:(40)Taking a subsequence if necessary, assume thatlimk2K�k = ��for some �� 2 [0; 1].Two cases arise. First assume that �� > 0. Then from (39), dk k2K! 0 and so~dk k2K! 0 and dk+ k2K! �rf(xk). Also from (40),limk2K kxk(�k; �k(�k)) � (xk + �k ~dk)k = 0;(41)and so from (9), limk2K �k(�k) = 0:Using this limit together with (41), we getx�(��; 0) = P (x� � ��rf(x�)) = x�;which implies that x� is critical.For the second case, take �� = 0. Then for k 2 K su�ciently large, the test (11)will fail at least once, thus, using the notation��k = �k� ;we have that f(xk)� f(xk(��k ; �k(��k ))(42) < �n��k dkTDkdk + 1��k kxk(��k ; �k(��k )) � (xk + ��k ~dk)k2o :Since, by (38), �k is bounded away from zero, and since it follows from (36) that kgkkis bounded above, we have lim infk2K �k=kgkk > 0:(43)Hence, setting �� = (� + 1)=2, Lemma 4.4 can be applied to �nd an �� > 0 such that(23) holds for � 2 (0; ��]. Moreover, closer examination of the proof of Lemma 4.4shows that, because of (43), the value of �� can be chosen independently of xk, for ksu�ciently large. Now since limk2K ��k = 0, we have for k su�ciently large thatrf(xk)T [xk � xk(��k ; �k(��k ))]� �+12 n��k dkTDkdk + 1��k kxk(��k ; �k(��k ))� (xk + ��k ~dk)k2o :(44)Using the mean value theorem, and combining (42) and (44), we have1��2 n��k dkTDkdk + 1��k kxk(��k ; �k(��k ))� (xk + ��k ~dk)k2o� rf(xk)T [xk � xk(��k ; �k(��k ))]� f(xk) + f(xk(��k ; �k(��k ))(45) = [rf(xk)�rf(�k)]T [xk � xk(��k ; �k(��k ))]



14 STEPHEN J. WRIGHTfor some �k on the line joining xk to xk(��k ; �k(��k )). Note that1��k kxk � xk(��k ; �k(��k ))k � 1��k kxk � xk(��k ; 0)k+ �(��k )��k � kgkk+C1(��k )�=2�1;which is bounded because of (36). Hence the right-hand side of (45) is o(��k ), anddividing both sides of (45) by ��k we have thatlimk2K dkTDkdk = 0;(46) limk2K 1(��k )2 kxk(��k ; �k(��k ))� (xk + ��k ~dk)k2 = 0:(47)From (46), limk2K dk = 0 and so limk2K ~dk = 0. Since in addition ~dk 2 T k, we havethat xk + ��k ~dk 2 X for k su�ciently large. Lemma 4.2(a) can be applied to showthat 1��k kxk(��k ; 0)� (xk + ��k ~dk)k= 1��k kP ((xk + ��k ~dk) + ��k dk+)� (xk + ��k ~dk)k(48) � kP ((xk + ��k ~dk) + dk+)� (xk + ��k ~dk)k:Meanwhile Lemma 4.2(b) implies that1��k kxk(��k ; 0)� (xk + ��k ~dk)k � kdk+k � B:(49)Taking the sequence in (47), and using Lemma 4.1, (10), (48), and (49), we have1(��k )2 kxk(��k ; �k(��k ))� (xk + ��k ~dk)k2� 1(��k )2 kxk(��k ; 0)� (xk + ��k ~dk)k2 � 2�k(��k )��k � 1��k � kxk(��k ; 0)� (xk + ��k ~dk)k(50)� kP ((xk + ��k ~dk) + dk+)� (xk + ��k ~dk)k2 � 2BC1(��k )�=2�1:Since the second term in this expression approaches zero, it follows from (50) that inthe limit, P (x� �rf(x�)) = x�;and so x� is critical, again giving a contradiction.5. Local Convergence. For the exact algorithm, the local convergence analysisis quite simple because when convergence occurs to a local minimum that satis�es the\standard" assumptions, the iterates eventually all lie on the manifold de�ned by theconstraints which are active at the solution. This