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AN INTERIOR POINT ALGORITHM FOR LINEARLY
CONSTRAINED OPTIMIZATION~

STEPHEN J. WRIGHT'

Abstract. We describe an algorithm for optimization of a smooth function subject to general
linear constraints. An algorithm of the gradient projection class is used, with the important feature
that the “projection” at each iteration is performed using a primal-dual interior point method for
convex quadratic programming. Convergence properties can be maintained even if the projection is
done inexactly in a well-defined way. Higher-order derivative information on the manifold defined by
the apparently active constraints can be used to increase the rate of local convergence.
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1. Introduction. We address the problem
(1) min f(x) s.t. ATz <o,

where © € R” and b € R™, and f is assumed throughout to be twice continuously
differentiable on the level set

C={e| A2 <b, () < FGO)),
where z° is some given initial choice for . Recent literature on this problem can
for the most part be divided into two main classes. On the one hand, there are the
“active set” approaches such as sequential quadratic programming, which are most
suitable when the constraints ATz < b lack any special structure such as separability.
In these algorithms a model of f (for example, the quadratic approximation f(z) +
Vi) d+ (1/2)dTV?f(x)d) is formed at each “outer” iteration and minimized over
some subset of the feasible region. The algorithm tends to move along edges and faces
of the boundary of the feasible set, changing its set of currently active constraints by
at most one element on each “inner” iteration. A second class of methods, known as
“gradient projection” methods, allow more substantial changes to the active set at
each iteration by choosing a direction ¢ (for example, V f(z) or some scaled version
of it) and searching along the piecewise linear path P(x — ayg), where o > 0 and P
is the projection onto the feasible set. These methods are best suited to the case in
which the projection P(.) is easy to perform, for example, when the feasible region is
a box whose sides are parallel to the principal coordinate axes.

In this paper, our aim is to describe an algorithm of the gradient projection class,
in which we allow the projections to be performed inezactly. We focus on the case
of Euclidean norm projections, which can be solved by using interior-point methods
for convex quadratic programming problems. In this way, general polyhedral feasible
regions can be handled. We thus hope to combine the much-vaunted advantages of
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interior-point methods with the desirable properties of gradient projection algorithms
— most notably, rapid identification of the final active set. In addition, we allow
second-derivative information to be used in the definition of ¢ (as is also done by
Dunn [4, 3] and Gafni and Bertsekas [5]) to speed up the asymptotic convergence rate
after the correct active set has been identified.

The “inexactness” in the projection is quantified by a duality gap, which is up-
dated at each iteration of the projection subproblem. The global convergence analysis
in section 4 is not tied to the use of an interior-point method for the projection; any
algorithm (including an active set method) that allows a duality gap to be calculated
for each iterate may be used.

The point z* is a critical point for (1) if there are scalars y; > 0 such that

Vi) = s,

icA
where a; are columns of A, and
A={i=1,---,m|alz* =b;}.
Equivalently,
(2) - Vf(@") € N(&™; X),

where X is the feasible set {z | ATz < b}, and N(z;X) is the normal cone to X at
x, defined by

N(z; X)={v | vl (u—2) <0, for all u € X}.

In the next section, we specify the algorithm. The interior-point method that
may be used to perform the projection is discussed in section 3. The global and
local convergence properties of the algorithm are analyzed in section 4 and section b5,
respectively.

In the remainder of the paper, the following notational conventions will be used:

o ||z]| = (l‘Tl‘)% (the Euclidean norm), unless otherwise specified.
e Py(z) denotes the Euclidean projection of the vector x onto the convex set
Y C R", that is

P = ] —z|l.
s (2) = argmin |z — 2]

If the subscript 1s omitted from P, projection onto X is assumed.

e intY denotes the interior of Y, and 9Y denotes its boundary.

e When z is a vector, relations such as > 0 are meant to apply componentwise.

e Subscripts on vectors and matrices denote components, while superscripts are
used to distinguish different iterates. Subscripts on scalars denote iteration
numbers.

e When {&.} and {£;} are non-negative sequences, the notation & = O(&x)
means that there is a constant s such that &, < s&, for all k sufficiently large.
& = o(€x) means that there is a non-negative sequence {s} converging to
zero such that &, < sp&; for all k sufficiently large.

e The sequence {v*} is said to converge Q-quadratically to v* if [Jv
O(||v* — v*[|?). Tt is said to converge R-quadratically if there is a sequence
{€;} that converges Q-quadratically to zero such that [[v* — v*|| < & for all
k.

k+1 _U*H —
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o If {v*} and {v*} are two sequences of vectors, the notation “v* — *” means

that limy _ ., [[v* — 9| = 0.

e In sections 4 and 5, we introduce constants denoted by C' and C with a
subscript. In all cases these represent strictly positive constants, even where
not stated explicitly.

2. The Algorithm. We start this section by giving an outline of the major
operations at each iteration of the basic algorithm. Then we state a formal outline
and conclude by mentioning possible variations.

The algorithm first defines an “almost active” set of constraints at each iterate
z®. Tt partitions the gradient into two orthogonal components (which are orthogonal
to and tangent to the manifold defined by the almost active set, respectively) and
then scales the tangent component by a matrix with suitable positive definiteness
properties (possibly an inverse reduced Hessian or a quasi-Newton approximation to
it). A projected Armijo-like line search is then performed along the resulting direction.

The activity tolerance at the point z* is e, where for the moment we require
only that ¢; > 0. The almost active set Z% is defined by

(3) F={i=1,---,m|al 2" > b; — ep]|ail]}.
We use T* to denote the tangent manifold corresponding to this set:
(4) TF ={z|af2=0, all ieI*}.
The negative gradient is then decomposed using 7% by setting
(5) d* = Ppu(=Vf(2")), d*t = [V f(a*) + d").
The tangent component d* is modified by setting
(6) d* = D*d*,
where D* is a matrix such that Ppx o D¥ o Ppx = D* and
(7) Mzlz < 2PDFz<X2Tz, allzeTh |
where A1 and A; are positive constants. The search direction is assembled as
(8) " = —(d" +d").
A projected Armijo search is carried out along the path

*(a) = P(z" — ag®),

where the values o = 1,3,3%,8%,--- (where 3 € (0,1) is some constant) are tried.
For each such value of «, the projection is calculated with the algorithm described in
the next section. This algorithm generates a sequence of feasible approximations to
z¥(«), which we denote by #*(«). For each such estimate, the algorithm produces a
duality gap ys;(«). Defining the more convenient quantity

orj(a) = /275 (e),

we can obtain upper and lower bounds on the distance from z* — ag® to X, that is

12 () = (2" = ag")||* = 615 (0)? < [|2"(0) = (" — ag")|]* < (|2 () — (2" — ag")|I".



