
STABLE PARALLEL ALGORITHMS FOR TWO-POINT BOUNDARYVALUE PROBLEMS�STEPHEN J. WRIGHTySIAM J. SCI. STATIST. COMPUT. c
 1991 Society for Industrial and Applied MathematicsVol. 0, No. 0, pp. xxx{xxx, Month 1992 012Abstract. Some of the most widely used algorithms for two-point boundaryvalue ODEs, namely�nite di�erence and collocationmethods and standard multiple shooting, proceed by setting up andsolving a structured system of linear equations. It is well known that the linear system can be setup e�ciently in parallel; we show here that a structured orthogonal factorization technique can beused to solve this system, and hence the overall problem, in an e�cient, parallel, and stable way.Key words. parallel algorithms, two-point boundaryvalue problems, error analysis and stabilityAMS(MOS) subject classi�cations. 65F05, 65G05, 65L10, 65L20, 65W051. Introduction. Many numerical algorithms for solving the linear two-pointboundary value problemy0 = M (t)y + q(t); t 2 [a; b]; y 2 Rn;(1) Bay(a) + Bby(b) = d;(2)have been proposed and studied over the last 30 years. Many of these methods requirea structured linear algebraic system (for example, a block-tridiagonal or staircasesystem) to be solved as a \core" operation, and considerable e�ort has been devoted tominimizing the amount of computer time and storage required during the factorizationof the coe�cient matrix of this system. E�cient factorization schemes, based onstructured Gaussian elimination, have been implemented and are widely available(see x2, and Varah [19], Diaz, Fairweather and Keast [7], Lentini and Pereyra [13],and Keller [9].)During the last 10 years, the question of stability of algorithms for (1),(2) hasreceived a great deal of attention (see, for example, Mattheij [15].) It has been rec-ognized that in a well-conditioned problem (that is, one whose solution is not toosensitive to perturbations in M , q or the boundary conditions (2)), the fundamentalsolution space generally contains both exponentially increasing and exponentially de-creasing modes. The stability of a numerical method for (1),(2) depends on its abilityto at some point perform a \decoupling" of these modes. For the standard multipleshooting and �nite di�erence algorithms, this decoupling is performed implicitly, dur-ing the factorization of the structured linear system, through the use of a pivotingstrategy that prevents element growth in the factors. Unfortunately, parallel and vec-torizable algorithms that have been proposed for solving the linear system invariablyplace some restriction on the choice of pivots. This can lead to undesirable elementgrowth in the factors, and such methods are in fact similar to compacti�cation algo-rithms for (1),(2) which are known to be unstable. In this paper, we use instead astructured orthogonal factorization technique which is stable, has an identical serialcomplexity to the best-known algorithms, and can be e�ciently implemented on awide variety of parallel architectures. A variant of the algorithm vectorizes e�ciently,� Received by the editors September xx, 1990; accepted for publication (in revised form) Januaryxx, 1991. This research was supported by the Applied Mathematical Sciences subprogram of theO�ce of Energy research, United States Department of Energy, contract W-31-109-Eng-38. A grantof computer time at the North Carolina Supercomputing Center is gratefully acknowledged.y Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439.1

2 STEPHEN J. WRIGHTin much the same way as cyclic reduction for block-tridiagonal linear systems. Noseparability of the boundary conditions is needed. Although we focus on matricesarising from multiple shooting and one-step di�erencing schemes, the technique canbe applied equally well to the more general staircase matrix structures which arise inother numerical schemes, such as collocation.We assume throughout that n is too small to allow e�cient parallel or vectorimplementation of order-nmatrix and vector operations. Instead, parallelism is soughtby partitioning the domain [a; b] of the independent variable.The remainder of the paper is organized as follows: in x2 we review the multipleshooting and �nite di�erence algorithms, the structured linear systems that resultfrom them, and the e�cient Gaussian elimination techniques used to solve them onserial computers. In x3 we brie