does not occur in our case, wherethe iterates remain in the interior of X. We thus need to ensure that the distanceof the iterates to the active manifold is decreasing su�ciently quickly so as not tointerfere with the (rapid) convergence in the tangent direction. Fortunately, someinherent properties of the path following projection algorithm prove to be useful here.In this section we prove R-quadratic convergence of an algorithm in which Dkis a reduced Hessian. Much of the analysis is devoted to showing that steplengths



INTERIOR POINT ALGORITHM FOR LINEAR CONSTRAINTS 15of �k = 1 are used for all su�ciently large k. We start by de�ning a scheme forchoosing �k, then state an active set identi�cation result. Eventual unit steplength isestablished in a sequence of lemmas and Theorem 5.6. We conclude with the mainrate-of-convergence result in Theorem 5.7.In addition to the assumptions made in the preceding sections, we use the follow-ing:(D) x� is a strict local minimum that is nondegenerate, that is,�rf(x�) 2 ri N (x�;X);where ri N (x�;X) is the interior of N (x�;X) relative to the a�ne hull of N (x�;X).(E) �k is de�ned as �k = min(�; ĉk�(xk));where � > 0 is a positive constant,�(x) = kx� P (x�rf(x))k;and ĉk 2 [1; B̂] for some B̂ < 1. (ĉk is a \random" quantity and need not be afunction of xk.)If Assumption (B) also holds at x�, then Assumption (D) implies that there areunique scalars y�i > 0 such that �rf(x�) =Xi2A y�i ai;(51)where A is as de�ned in section 1. For later reference we introduce the notation�A = [ai]i2A; �A 2 Rn�r; r � n:Orthonormalmatrices Z 2 Rn�(n�r) and Y 2 Rn�r can be de�ned such that ZT �A = 0and ZTY = 0.Our relaxed de�nition of �k is motivated by the fact that calculation of x�P (x�rf(x)) involves a projection onto X and hence will be carried out inexactly by thealgorithm of section 3. The following scheme can be used:Algorithm to calculate �k:Step 1: Given some constant Ĉ 2 (0; 1), apply the algorithm of section 2 to �ndP (xk �rf(xk)), terminating when the duality gap �2P=2 satis�es the inequality�P � (1 � Ĉ)kx̂k � xkk;where x̂k is the latest estimate of the solution.Step 2: Set �k = min(�; 2kx̂k � xkk).With the notation x̂k� = P (xk �rf(xk)), Lemma 4.1 and the conditions on �Pcan be used to show thatĈ � 1� �Pkx̂k � xkk � kx̂k� � xkkkx̂k � xkk � 1 + �Pkx̂k � xkk � 2� Ĉ:



16 STEPHEN J. WRIGHTHence 2kx̂k � xkk = ĉkkx̂k� � xkk; where ĉk 2 � 22� Ĉ ; 2̂C � ;and so the requirements of Assumption (D) are satis�ed.From this de�nition of �k, the following active set identi�cation result can beproved:Lemma 5.1. Suppose that assumptions (A), (D), and (E) hold and that (B) holdsfor xk(�; 0), for � 2 [0; 1] and all k su�ciently large. Assuming that x� is a limit pointof the sequence fxkg, we have limk!1 xk = x� and Ik = A for all k su�cientlylarge.Proof. The result follows from Lemma B.1 of Gafni and Bertsekas [5]; trivialmodi�cations are required because of our relaxed de�nition of �k. The Assumption(B) in [5] corresponds to our Assumption (C) (see Theorem 2.8 in Burke and Mor�e[1]).We next show that the steplengths do not vanish as k !1.Lemma 5.2. Under the assumptions of Lemma 5.1, there is �̂ > 0 such that�k � �̂for all k su�ciently large.Proof. From Lemma 5.1 we have that for k su�ciently large, Ik = A. Sincedk = PTk(�rf(xk))! 