4 STEPHEN J. WRIGHT

These “inner iterations” are stopped at a value of j for which éy;(«) becomes suffi-
ciently small according to the following criteria:

~ 2
- 25 (a) — (2F + ad®
(9) bi(a) < na /Zmax(” )= >”,||d’“||)
and
(10) ki) < Cra™?.

Here 7, C1, and 5 are constants that satisfy the conditions
T> 2, nCy < 1.

We denote the final computed &;(e) by é(c), and the corresponding =*/(«) by
z¥(a; 8p(a)). The step a is then accepted if the following “sufficient decrease” test is
satisfied:

Fas (@) — (&F + ad")|?
11 Ey Kl § > d*T Dk gk |G
(1) f(z") = f(2"(o; k(a)))_ff{a + " )
where o € (0, 1) is a constant.
The algorithm can be summarized as follows:

Step 1: Choose ¢j. Compute Z* from (3), and g* according to (5)—(8).

Step 2: For a = #?, p = 0,1,2,--- (in sequence) approximately calculate z*(a) =
P(z* — ag*), terminating when z*(a;6;(a)) = 2%/ (a) and its associated & (a) =
8rj (o) are found that satisfy (9),(10). If the test (11) is passed for this value of «,
set ap = a = B, ¥t = 2%(a;6(a)), k — k + 1, and go to the next iteration.
Otherwise, increase p by 1, and try the next o = gP.

In its “exact” form (i.e., 6z(a) = 0), and when D* is defined as the reduced Hes-
sian or a quasi-Newton approximation to it, the step ¢* is the same as that obtained
by specializing the algorithm of Dunn [4] to the linearly constrained case. The calcu-
lation of ¢* is somewhat different in Gafni and Bertsekas [5]. They define an “almost
tangent cone” at z* by

CP={z]al2<0, al iec7TF},

and then define d* as the projection of —V f(2*) onto this cone. Additionally, the
conditions on D¥ are slightly different, and d* is the projection of D*d* onto C*. Our
reason for following Dunn [4] and using the simpler decomposition relative to 7% is our
assumption that projection onto the subspace T% can be done exactly and cheaply.
This 1s not unreasonable — the cost would normally be comparable to one iteration of
the interior-point algorithm used for the projection onto X. Projection onto C* may,
on the other hand, be as expensive as projection onto X. Still, there are intuitive
reasons for preferring C* to 7%, and it would be of interest to see whether the extra
cost per iteration (and the extra algorithmic complexity of doing the projection onto
C* inexactly) is justified.
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The steplength rule (11) reduces to the one proposed by Gafni and Bertsekas [5]
(and also used by Dunn [3]) when é;(«) = 0. Another obvious possibility, to which
we will return briefly in section 5, is

(12 (") — F(2* (a; 6:(a)) > @ {adkTDkdk + VT [ + ad® — 2 (a; 6k(a))]} .

3. Projection onto X. Projection onto the polyhedral set X can be achieved
by solving a convex quadratic program or, equivalently, a linear complementarity
problem (LCP). In this section, we formulate the problem and outline a primal-dual
potential reduction algorithm for solving it. The discussion will be brief, since other
papers such as [6, 7, 10, 11] can be consulted for details about motivation, analysis,
and implementation issues for this class of interior-point algorithms.

Throughout the remainder of the paper, we use the following assumptions:

(A) The feasible set X has an interior in R".
(B) At the solution z* = P(t) of the projection subproblem, the set of vectors
{ai |af =" = b}
is linearly independent.
The (unique) vector P(t) is obtained by solving
1
min §||z —t)? st. ATz <,
or, equivalently,
1
13 min=||z —t|? st. ATz+v=0b, v>0.
2

Introducing Lagrange multipliers y for the constraints, we find that (13) is equivalent

to the (mixed) LCP

O B ) [ A

The coefficient matrix in (14) is clearly positive semi-definite.
The progress of the interior-point algorithm can be gauged by using the potential
function defined by

(15) W(v,y) = pplog(v’y) — Zlog(viyi),

where pp > m + +/m. In Kojima, Mizuno, and Yoshise [7], the step from iterate j to
iterate 7 4 1 1s obtained by solving the linear system

(16) ME I

together with

0 dsdrdan= () S+ 2] i
: ,

- J
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where v; = Y00, I/g Z»' and the value of p; is discussed below. A steplength 6; is
chosen such that

(18) 0;

<7, 0

v

g v

K3

for some 7 € (0,1). Trivial modifications of the results of Kojima, Mizuno, and
Yoshise [7] indicate that for the choices p; = pp = m++/m and 7 = 0.4, we have that

(19) W+ 0;Av, Y+ 0;Ay) < () — 0.2,

When some iterate (27,17, y/) satisfies ¥(17,y') < —O(y/mL), it can easily be shown
that (1/)Ty < 279) This suggests that, provided the initial point (2%, 2%, y°) sat-
isfies 1(v°, y°) = O(/mL), convergence to a point with duality gap less than 279(L)
can be achieved in O(y/mL) iterations. (For purposes of the complexity analysis, L
is taken to be the “size” of the problem.) Although this choice of p; yields the best
complexity result to date, it has been observed that, in practice, larger values of p;
lead to fewer iterations. In Han, Pardalos, and Ye [6], the choice p; = m? is made
for convex quadratic programs. In the context of linear programs, Zhang, Dennis,
and Tapia [11] observe that it is even desirable to let p; grow unboundedly large as
the solution is approached. (The steps produced by (16),(17) are then very close to
being Newton steps for the nonlinear equations formed by the equalities in (14).) Ye
et al. [10] have shown such “large” choices of p; are not incompatible with obtaining
reductions in the potential function. In practical implementations, the line search
parameter 6; is also chosen differently. In Han, Pardalos, and Ye [6], the following
choice appeared to give good experimental results:

. , v/ : v
¢; = 0.99 min min — , min ——= 1.
i=1,,m, Av;<0 Ay’ i=1,m, Ayi<0 Ay,

An issue of particular concern in this context is the choice of a feasible initial
point at which to start the interior-point iteration. Such a point can be found by
augmenting the problem in a simple way. We can reasonably assume that a vector
20 that satisfies AT2% < b is available from some previous iteration. If y° is also
chosen from a previous iteration, we usually have, from the first equation in (14),
that 2% + AyY is similar in magnitude to the primal quantities z and . We can thus
define a (reasonably scaled) vector ¢ by

qg=—(z" —t+ Ay")

and obtain the following augmented version of (14):

0 1 A g z —t
(20) v =| -AT 0 0 Yy + b ,
Um+1 _qT 0 0 Ym+1 bm+1

v>0, Umy1 >0, ¥>0, ymg1 >0, v"y+ Vmy1¥ms1 = 0.

The corresponding projection problem is

1
(21) min §||z —t)? st ATz <b, T2 <bpga.
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If we choose by, 11 to satisfy
b1 > max(q? 2%, ¢T P(1)),
then we find that a feasible initial point for (20) is
(2,0, Uma1, U Y1) = (20,6 — AT20 by — q720, 40 1),

At the optimal solution, vy, | = b1 — q7 P(t) and Yms1 = 0. A practical choice for
bm41 can be made as follows: when ¢ = z — ag with x feasible, note that

¢"P(t) = ¢" [P(z—ag)—(z—ag)]+q"t < [|gll[| P(z—ag)—(z—ag)||+4"t < ollqlll|gll+4 .
Hence b,,41 can be chosen as any number greater than
max(q" 2%, ollqlll|gll + ¢ ).

We tacitly assume throughout the remainder of the paper that b,,41 is chosen large
enough that the extra constraint in (21) does not come into play during the projection
process (that is, v,41 stays reasonable large).

Two more points about the computational aspects of the projection should be
made since, for many variants of the algorithm described in this paper, it will be the
most time-consuming step, apart from the function evaluations. First, note that the
cost per interior-point iteration, which is dominated by the cost of solving augmented
versions of the linear system (16),(17), is similar to the cost of decomposing the
gradient as in (5). (The latter operation may be performed by solving a system
whose coefficient matrix is a submatrix of the matrix in (16).) Second, the number of
interior-point iterates which will be necessary for a given « should not be too large.
A rule of thumb seems to be that around 20-30 iterates are required for an accurate
solution when no a priori information about the solution is known. In our case,
the situation is better: good starting points will usually be available from previous
iterates and from approximate projections for larger values of . A priori information
has been observed to significantly decrease the number of interior-point iterations
(see, for example [9]). ' '

In section 5, we assume that the points (27,17, I/fn_l_l, Y, y7m+1) generated by the
interior-point algorithm do not stray too far from the central path defined by

m+1
{(z,y, Vm+1,Y, Ym41) feasible in (20) | vy = Z viyi/(m+1), é=1,---;m+ 1} .
=1

The following assumption is used to prove that unit steps ay = 1 are always eventually
used by the method.

(C) There is a constant g > 1 such that the final iterate (z, v, Um41, ¥, Ym+1) generated
by the projection algorithm, each time it is called, satisfies
1
>t viyr/(m+ 1)

viY; > .
7

Although this assumption conflicts to some extent with the desire for fast asymptotic
convergence of the interior-point method, Zhang, Dennis, and Tapia [11, Theorem
3.1] observed that, at least in the case of linear programming that they consider, it
appears to hold in practice.
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4. Global Convergence. In this section we prove that all accumulation points
of the algorithm of section 2 are critical. The result depends crucially on the following
lemma, which bounds the distance between z*(a;0) and z*(«;é(a)) in terms of
6k(oz)

LEmMMA 4.1. Suppose that (A) holds and that (B) holds at z* = z*(a,0). Then

2" (a3 0) — & (a3 8 (@) || < bx ().
Proof. Setting t = z* — ag®, we obtain

[t = 2" (o 0)II* 2 It — 2" (@ 6 ()] — bk (a)?
= () 2 2t — 2" (a; 0)]T 2" (@; 0) — " (a; 6 ()] + [[2* (25 0) — 2" (o5 8 ()|

Now since t — z*(a;0) € N(z*(a;0) ; X) and 2¥(a; 6 (a)) € X, the first term on the
right-hand side above is non-negative and can be omitted from the inequality. The
result follows. [

Under appropriate nondegeneracy assumptions, application of the implicit func-
tion theorem to a subset of the equalities in (13) (or (20)) would suggest that, locally,
a stronger bound of O(vx(a)) = O(8(«)?) might be obtained. In fact, some of the
local convergence analysis in section 5 relies on just this observation. In general,
however, given a point z* and a search direction g*, there are usually values of «
such that the solution of (13) (or (21)) for t = #* — ag® is degenerate. Our result in
Lemma 4.1 is similar to, but more specific than, the bound that would be obtained
by applying the analysis of Mangasarian and Shiau [8] to (13).

We state without proof the following well-known result, which actually applies
for any closed convex X C R”.

LEMMA 4.2. For any x € X and z € R”,

a) ||P(x + az) — x|/« is a nonincreasing function of o > 0,

) |P(z + az) — zll/a < |1l

Before proving the main result (Theorem 4.5), we show that the conditions
(9),(10) ensure that the projection is computed exactly when z* is critical (Lemma
4.3) and, in a technical result, show that the algorithm produces descent at a non-
critical point (Lemma 4.4).

LEMMA 4.3. Suppose that (A) holds and that (B) holds at z* = x*. When z* is
critical, then é(a)) = 0 for all a € [0,1], and z*(a; 6;(a)) = 2* for all « € [0,1].

Proof. Clearly the result is true for « = 0. For the remainder of the proof, we
assume that o € (0, 1].