y review previous work on parallel and vectorizablealgorithms. The new algorithm is presented in x4, together with a stability result andanalysis of serial and parallel complexity. In x5 we describe parallel implementationof a standard technique for estimating the condition number of the coe�cient ma-trix, which can be used for purposes of a posteriori error analysis. Finally in x6 wedescribe the results of implementation of the scheme on shared-memory and vectorarchitectures.2. Serial algorithms. The \standard" multiple shooting technique for (1),(2)proceeds by de�ning a mesha = t1 < t2 < : : : < tk+1 = b;(3)and �nding a fundamental and particular solution on each interval of the mesh:Y 0i = M (t)Yi; Yi(t) 2 Rn�n; t 2 [ti; ti+1]; Yi(ti) = I;y0pi =M (t)ypi + q(t); ypi(t) 2 Rn; t 2 [ti; ti+1]; ypi(ti) = 0:Then, we try to �nd si 2 Rn, i = 1; : : : ; k + 1, such thaty(t) = Yi(t)si + ypi(t); t 2 [ti; ti+1]; i = 1; : : : ; k:(Note in particular that si = y(ti), i = 1; : : : ; k + 1.) By applying the boundaryconditions (2), and continuity at the meshpoints, we obtain the following linear systemin s1; : : : ; sk+1:2666664 Ba BbY1(t2) �IY2(t3) �I.Yk(tk+1) �I 37777752666664 s1s2s3...sk+1 3777775 = 2666664 d�yp1(t2)�yp2(t3)...�ypk(tk+1) 3777775 :(4) In the (quite common) case in which the boundary conditions are separated, thissystem can be rearranged into a block-banded form. If p is the number of initialconditions and q is the number of �nal conditions (p+ q = n), we can assume withoutloss of generality that the boundary data (2) can be partitioned as follows:Ba = � �Ba0 � ; Bb = � 0�Bb � ; d = � dadb � :

PARALLEL ALGORITHMS FOR BVP 3If the rows p+ 1; : : : ; n of (4) are moved to the bottom, we obtain the form266666664 �BaY1(t2) �IY2(t3) �I.Yk(tk+1) �I�Bb 377777775266666664 s1s2s3...sksk+1 377777775 = 266666664 da�yp1(t2)�yp2(t3)...�ypk(tk+1)db 377777775 :(5) One-step �nite di�erence methods proceed by again choosing a mesh of theform (3) and seeking s1; : : : ; sk+1 to approximate y(t1); : : : ; y(tk+1). On the inter-val [ti; ti+1], (1) is approximated by the linear relationshipsi+1 � sihi = �Aisi + �Cisi+1 + �fi;(6)where hi = ti+1� ti. Two schemes with a local truncation error of O(h2i) are the \boxscheme" (�Ai = �Ci = 12M (ti+ 12), �fi = q(ti+ 12)) and the trapezoidal rule (�Ai = 12M (ti),�Ci = 12M (ti+1), �fi = 12(q(ti) + q(ti+1)).) By including (2), we obtain a linear systemof the form 2666664 Ba BbA1 C1A2 C2.Ak Ck 37777752666664 s1s2s3...sk+1 3777775 = 2666664 df1f2...fk 3777775 ;(7)where Ai = �I � hi �Ai, Ci = I � hi �Ci, and fi = hi �fi. If the boundary conditions areseparated, we obtain266666664 �BaA1 C1A2 C2.Ak Ck�Bb 377777775266666664 s1s2s3...sksk+1 377777775 = 266666664 daf1f2...fkdb 377777775 :(8)The accuracy of �nite di�erence schemes is often enhanced by the use of deferredcorrection techniques (see, for example, Pereyra [18]).As has been observed, the two algorithms are closely related, in the sense thatfor a reasonable choice of the approximation (6), �C�1i Ai should be close to Yi(ti+1).Hence, the conditioning of the matrices in (4) and (7) is quite similar when the hiare small. If we quantify the conditioning of the problem (1),(2) by a bound � on itsGreen's function (see Ascher, Mattheij, and Russell [3, x3.2]), it has been shown byOsborne [16] (and also by Mattheij [14] and Lentini, Osborne, and Russell [12]) thatthe inverse of AS from (4) satis�es the boundkA�1S k1 � k�:Hence if we de�ne
 by
 = 1 + maxi=1;:::;k kYi(ti+1)k1

4 STEPHEN J. WRIGHTand assume that Ba and Bb are scaled such that k[Ba; Bb]k1 = 1, then from (4),(5),cond1(AS) �
k�:(9) For the �nite-di�erence coe�cient matrix AD in (7), a similar analysis applies ifwe note that