0, it follows that kgkk ! krf(x�)k � B. Now in Lemma 4.4,we are free to set �k uniformly equal to a constant ~� > 0 which is chosen so thati =2 Ik = A) aTi xk � bi � 2~�kaikfor all su�ciently large k. Hence �k=kgkk is bounded away from zero. Now, given any�� 2 (0; 1), we can apply Lemma 4.4 to �nd an ��(��) > 0 such that for all � 2 (0; ��(��)],rf(xk)T [xk � xk(�; �k(�))] � �� ��dkTDkdk + 1�kxk(�; �k(�))� (xk + � ~dk)k2� :If we use L as an upper bound on r2f(x) for x in some neighborhood of x�, it followsexactly as in Gafni and Bertsekas [5] thatf(xk)� f(xk(�; �k(�)))� �(�� � L�2�)dkTDkdk + ( ��� � L)kxk(�; �k(�)) � (xk + � ~dk)k2:If we choose ~� = sup��2[�;1)min���(��); �� � �L�2 ; �� � �L � ;it follows from the line search mechanism (11) that�k � �̂ def= ~�� ;and the result follows since clearly �̂ > 0.The next result follows easily from Lemma 5.2, LemmaB.2 of [5], and the analysisof Dunn [2]



INTERIOR POINT ALGORITHM FOR LINEAR CONSTRAINTS 17Lemma 5.3. Under the assumptions of Lemma 5.1, we have for all k su�cientlylarge that xk(�; 0) = x� + Zvk(�) 2 x� + T k;for all � 2 [�k; 1], where vk(�) 2 Rn�r. Also,(xk + �( ~dk + dk+))� xk(�; 0) = �A�yk(�) 2 N (x�;X);(52)for all � 2 [�k; 1], where �yk(�) 2 Rr has �yki (�) > C2� for i = 1; � � � ; r and someconstant C2 > 0.Proof. We prove only the last statement concerning the lower bound on �yk(�).Since dk ! 0 and dk+ !�rf(xk), we can combine (51) and (52) to obtainxk(�; 0)� (xk + � �Ay�) + �A�yk(�)! 0;(53)where y� = fy�i gi2A. Since xk+1 � xk ! 0 we have from (9) that �k(�k)! 0. Hence0 � kxk(�k; 0)�xkk � kxk(�k; �k(�k))�xk(�k; 0)k+kxk+1�xkk � �k(�k)+kxk+1�xkk ! 0:Now by Lemma 4.2, and since � 2 [�k; 1],1�kxk(�; 0)� xkk � 1�k kxk(�k; 0)� xkk:Since �k � �̂, it follows from this inequality that xk(�; 0)�xk ! 0. Hence from (53),using the full rank of �A, we have that�yk(�)! �y�:Since y� > 0, the result follows.Corollary 5.4. Under the assumptions of Lemma 5.1, we have for all k su�-ciently large thatZT sk+ = 0 where sk+ = xk(1; 0)� (xk + ~dk):In addition, aTi (xk + sk+) = bi for i 2 A.Proof. The statement ZT sk+ = 0 follows from the second expression in Lemma5.3 by setting � = 1 and noting that ZT dk+ = 0. For the second part, note thatxk + sk+ = xk(1; 0)� ~dk 2 x� + T k;from the �rst expression in Lemma 5.3 and the fact that ~dk 2 T k. Hence aTi (xk +sk+) = aTi x� = bi, as required.For the remainder of this section we use the following notational conventions:� 
k = �k(�k)2=2 is the �nal duality gap for the step from xk to xk+1;� The error in the approximate unit step is separated into two components:xk(1; �k(1))� xk(1; 0) = ek = ~ek + ek+;where ~ek = PTk(ek) = ZZT ek and ek+ = Y Y T ek;� �k denotes �k(1).