All vectors in the subspace T* are orthogonal to N (z*; X). Hence by (2) and (5),
d* = d* =0 and d*t = =V f(z*). Also, by (2),

2¥(a,0) = P(x¥ — aV (b)) = 2F,
and so
i B1(0)) — (& -+ @) < [lo#(50) — 2¥1] + [l (584 () — 2¥(a; O] < 84 ().
Substituting this expression in (9), we have

T/2 6k(a)2

8 (a) < pe 3

and hence

(22) Si(e)[1 = na™* 28k (a)] < 0.
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From (10) and the fact that nCy < 1,
1- nof/z_zék(a) >1-nCia™ ?>1-a""%>0,

since & € [0,1] and 7 > 2. Since éx(«) > 0, the inequality (22) can hold only if
8 () = 0. Thus, the first statement is proved. Proof of the second statement follows
immediately. [
LeMMA 4.4. Suppose TF is defined by (3), where ¢, is any positive number.
Suppose that (A) holds and that (B) holds for all z* = x*(a,0) for a € [0,1]. Then,
given any & € (0,1) there exists an a(a) € (0, ¢x/||g%||) such that
V@) 2" = 2* (o 81 ()]
(23) > ¢ [adT Dt + Lo¥(a; () — (F + adb)|?
Hence, provided x* is not critical, there is an a(g) € (0,a] such that f(z*) >
f(2*(a, 8(a)) for all a € (0, a].
Proof.
VYT b — o (s 8(a))]
(@4) = VAT k - okas0)]+ V)T [oh(a30) - ot(as 6u(a))]
and for « € (0, x/||g*|]), it can be proved by using a similar argument to that in [5,
Proposition 1 (b)] that

VI [ - 2t (@, 0)]
> ad DA 4 Lk (0,0) — (2 + ad) 2

By the smoothness assumptions on f, there is a constant B such that
V()| < B for all reLl.

Since all z* € £, we have, using Lemma 4.1, that

(25) |Vf(xk)T[xk(oz; 0) — " (a; bp(a))])| < Bég(w).
Now
(26) [l2# (@ 0) = (& + ad")[|* = [|2* (0 6(a)) = («* + ad") ||
+2[2" (0 0) — " (a; 85 ()] " [ (@ 64 (@) — (2" + ad")] + [|2"(; 0) — 2" (ar; 8y ()|
> 2" (a3 8 (@) = (2" + ad")||* — 285 (@) (@; 6k () — (&* + ad®)]],

and so from (24)-(26)
V()T [e* — 2*(o; 6% ()]
(27) > ad*TDFdF 4 L2t (a;6x(a)) — (2 + adb)|?
— 26k (@)||2" (o 8x () — (2* + ad®)|| — Béy(a).
Now
Lok (a; 6x(@)) — (2 + adb)|
Llje*(a; 65(@)) — 2" (a; 0)[| + L[|a*(a; 0) — (2" + ad")|
L6i(@) + L P(a* 4 ad"™* + ad®) — (zF + ad")]|.

(28)

IN A
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The following simple argument shows that ¥ + ad* € X for a € (0, ¢4/]|¢"]):
i¢7" = of [ +ad"] < b — erllaill + allg"[lllail] < b
et = [ +ad)=dl 2" <

)

Hence by Lemma 4.2(b), (28) becomes
Loe k Tk 1 b+ 1
29)  Llek(isu(0) - (5 + ad)] < S6u(0) + 144 < 2n(0) + B

Hence (27) becomes

(30) V(R o — ¥ (a; (@)
> ad*TD*d* + %ka(a; 6r(a)) — (=% + ozcik)Hz — %6k(a)2 — 3Bép(«).

We now consider two cases. First, suppose that
1 -
—[l2*(a; k() = (2" + ad")]] > [|d"]].
Then from (9) it follows that

opellehassi(a)) = (ot + adt))?

op(e) < 3

o
Using this, together with (10) and the fact that nCy < 1, we have from (30) that
V@) 2" = 2* (o 81 ()]
(31) > ad*T DFd* + L|ja* (a; 6(a)) — (oF + adb)||?
— [%(Clof/z)nof/z + 3377@7/2] (%)ka(a;ék(a)) _ (xk + ozcik)Hz
> ad"TDEAF 4+ L1 [1 — 20777 — 3B7]oz75_2] |l (cv; 6 () — (2* + ad®)]|2.
The inequality (23) will be satisfied provided

T—2

(32) 1-2a""?=3Bpa"2 >a.

Setting [ = a%Q, we find that the quadratic 238? + (3Bn)8 + (6 — 1) has one positive
root. Hence we can find an &; > 0 such that the required inequality will be satisfied
for all € (0, a1].

For the second case, assume that

(0 8(0)) — (& 4 ad)]| < [1d°).
Then from (9),
bi(0) < o™ "
and so from (30),

(33) V)T e — ¥ (o6 ()]
> ad DA 4+ Lo (03 6i(a)) — (2F + ad®) |2 = ZyCra(|d"|2 — 3By
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From (7) it follows that
k(2 Loowr ok gk
[|[d°|]F < —d"" D*d",
W

and so using nCh < 1, we have

V) [a* = 2 (as 85(a))]

(34)> o |[1— Za™"? = BT AT DEAE 4 L)k (o 85 () — (2F + ad®)|%.

For (23), it is sufficient that

2 3Bn -z
1= a2 2205 > 0.

A1 A1

A similar argument to that above shows that a positive value ay can be found so that
this inequality is satisfied for v € (0, &3]. Hence the first part of the result follows by
setting

a(o) = min(l,ek/(2||gk||),6z1,6z2).

The second part of the result (i.e., that f(z*) > f(2*(a, 6k («))) for sufficiently
small ) is obtained by modifying the argument of Gafni and Bertsekas [5, Proposition
1 (b)]. By the mean value theorem, we can find a point (¥(a) on the line joining z*
to #*(, 6z ()) such that

F(@*) = f&* (o 8p(a))) = VA ()T [28 — 2¥(a; 85 (a))].
Hence from (23), for « € (0, &),
SL(?) = f(@" (o, 61 (a)))]
(35) > o | DR+ et (a6 (0)) = (2 + ad")|?
+2[VACH (@) = V)] [eF — 2 (s 85 ().
Again, writing
b — aF(a; () = 2 — 2F(a;0) + 2% (a; 0) — ¥ (; 61(a))

and using

z® — 2% (a; 0)])? ~
(U LSO g2 = 2 4 104 < O 4+ DT AR < (o + DB,
we have

LIVF(CH(a) = V)T [2* — 2% (a; 6x())]
—IVF(¢H () = V@) [BVA2 + T+ 26r(a)]
—IVF(¢* (@) = V)| [BVX: + T4 Cra™?71] = O(«).