 = 2 + O(�h) for small �h = maxi=1;:::;k hi. We use this fact, togetherwith AD = AS +O(�h), to derive the boundcond1(AD) � (2 +O(�h))k�:(10)The slightly di�erent form of the bounds (9) and (10) is motivated by the fact that k istypically larger in a �nite di�erence algorithm than in a multiple shooting algorithm.Bounds for the coe�cient matrices in (5) and (8) are, of course, identical to theirnon-separated counterparts.As stated earlier, Gaussian elimination algorithms with various forms of pivotinghave been previously proposed for solving (4),(5),(7),(8). The practical stability ofsuch algorithms for general matrices is well known, but is also well known that theworst-case behavior can be very bad, as a result of possible growth of elements inthe factors which is exponential in the dimension (k+ 1)n of the system. It has beenshown (see, for example, Mattheij [15]) that the presence of an exponential dichotomyin (1),(2) ensures that this worst-case behavior does not arise when elimination algo-rithms are applied to the matrices in (4),(5),(7),(8). In the partially separated cases(5),(8), similar results can be proved, without referring to the dichotomy at all, byusing the results of Bohte [4]. Bohte shows that for banded linear systems, the boundon element growth in partial pivoting algorithms is exponential only in the bandwidth.In the simplest case of Gaussian elimination with row partial pivoting (with co-e�cient matrices and right-hand sides denoted by ASP and fSP in (5) and ADP andfDP in (8)), possible �ll-in of kpn elements can occur in the upper triangular fac-tor. Element growth is, however, bounded by 22n�1, and so we obtain the followingtheorem:Theorem 2.1. Let s = (sT1 ; : : : ; sTk+1)T denote the true solution of the system(8), and suppose that ŝ is the approximate solution obtained by Gaussian eliminationwith row partial pivoting. Then provided that(i) �h is chosen small enough that cond1(ADP) � 4k�,(ii) 8c1�u � 1, where c1 = (1:12)22nn3k(k+1)(k+8) = O(k3n322n) and u is theunit roundo� error,the following relative error bound applies:kŝ� sk1ksk1 � 16c1�u:(11)Suppose that the fundamental and particular solutions that are used to constructASP and fSP in (5) are calculated to a tolerance of � , that is,kASP � �ASP k1 � �kASP k1(12) kfSP � �fSP k1 � �kfSP k1:Let ~s be the solution obtained by using Gaussian elimination with row partial pivoting.Then provided that(iii) �k�
 � 1=2,(iv) 6c1u�
 � 1,

PARALLEL ALGORITHMS FOR BVP 5we have maxi=1;:::;k+1 k~si � y(ti)k1maxi=1;:::;k+1 ky(ti)k1 � 4
�[k� + 3c1u+ c2u�];(13)where c2 = 12c1k�
.Proof. For the �rst part of the theorem, the proof follows from Theorem 2.7.2 inGolub and Van Loan [8], and x4 of Bohte [4]. The latter assumes thatu � :009 and (k + 1)nu � 0:1;which are clearly implied by assumption (ii), since � � 1, k � 1 and n � 1. Bohtethen shows that ŝ solves the system(ADP + E)ŝ = fDP ;where E satis�es the boundkEk1 � �u(0:56)(4n� 1)n(k + 1)(kn+ 7n+ 3);and � is a bound on the maximal element which arises during the elimination. Bysimplifying this expression, and noting from the discussion above that� � 22n�1maxi;j j(ADP)ijj � 22n�1kADPk1;we have that kEk1 � (c1=k)ukADPk1:The result now follows by setting r = 1=2 in [8, Theorem 2.7.2].For the second part, note �rst thatk �ASP k1 � (1 + �)kASPk1and k �A�1SPk1 � k[I +A�1SP (�ASP � ASP)]�1k1kA�1SPk1:Provided kA�1SP (�ASP �ASP)k1 � 1;(14)we have from [8, Lemma 2.3.3] thatk �A�1SP k1 � kA�1SPk11� kA�1SP k1� � k�1� �k� � 2k�:The inequality (14) is implied by (iii). Since k,
 and � are all at least 1, assumption(iii) implies that � � 1=2, and socond1(�ASP) � 2(1 + �)k�
 � 3k�
:(15)Now let �s be the exact solution of �ASP �s = �fSP . Direct application of [8, Theorem2.7.2] with r = 1=2 shows, again using (iii), thatmaxi=1;:::;k+1 k�si � y(ti)k1maxi=1;:::;k+1 ky(ti)k1 � 4cond1(ASP)� � 4k�
�:(16)

6 STEPHEN J. WRIGHTApplication of Bohte's results shows that the computed solution ~s satis�es (�ASP +E)~s = �fSP , where kEk1 � c1k uk �ASPk1:Assumption (iv) and (15) imply thatc1k ucond1(�ASP) � 1=2;and so k~s� �sk1k�sk1 � 4c1uk cond1(�ASP) � 12c1u�
:(17)The result follows by combining (16) and (17) in an elementary way.A more economical scheme for solving (5) and (8), described by Varah [19] andimplemented by Diaz, Fairweather, and Keast [7], is the method of alternate row andcolumn elimination. For the �rst p stages of the process, we use column pivoting andelimination (involving columns 1 through n); this produces no �ll-in. For stages p+1through n we use row pivoting and elimination for the same reason. Column and rowelimination alternate in this way until a factorization of the formADP = PLBU�(18)is produced, where P and � are permutation matrices, L and U are lower and uppertriangular matrices of multipliers, and B has the formB = 2666666666664 LX R X XX LX R X XX L.X 0 LX R 3777777777775 :(L denotes a lower triangular p�p block, R denotes an upper triangular (n�p)�(n�p)block, and X denotes a dense block.) It is easy to show that element growth in the Bfactor is bounded by 2n�1 and, hence, that the scheme is very stable. We can provethe following:Theorem 2.2. Let s = (sT1 ; : : : ; sTk+1)T denote the true solution of the system(8), and let ŝ be the approximate solution calculated by alternate row and columnelimination. Suppose further that(i) �h is chosen small enough that cond1(ADP) � 4k�, and(ii) 8c4�u � 1,where c4 = k(k + 2)n(5 + 6n)(1 + n22n�1) = O(k2n42n):Then kŝ� sk1ksk1 � 16c4�u:Let ~s be obtained by multiple shooting with alternate row and column elimination,and suppose that (12) holds, with

PARALLEL ALGORITHMS FOR BVP 7(iii) �k�
 � 1=2,(iv) 6c4u�
 � 1.Then maxi=1;:::;k+1 k~si � y(ti)k1maxi=1;:::;k+1 ky(ti)k1 �
k�[k� + 3c4u+ c5u�];where c5 = 12c4k�
.Proof. The assumptions of Lemma A.1 are consequences of (ii) and (iv) above.The �rst part of the result follows directly from Lemma A.2 and [8, Theorem 2.7.2].The second part is analogous to the second part of Theorem 2.1, with c4 replacing c1and c5 replacing c2.3. Parallel eliminationalgorithms. Other parallel and vectorizable algorithms,based on Gaussian elimination, have recently been proposed for (4),(5),(7),(8). In gen-eral, they su�er either from poor stability properties or from limitations in the amountof parallelism which is possible.Wright and Pereyra [21] describe variants of a block factorization algorithm ap-plied to (7). In the most highly vectorized variant, a factorization of the form2666664 ~A1 ~A2 . . . ~AkZ1 Z2 : : : Zk ~Ak+1 37777752666664 I W1I W2.I WkI 3777775 =2666664 P1 P2 . . . Pk Pk+1 37777752666664 A1 C1A2 C2.Ak CkBa Bb 3777775(where the Pi are permutation matrices) is produced. It is easy to show that for�h su�ciently small, this factorization exists. It is equivalent to compacti�cation [3,page 153] which, because of its similarity to single shooting, is known to be potentiallyunstable. However, this instability can usually be recognized by the presence of largeelements in the Zi blocks. The strategy described in [21, x5] is to use this factorizationwhere possible, and discard it in favor of a more stable method if the kZik are toolarge. In many applications (such as the one described in [21]) the lack of stability isnot a problem.Paprzycki and Gladwell [17] describe a partitioned elimination algorithm in which(8) is torn into P submatrices, each of which has the same form as the original ADP ,and alternate row and column elimination is applied to each piece. This correspondsto partitioning the interval [a; b] and solving a number of sub-BVPs, each of which hasp initial and q �nal conditions. Although the number of initial and �nal conditionsis correct, this alone is not enough to ensure well-conditioning of the sub-BVPs. In alinear algebra sense, well-conditioning of the whole matrix ADP does not guaranteewell-conditioning of each of the P submatrices. Ascher and Mattheij [2] develop a\theoretical multiple shooting" framework in which they show how boundary valuesfor the sub-BVPs should be chosen to ensure well-conditioning. Ascher and Chan [1]suggest how to implement this in a parallel environment.