18 STEPHEN J. WRIGHTA technical result is needed before establishing eventual unit steps.Lemma 5.5. Suppose that Assumption (C) and the assumptions of Lemma 5.1hold and that the \special case" in the projection algorithm (i.e., xk � �kgk 2 X)occurs only �nitely often. Then for k su�ciently large, there are positive constantsC3, C4, and C5 such that (dk+)T sk+ � C3
k�1kdk+k;ksk+k � C4
k�1:Further, if �k = 1, we have that kek+k � C5
k;jdkT~ekj � �kkdkk:Proof. Assume k is large enough that the \special case" never occurs after iter-ation k � 1. Assume further that �k�1 and all subsequent steplengths are boundedbelow by �̂, as in Lemma 5.2. Recall that xk = xk�1(�k�1; �k�1(�k�1)). Let �k�1and yk�1 be the �nal values of the � and y variables in the projection algorithm ofsection 3 which was used to compute xk. We start by �nding bounds on elements of�k�1 in terms of 
k�1; these are needed for the �rst three inequalities.As discussed in the proof of Lemma 5.3, �k(�k) ! 0; that is, the projectionsubproblem is solved more and more accurately. Recall that the matrix equationin (20) holds at every iteration of the projection algorithm. The �rst part of thisequation yields thatxk � (xk�1 + �k�1( ~dk�1 + d(k�1)+)) + Ayk�1 + qyk�1m+1 = 0:(54)From the second part of the equation and the choice of ~� in the proof of Lemma 5.2,�k�1i = bi � aTi xk � 2~�kaik > 0 for i =2 A:Since 
k�1 = �k�1(�k�1)2=2 =Pm+1i=1 �k�1i yk�1i , we have for i =2 A that0 < yk�1i � 
k�1�k�1i � 
k�12~�kaik ! 0:(55)Since we have assumed that ��m+1 is bounded away from zero for all projection sub-problems, yk�1m+1 ! 0:(56)Now, using k � 1 instead of k in (52) and setting � = �k�1,xk�1(�k�1; 0)� (xk�1 + �k�1( ~dk�1+ d(k�1)+)) + �A�yk�1(�k�1) = 0:(57)Comparing (54) with (57), we havexk�1(�k�1; 0)� xk = Ayk�1 + qyk�1m+1 � �A�yk�1(�k�1):Using (55){(56), the full rank of �A, and noting that kxk�xk�1(�k�1; 0)k � �k�1(�k�1)!0, we have that for some constant C2 > 0,yk�1i ! �yk�1i (�k�1) � C2�k�1 for i 2 A.



INTERIOR POINT ALGORITHM FOR LINEAR CONSTRAINTS 19Hence for k su�ciently large, with �k�1 � �̂, there is a constant C2L > 0 such thatyk�1i � C2L for i 2 A.Also, by full rank of �A and boundedness of rf , there is a C2U > 0 such thatyk�1i � C2U :By Assumption (C), we have for i 2 A that�k�1i � 
k�1�yk�1i � 
k�1C2U�:Also, �k�1i � 
k�1yk�1i � 
k�1C2L :From these last two expressions, we can de�ne positive constants C7L and C7U suchthat C7L
k�1 � �k�1i � C7U
k�1 for i 2 A :(58)For the �rst result, note from dk+ ! �rf(x�) and ZTdk+ = 0 that dk+ = �Atk,where tk ! y�. Hence tk > 0 for k su�ciently large. From Corollary 5.4, (20), and(58), we have for i 2 A thataTi sk+i = bi � aTi xk = �k�1i � C7L
k�1:Hence, noting that ktkk � kdk+k=k �Ak, we have(dk+)T sk+ = ( �Atk)T sk+ = tkT ( �AT sk+) � C7L
k�1ktkk � C3
k�1kdk+k;for C3 = C7L=k �Ak, giving the �rst result.For the second result, we have from Lemma 5.3, Corollary 5.4, and (20) that forsome uk 2 Rl r , sk+ = �Auk and �AT sk+ = [�k�1i ]i2A:Hence �AT �Auk = [�k�1i ]i2A;which, by full rank of �A, boundedness of �i, and (58), gives thatkukk � C8