When d* #£ 0, it follows from (35) that

2
2

a—0 «
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On the other hand, when d* = 0,
F(o?) = f(a* (o bi(a)))

a -

7 20
(37) > et (e;0) = a|? = (el (0 0) — 2" + O(e).

I (@5 61(0)) — 2| + O(a)

A straightforward application of Lemma 4.2(a) shows that
ot 0) = 21> [l2¥(1,0) — ]|
Also, from Lemma 4.2(b), we have for « € (0, &) that
[J#*(a;0) — 2| < afld"*|| < aB.
Using these inequalities, together with (10), we have from (37) that

f(l‘k) - f(lj(aé or(@))) &||xk(1; 0) — ggk”2 — ?6;6(@) + O(«)

llx®(1;0) — 2*))? = 26 BCLa™/*7L + O(a).

v

Taking the limit, we have
By _ E( .
o ) = F (e 84(0)))

a—0 «

> &)z (1;0) — 2*|)? > 0.

In either case, there is an & < & with the desired property.
n
For the main result of this section, we need to be more specific about the choice
of €. We now assume that

(38) ex = min(e, ¢ré(xy)),

where there is a constant B such that

ék € [L B]a
and
é(x) is a continuous function of # that is zero only when z is critical.

THEOREM 4.5. Suppose that €, satisfies condition (38), that (A) holds, and that
(B) holds for z*(a,0), for all « € [0,1] and all k sufficiently large. Then every
accumulation point * generated by the algorithm is critical.

Proof. The proof is quite similar to the proof of Proposition 2 of Gafni and
Bertsekas [5]. Some modifications are necessary because of the inexactness in z*(«)
and because of the need for the quantity ¢ in Lemma 4.4. We include most of the
details here, and refer the reader to [5] for the remainder.

Suppose for contradiction that there is a noncritical point z* and a subsequence
K such that limgex 2% = 2*. If ), denotes the steplength used in the step from z*
to z*+1 (11) implies that

(39) lim ayd*” D*d* = 0
kex
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1 k kN2
(40) lim o (s 8 o)) = (o + x| = 0

Taking a subsequence if necessary, assume that

lim ap = o*
kek

for some o™ € [0, 1].

dk kEK

Two cases arise. First assume that o > 0. Then from (39), 0 and so

d* "€ 0 and df* " T f(2*). Also from (40),

(a1) lim [l (s 8e(00) — (2 + )| = 0.
and so from (9),

Using this limit together with (41), we get
¥ (a”,0) = P(z* —a"Vf(x")) =2,

which implies that #* is critical.
For the second case, take a® = 0. Then for k € K sufficiently large, the test (11)
will fail at least once, thus, using the notation

a, = —,
g
we have that
(42) F@®) = Fa* (o5 e(ay)

< o{apdT D} 4+ Lat (a7 s8(ag)) - (F +ap B}

k

Since, by (38), ¢; is bounded away from zero, and since it follows from (36) that ||¢*||
is bounded above, we have

. . k
(43) hmknelgek/ﬂg || > 0.

Hence, setting ¢ = (¢ + 1)/2, Lemma 4.4 can be applied to find an & > 0 such that
(23) holds for o € (0,&]. Moreover, closer examination of the proof of Lemma 4.4
shows that, because of (43), the value of @ can be chosen independently of z*, for &
sufficiently large. Now since limpex o = 0, we have for k sufficiently large that

V()T [o - oF (o Buap))]
(41) > = {apd DR+ Latagsanap) - (@F 4+ apdh)P )
k
Using the mean value theorem, and combining (42) and (44), we have
152 {ap MO 4 Lilat (g s8i(a)) — (o + ap db)P

Vf(w’“)T[r’“—l"“(%ﬁk(%))] F@") + fa (o5 0k (a)
[VF(*) = VAN 2" — 2" (a1 6(ap))]

(45)

IN
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for some ¢* on the line joining z* to z*(aj , 6x(a; )). Note that

1 _ _ 1 _ ola, /92—
Lt — o ()l < —=llet — 2 (or: 0l + ) <1k 4 o) 2,
oy oy oy

which is bounded because of (36). Hence the right-hand side of (45) is o(«a} ), and
dividing both sides of (45) by a; we have that

(46) lim d*7 D*d* = 0,
kex

(47) [l (a3 8k (0 ) — (2 + o d)|* = 0.

kleHl% (ar )?

From (46), limgex d* = 0 and so limgcx d* = 0. Since in addition d* € T*, we have
that «* + ay d* € X for k sufficiently large. Lemma 4.2(a) can be applied to show
that

=l (a:0) = (2 +adh))|
k

(48) = HIP(E* +apd) +apd™) — @ +apd)|

v

IP((2* + o d) +d*F) — (aF + agd*).

Meanwhile Lemma 4.2(b) implies that

1 N
(49) —|l2" (a3 ;0) = (2" + ai d")|| < 1" < B.
@

Taking the sequence in (47), and using Lemma 4.1, (10), (48), and (49), we have

Sl (g on () — (2 + ag d)|P?

(e )2
(59) 1 ||xk(a_~0) _ (xk + oz_cik)Hz _ 20k(ey) (L) ||l‘k(a_'0) _ (xk i oz_cik)H
=7 (ay)? ko k ar  \a; ko k

Since the second term in this expression approaches zero, it follows from (50) that in
the limit,

P(z* —Vf(z")) =",
and so z* is critical, again giving a contradiction. [

5. Local Convergence. For the exact algorithm, the local convergence analysis
is quite simple because when convergence occurs to a local minimum that satisfies the
“standard” assumptions, the iterates eventually all lie on the manifold defined by the
constraints which are active at the solution. This does not occur in our case, where
the iterates remain in the interior of X. We thus need to ensure that the distance
of the iterates to the active manifold is decreasing sufficiently quickly so as not to
interfere with the (rapid) convergence in the tangent direction. Fortunately, some
inherent properties of the path following projection algorithm prove to be useful here.

In this section we prove R-quadratic convergence of an algorithm in which D*
is a reduced Hessian. Much of the analysis is devoted to showing that steplengths
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of a = 1 are used for all sufficiently large k. We start by defining a scheme for
choosing ¢, then state an active set identification result. Eventual unit steplength is
established in a sequence of lemmas and Theorem 5.6. We conclude with the main
rate-of-convergence result in Theorem 5.7.

In addition to the assumptions made in the preceding sections, we use the follow-
ing:

(D) z* is a strict local minimum that is nondegenerate, that is,
=V f(z*) e riN(z"; X),
where ri N(2*; X) is the interior of N(z*; X) relative to the affine hull of N(z*; X).
(E) ¢, is defined as
ep = min(e, éxe(xy)),
where € > 0 is a positive constant,
(@) = [le — Pz = V(@)

and ¢, € [1,B] for some B < 0. (¢r is a “random” quantity and need not be a
function of z*.)

If Assumption (B) also holds at z*, then Assumption (D) implies that there are
untque scalars yi > 0 such that

(51) —Vf(x*):Zy;‘ai,
icA

where A 1s as defined in section 1. For later reference we introduce the notation

A= [aidiea, AER™, r<n.

Orthonormal matrices Z € R?*(*~") and Y € R**" can be defined such that Z7A4 = 0
and ZTY = 0.

Our relaxed definition of € is motivated by the fact that calculation of « — P(x —
V f(x)) involves a projection onto X and hence will be carried out inexactly by the
algorithm of section 3. The following scheme can be used:

Algorithm to calculate ¢:

Step 1: Given some constant C' € (0,1), apply the algorithm of section 2 to find
P(2% — V f(2*)), terminating when the duality gap €% /2 satisfies the inequality

e < (1-C)la* - 2*),
where #* is the latest estimate of the solution.
Step 2: Set ¢; = min(e, 2[|z% — =*||).

With the notation #%* = P(z* — V f(2*)), Lemma 4.1 and the conditions on ep
can be used to show that

Skx ok .
i [l | R T S

C<1- L
I A A | e | I (A
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Hence

2|aF — ¥ = épl)at — 2*|), where ér € [ 2 A,g] ,
2—-C C
and so the requirements of Assumption (D) are satisfied.

From this definition of €, the following active set identification result can be
proved:

LEMMA 5.1. Suppose that assumptions (A), (D), and (E} hold and that (B) holds
for z*(a,0), for o € [0, 1] and all k sufficiently large. Assuming that * is a limit point
of the sequence {x*}, we have limp_. ¥ = x* and IF = A for all k sufficiently
large.

Proof. The result follows from Lemma B.1 of Gafni and Bertsekas [5]; trivial
modifications are required because of our relaxed definition of €¢;. The Assumption
(B) in [5] corresponds to our Assumption (C) (see Theorem 2.8 in Burke and Moré
[1]). .

We next show that the steplengths do not vanish as &k — oo.

LEMMA 5.2. Under the assumptions of Lemma 5.1, there is & > 0 such that

ozkz&

for all k sufficiently large.

Proof. From Lemma 5.1 we have that for k sufficiently large, 7% = A. Since
d* = Ppi(=V f(2*)) — 0, it follows that ||g*|| — [|[Vf(z*)|| < B. Now in Lemma 4.4,
we are free to set €; uniformly equal to a constant é > 0 which i1s chosen so that

i ¢ I" = A= ol 2% < b — 2¢)|a;]]

for all sufficiently large k. Hence ¢ /||g*|| is bounded away from zero. Now, given any
7 € (0, 1), we can apply Lemma 4.4 to find an a(&) > 0 such that for all « € (0, a(7)],

VI~ (8] 2 o [ad T DR 4 et s () — (o + ad)P|

If we use L as an upper bound on V2 f(z) for z in some neighborhood of z*, it follows
exactly as in Gafni and Bertsekas [5] that

Fo) — 1ot s u(e) N
> a(d — Lia)d*T DFd* + (% — L)|z*(a; 65 (@) — (2* + ad®)|)?.

If we choose

- . <() c—o 0'—0')
o = sup min| «a(o), , ,
5€lo,1) L/\z L

it follows from the line search mechanism (11) that

[N
LN

| =

~ qae
ap > o =

and the result follows since clearly & > 0. [

The next result follows easily from Lemma 5.2, Lemma B.2 of [5], and the analysis
of Dunn [2]
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LEMMA 5.3. Under the assumptions of Lemma 5.1, we have for all k sufficiently
large that

*(a;0) = 2" + ZvF(a) € 2" + TF,
for all o € [avg, 1], where v*(a) € R*~". Also,
(52) (2" + a(d® + d"F)) — 2" (a;0) = Ay (a) € N(z*; X),

for all a € [ag, 1], where y*(a) € R™ has y¥(a) > Coa fori = 1,---,r and some
constant Cs5 > 0.

Proof. We prove only the last statement concerning the lower bound on 3*(«a).
Since d* — 0 and d** — —V f(2*), we can combine (51) and (52) to obtain

(53) 2¥(a;0) = (2% + aAy*) + Ag*(a) — 0,
where y* = {y} }iea. Since x5+t — 2% — 0 we have from (9) that &;(a;) — 0. Hence
0 < [z (an; 0)=a®|| < [Je* (an; 6p(an)) =" (s )|+l —a®[] < 6 () +|2"+ —2|| — 0.

NOW by Lemma 42, and Since « E O[k,l y
« ’ X ’ ’

Since ap > &, it follows from this inequality that z¥(a;0) — 2% — 0. Hence from (53),
using the full rank of A, we have that

7 (a) — ay*.
Since y* > 0, the result follows. [

COROLLARY b.4. Under the assumptions of Lemma 5.1, we have for all k suffi-
ciently large that

ZTsH =0 where sPt = 2R(1;0) — (28 4 db).