k�1for some constant C8 > 0. Since ksk+k � k �Akkukk;the result follows by setting C4 = C8k �Ak.For the third inequality, we again use (20) and Lemma 5.3 to deduce that fori 2 A, �ki = bi � aTi xk(1; �k) = aTi [xk(1; 0)� xk(1; �k)] = �aTi ek+:



20 STEPHEN J. WRIGHTNow ek+ = �Avk for some vk, so an identical argument to that of the precedingparagraph can be used to give the result.The fourth inequality follows simply fromjdkT ~ekj � kdkkk~ekk � kdkkkekk � �kkdkk:Theorem 5.6. Suppose that Assumptions (A), (C), (D), and (E) hold and thatAssumption (B) holds in a neighborhood of x�. Suppose that ZTr2f(x�)Z is positivede�nite and that for k su�ciently large, the tangent component of the step is given by~dk = Z(ZTr2f(xk)Z)�1ZTdk:Suppose there is a non-negative sequence f�kg such that limk!1 �k = 0 and that, inaddition to (9),(10), the sequence f�kg satis�eskdkk�k � �k
k�1(59) �2k � �k
k�1:Assume that � < 0:5 in (11). Then �k = 1 for all su�ciently large k.Proof. First, we consider the special case of x� 2 intX, for which we haverf(x�) = 0. By Lemma 5.1, the two-metric gradient projection method reducesto Newton's method when k is su�ciently large. Consequently, dk = �rf(xk), and~dk = �(r2f(xk))�1rf(xk). By Lemma 5.3, xk(1; 0) = xk + ~dk 2 intX for k su�-ciently large. Correspondingly, exactness of the projection yields 
k = �k � 0 for allsuch k. Nowf(xk) � f(xk(1; �k)) = f(xk) � f(xk + ~dk)= �rf(xk)T ~dk � 12( ~dk)Tr2f(xk) ~dk + o(k ~dkk2)= 12dkT (r2f(xk))�1dk + o(kdkk2):The second term on the right-hand side of (11) is zero, so for k su�ciently large, (11)is satis�ed for �k = 1.In the remaining case, x� 2 @X; thus, by Assumption (C),rf(x�) 6= 0. Moreover,the \special case" does not occur in the projection algorithm for su�ciently large k(this follows directly from (52), which states in particular that (xk ��kgk)�P (xk ��kgk) 6= 0). Since rf(xk) = �dk � dk+and xk(1; �k) = xk + ~dk + sk+ + ek;we have that f(xk) � f(xk(1; �k)) = rf(xk)T [xk � xk(1; �k)]�(1=2)[xk � xk(1; �k)]Tr2f(xk)[xk � xk(1; �k)] + o(kxk � xk(1; �k)k2)= [�dk � dk+]T [� ~dk � sk+ � ek]� (1=2)[� ~dk � (sk+ + ek)]Tr2f(xk)[� ~dk � (sk+ + ek)]+o(kxk � xk(1; �k)k2):



INTERIOR POINT ALGORITHM FOR LINEAR CONSTRAINTS 21It can be easily shown that ~dkTr2f(xk) ~dk = dkT ~dk, and so, after some rearrangement,f(xk) � f(xk(1; �k))= n12dkT ~dk + (sk+ + ek)T (sk+ + ek)o+ (dk+)T sk+ �rf(xk)T ek�12 [sk+ + ek]T [r2f(xk) + 2I][sk+ + ek]� [sk+ + ek]Tr2f(xk) ~dk(60) +o(kxk � xk(1; �k)k2):Now Lemma 5.5 can be used to deduce the following inequalities:(dk+)T sk+ � C3
k�1kdk+k � �C3
k�1;for some �C3 > 0, since kdk+k ! krf(x�)k 6= 0;��rf(xk)T ek�� � jdkT~ekj+ j(dk+)T ek+j � �kkdkk+ C5B
k;12 ��[sk+ + ek]T [r2f(xk) + 2I][sk+ + ek]�� � C11ksk+ + ekk2� C12
2k�1 +C13
k�1�k +C14�2k;���[sk+ + ek]Tr2f(xk) ~dk��� � C15kdkk(