In addition, al (% 4 s*+) = b; foric A
Proof. The statement Z7 s*+ = 0 follows from the second expression in Lemma
5.3 by setting o = 1 and noting that Z7 d** = 0. For the second part, note that

et 4 =25 (1,0) = dF e 2 4+ T,

from the first expression in Lemma 5.3 and the fact that d* € T*. Hence al (z* +
sFH) = al #* = b;, as required. [
For the remainder of this section we use the following notational conventions:

o v = 6 (a)?/2 is the final duality gap for the step from z* to 2*+1;
e The error in the approximate unit step is separated into two components:

2F(1;6p(1)) — 2F(1;0) = F = &F 4 bt

where é¥ = Ppi(ef) = ZZ7 ek and et = YY Tk
o &5, denotes é;(1).
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A technical result is needed before establishing eventual unit steps.

LEMMA 5.5. Suppose that Assumption (C) and the assumptions of Lemma 5.1
hold and that the “special case” in the projection algorithm (i.e., z* — apg® € X)
occurs only finitely often. Then for k sufficiently large, there are positive constants

Cs, Cy, and Cs such that

(@)™ > Compma||d™H),
[s*4] < Cavp—r.
Further, if oy, = 1, we have that
"l < Com,
TE < o]l

Proof. Assume k is large enough that the “special case” never occurs after iter-
ation k£ — 1. Assume further that aj_; and all subsequent steplengths are bounded
below by @, as in Lemma 5.2. Recall that ¥ = ¥~ (aj_1;6,_1(ar_1)). Let v*~!
and y*~1 be the final values of the v and y variables in the projection algorithm of
section 3 which was used to compute z*. We start by finding bounds on elements of
v*~1in terms of 74_1; these are needed for the first three inequalities.

As discussed in the proof of Lemma 5.3, é;(ay) — 0; that is, the projection
subproblem is solved more and more accurately. Recall that the matrix equation
in (20) holds at every iteration of the projection algorithm. The first part of this
equation yields that

(54) eF — (@ b (dF T dE TV Ay 4 gyf = 0.
From the second part of the equation and the choice of € in the proof of Lemma 5.2,

y.k_lzbi—aiTxk22€||ai||>0 for Z%.A

K3

Since yp—1 = Sp—1(ap_1)?/2 = ZmH I/»k_lyf_l, we have for ¢ ¢ A that

i=1 2

_ YE-1 YE-1
55 0<yf < -
( ) v B Vz'k_l N 26”‘“”

Since we have assumed that v, is bounded away from zero for all projection sub-
problems,

(56) B 0,
Now, using k£ — 1 instead of k in (52) and setting o = a1,
(57) & Hap1;0) — (@ ey (P dFTDT)) 4 AgF (o)) = 0.
Comparing (54) with (57), we have
2P apo130) — 2F = AyPTl 4 qub ) — AT (akma).

Using (55)—(56), the full tank of A, and noting that ||z*—2*~(aj_1;0)|] < ér_1(ak_1) —

0, we have that for some constant Cs > 0,

yf_l — gf_l(ak_l) > Chap_q for i € A.
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Hence for k sufficiently large, with ap_1 > &, there 1s a constant C'sp > 0 such that
Yyl > Cyp for i € A.
Also, by full rank of A and boundedness of V f, there is a Coy > 0 such that
yi=t < Coy.

By Assumption (C), we have for i € A that

ppml> ol Tl
HY; Caupt
Also,
k-1 _ Tk-1 VE—1
v < < .
Tyl T O

From these last two expressions, we can define positive constants C7r and Cry such
that

(58) Crrye—1 < vF~1 < Croyi—a forie A

For the first result, note from d*+ — —V f(z*) and Z7d**+ = 0 that d*+ = At*,
where t* — y*. Hence t* > 0 for k sufficiently large. From Corollary 5.4, (20), and
(58), we have for ¢ € A that

aZ»Tsf‘I' =b; — aZ»Txk = I/Z»k_l > CrpVe—1-
Hence, noting that [[t*(| > [|d**||/||A||, we have
()T 5% = (AT 4 = (AT ) > Cop 1] > o [454],

for C'3 = C’7L/||A||, giving the first result.
For the second result, we have from Lemma 5.3, Corollary 5.4, and (20) that for
some u* € R,

sFt = Auf and ATs* = [ Yiea.
Hence

AT Au* = [F " Yiea,

which, by full rank of A, boundedness of p;, and (58), gives that
[[u*[] < Csyp-1
for some constant Cg > 0. Since
5" < AN,

the result follows by setting Cy = C’g||fi||.
For the third inequality, we again use (20) and Lemma 5.3 to deduce that for

i€ A,

v =b; —al 2%(1;6,) = al [#¥(1;0) — 25 (1;6;,)] = —af *T.
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Now e*t = Av* for some v*, so an identical argument to that of the preceding

paragraph can be used to give the result.
The fourth inequality follows simply from

| EF| < (ld* Il < Nld®(llle® (] < oxlld"||-

m

THEOREM b5.6. Suppose that Assumptions (A), (C), (D), and (E) hold and that
Assumption (B) holds in a neighborhood of x*. Suppose that ZT V2 f(x*)Z is positive
definite and that for k sufficiently large, the tangent component of the step is given by

d* = 2(ZTV 2 fe®y2)" 2T dk

Suppose there is a non-negative sequence {&x} such that limg_.o & = 0 and that, in

addition to (9),(10), the sequence {63} satisfies

(59) ld*|6r < Envis
6 < Ekve-t
Assume that o < 0.5 in (11). Then ap = 1 for all sufficiently large k.

Proof. First, we consider the special case of z* € intX, for which we have
Vf(z*) = 0. By Lemma 5.1, the two-metric gradient projection method reduces
to Newton’s method when k is sufficiently large. Consequently, d* = —Vf(z*), and
d* = —(V2f(2*))"'Vf(2*). By Lemma 5.3, z(1;0) = 2* 4+ d* € intX for k suffi-
ciently large. Correspondingly, exactness of the projection yields v = é; = 0 for all
such k. Now

Fa) = faf (o)) = f(x") = fat +d)
1 . N N
= =V = 5(d)TV R + o(||d"?)
1

= A (V") TN + o(l|dM).
The second term on the right-hand side of (11) is zero, so for k sufficiently large, (11)
1s satisfied for oy = 1.

In the remaining case, * € X thus, by Assumption (C), V f(z*) # 0. Moreover,

the “special case” does not occur in the projection algorithm for sufficiently large &

(this follows directly from (52), which states in particular that (z* — ajg*) — P(2* —
arg®) # 0). Since

V(") = —d* —d**
and
2F(1;6) = 2% + d¥ + " 4 ",
we have that

Flat) = fat (1360) = VAT [ — 2 (1580)]
(/) — F (1 BTVt — 2t (15 60)] 4 ol — * (1 50)]P)
= [odt — AT = 5 ] = (1/2)[dF — (5 4 )TV — (s )
o2 — 2 (1;8)|).
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It can be easily shown that cikTVZf(xk)cik = dchik, and so, after some rearrangement,
F®) = fa" (1581))
_ {%dkTJk F (P 4 eF)T(sF ek)} F(dMHY T T (R T ek
(60) — 5[5 + FTIVEL () + 20 [P + ] — [ + TV L () dt
+o([le® — 2 (1;6)|1%)

Now Lemma 5.5 can be used to deduce the following inequalities:
(d" )" > Caypo|d* )] > Caypon,
for some C3 > 0, since ||d**|| — ||V f(=z*)|| # 0;

VST R < Jd*TEx| 4 [(d )T e | < 8yl|d”(| + Cs5Bxs

|55 + TV (") + 20[s™ + €]

IN

Cha||s*F + €|

N | —
A

Ciovi_y + Crave_16x + C1a6%;

(5% + 1792 (R )| < Cuslld (-1 + 61),
By substituting in (60), we obtain

F@b) = FaH(1:60)) > { 5T 4 (35 4 )T (55 4 e}
+Cs7%—1 — 8 ||d¥|| — Cs By — Cravi_, — Ciaye—16p — C1462
—Chs||d¥(|7i—1 — Cis||d¥ (|6 + o([|d* + 5"+ + €F||?)
_ {%dijk+(5k+_|_ek)T(5k+_|_ek)}
+75-1 [C5 — & — (C5 Bk /2) — Crovi—1 — Cisbp — Chaly
—Chs|d*|| = Ciséi] + o||d* + 55+ + F|1%).

As k — o0, the term in square brackets approaches Cs > 0: that is, it is positive
for sufficiently large k. It is easy to see that the final 0(||cik + s5t 4 e||?) term is
eventually dominated by the term in curly brackets. Hence, since o € (0, %), we have
for k sufficiently large that

Fa) = FaF (1560)) > o {dTd + [laF (1, 6) — (o + )P}

and so aj = 1 passes the acceptance test (11) and z*(1;6;) will be accepted as the
new iterate. [

The conditions (59) should be imposed only in the final stages of the algorithm,
when there is a suspicion that the active manifold has been identified. Otherwise, it
could happen that at some early iterate, £* — ¢¥ € intX, in which case the projection
is performed exactly (v = & = 0) and, because of (59), exact projections would be
demanded at all subsequent iterations.

A similar result to Theorem 5.6 can be stated for the alternative acceptance test
(12), and it can be proved in almost identical fashion.
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We can now prove the final result.

THEOREM bH.7. Suppose that the assumptions of Theorem 5.6 hold and that the
sequence {7y} converges @Q-quadratically to zero, that is, there is a constant Cho such
that

(61) or < ChoYe—1-

Then the rate of local convergence of the algorithm s R-quadratic.

Proof. In the case #* € int X, we actually obtain Q-quadratic convergence, since
the algorithm eventually reduces to Newton’s method. We therefore focus on the case
of #* € 0X.

By setting & = max(||d*||, &), it is easy to see that (61) implies (59), and so
Theorem 5.6 applies. By the definition of s#+

ot dF — 2¥(1;0) = —s*t,
Multiplying through by Z7, and using the definition of cik, we obtain
(62) ZT (& — 25 (1;0)) — (2T V2 (") 2) T 2TV (=) = 0.

By optimality of z*, ZTV f(2*) = 0, so by Taylor series expansion, and since ZZ7 +
YyT =1,

(63) ZT(V f(2) + V*f(2) (2" O(lJe —«"|I*)
= ZTVf@r) - 2TV f(e) 227 (oF

—z))
—zt
Multiplying (63) by (ZTV f(z*)Z)~!, and adding to (62), we have

(64) 127 (2 = (L 0)) = O(IY T («* = 2)1) + O(l|* — 2™ []?).

Recall that ¥ = ¥=1(1;6;_1) and that by Lemma 5.3

(65) YT (*=1(1;0) = ") =0

for all sufficiently large k. Hence, using the third inequality in Lemma 5.5, we have

YT =) = YT (@ (1 6-1) — 2" H(1,0))]]
(66) = [l
Czo’Vk—1~

A

From (64)—(66),

B2 [le* — " (1 0)]] + [l

* xk+1|| S
(67) < Caoyp—t + 8 + O(|J2* — 2™|?).

Now 8 < Cioyr-1, and so we can choose a constant Ca2; > max(1, Ca + Cig) such
that

(68) [Jo* — 2"+ < Cormax(p—y, [l — 2|1%).
Given any 7 < C'Z_ll, we can choose an integer k sufficiently large that

Ypo1 < T2 and le* — &*|| < 7 for all k > k.

)y = ZEVIEE Y YT (ef — 1) 4+ O] — 2*|)?).
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An inductive argument based on (68) then shows that

e+ =) < 7
where
o = T
Tiy1 = Catl.
Clearly the sequence {7;} is Q-quadratically convergent, so the result follows. [

Results similar to Theorems 5.6 and 5.7 could be proved for other choices of dF —
for example, where d* is a quasi-Newton or inexact Newton method step rather than
the reduced Newton step. These would be of practical importance in applications in
which 1t 1s difficult to compute or factor the reduced Hessian.

Finally, we note that it may be efficient to include a second “local” phase in the
basic algorithm of section 2. When it appears that the active constraint set has been
identified, the current iterate could be projected onto the appropriate manifold (plac-
ing it on 9X). Standard methods for equality-constrained nonlinear programming
could then be applied to identify the minimum on this manifold. However, it is likely
that the basic algorithm would also be quite efficient in this situation because, as the
final few iterates are close together, a good starting point for the projection would be
readily available.
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