k�1 + �k);By substituting in (60), we obtainf(xk) � f(xk(1; �k)) � n12dkT ~dk + (sk+ + ek)T (sk+ + ek)o+ �C3
k�1 � �kkdkk � C5B
k �C12
2k�1 �C13
k�1�k �C14�2k�C15kdkk
k�1 �C15kdkk�k + o(k ~dk + sk+ + ekk2)= n12dkT ~dk + (sk+ + ek)T (sk+ + ek)o+
k�1 � �C3 � �k � (C5B�k=2)�C12
k�1 �C13�k � C14�k�C15kdkk �C15�k� + o(k ~dk + sk+ + ekk2):As k ! 1, the term in square brackets approaches �C3 > 0; that is, it is positivefor su�ciently large k. It is easy to see that the �nal o(k ~dk + sk+ + ekk2) term iseventually dominated by the term in curly brackets. Hence, since � 2 (0; 12 ), we havefor k su�ciently large thatf(xk)� f(xk(1; �k)) � �ndkT ~dk + kxk(1; �k) � (xk + ~dk)k2o ;and so �k = 1 passes the acceptance test (11) and xk(1; �k) will be accepted as thenew iterate.The conditions (59) should be imposed only in the �nal stages of the algorithm,when there is a suspicion that the active manifold has been identi�ed. Otherwise, itcould happen that at some early iterate, xk� gk 2 intX, in which case the projectionis performed exactly (
k = �k = 0) and, because of (59), exact projections would bedemanded at all subsequent iterations.A similar result to Theorem 5.6 can be stated for the alternative acceptance test(12), and it can be proved in almost identical fashion.



22 STEPHEN J. WRIGHTWe can now prove the �nal result.Theorem 5.7. Suppose that the assumptions of Theorem 5.6 hold and that thesequence f
kg converges Q-quadratically to zero, that is, there is a constant C10 suchthat �k � C10
k�1:(61)Then the rate of local convergence of the algorithm is R-quadratic.Proof. In the case x� 2 intX, we actually obtain Q-quadratic convergence, sincethe algorithm eventually reduces to Newton's method. We therefore focus on the caseof x� 2 @X.By setting �k = max(kdkk; �k), it is easy to see that (61) implies (59), and soTheorem 5.6 applies. By the de�nition of sk+,xk + ~dk � xk(1; 0) = �sk+:Multiplying through by ZT , and using the de�nition of ~dk, we obtainZT (xk � xk(1; 0))� (ZTr2f(xk)Z)�1ZTrf(xk) = 0:(62)By optimality of x�, ZTrf(x�) = 0, so by Taylor series expansion, and since ZZT +Y Y T = I, ZT (rf(x) +r2f(x)(x� � x)) = O(kx� x�k2)(63)) ZTrf(xk) � ZTr2f(xk)ZZT (xk � x�) = ZTr2f(xk)Y Y T (xk � x�) +O(kxk � x�k2):Multiplying (63) by (ZTrf(xk)Z)�1, and adding to (62), we havekZT (x� � xk(1; 0))k = O(kY T (xk � x�)k) +O(kxk � x�k2):(64)Recall that xk = xk�1(1; �k�1) and that by Lemma 5.3Y T (xk�1(1; 0)� x�) = 0(65)for all su�ciently large k. Hence, using the third inequality in Lemma 5.5, we havekY T (xk � x�)k = kY T (xk�1(1; �k�1) � xk�1(1; 0))k= ke(k�1)+k(66) � C20
k�1:From (64){(66), kx� � xk+1k � kx� � xk(1; 0)k+ kekk� C20
k�1 + �k + O(kxk � x�k2):(67)Now �k � C10
k�1, and so we can choose a constant C21 � max(1; C20 + C10) suchthat kx� � xk+1k � C21max(
k�1; kx� � xkk2):(68)Given any � < C�121 , we can choose an integer �k su�ciently large that
k�1 � �2 and kxk � x�k � � for all k � �k:
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