8 STEPHEN J. WRIGHTAnother possibility, which leads to near-perfect speedup on two processors (butcannot be generalized to a higher order of parallelism) is the \burn at both ends" or\twisted" factorization. Here, some form of pivoted Gaussian elimination is appliedsimultaneously from both ends of the matrix (either ADP or ASP). When the factor-izations meet in the center, a small reduced system is formed and factored. This isanalogous to the approach of Lentini [11].Finally, we mention the approach of Ascher and Chan [1], who form the normalequations for (5) and (8), and factorize the resulting symmetric, positive de�nite,block-tridiagonal system using cyclic reduction. In exact arithmetic, this schemeproduces a triangular factor which is identical to that given by the \cyclic reduction"variant of the algorithm to be described in the next section. The di�erence lies in thefact that by explicitly forming the normal equations, the condition number of a linearsystem is squared, an e�ect that is avoided when the algorithm from x4 is used.4. Structured orthogonal factorization. We now describe the structured QRfactorization algorithm, as applied to the system (7). It can of course be appliedequally well to the systems (8),(4),(5), since it is indi�erent to separability of theboundary conditions.The �rst step is to partition the system into, say, P pieces of approximately equalsize. We choose indices k1; k2; : : : ; kP+1 to satisfy0 = k1 < k2 < : : : < kP+1 = k; kj+1 � kj + 2; j = 1; : : : ; P:(P could for instance be the number of processors on the physical machine being usedto solve the problem.) Partition j then consists of rows (kj + 1)n+1; : : : ; (kj+1+ 1)nof (7). Each partition is now processed independently; in e�ect, the variables si fori 6= kj + 1, j = 0; : : : ; P , are eliminated from the problem.We describe this process in detail for the �rst partition, which, if augmented withits right-hand side, has the form26664 A1 C1 f1A2 C2 f2.Ak2 Ck2 fk2 37775 :(19)We �rst �nd an orthogonal matrix Q1 2 R2n�2n such thatQT1 � C1A2 � = � R10 � ;where R1 2 Rn�n is upper triangular. If we form Q1 as a product of n Householdertransformations, the information needed to reconstruct Q1 could be stored in thespace formerly occupied by the \zeroed" elements of [CT1 ; AT2]T , plus an additional nlocations. We also need to apply QT1 to the other columns of the matrix (19), and theoverall e�ect is � QT1 00 I �26664 A1 C1 f1A2 C2 f2.Ak2 Ck2 fk2 37775 =

PARALLEL ALGORITHMS FOR BVP 92666664 G1 R1 E1 g1�G2 0 �C2 �f2A3 C3 f3.Ak2 Ck2 fk2 3777775 :(20)The next step is to �nd an orthogonal Q2 2 R2n�2n such thatQT2 � �C2A3 � = � R20 � ;and to apply QT2 to rows n + 1; : : : ; 3n of the reduced system (20). This process isrepeated a total of k2 � 1 times, until �nally we obtain a system equivalent to (19)which has the form2666664 G1 R1 E1 g1G2 R2 E2 g2...Gk2�1 Rk2�1 Ek2�1 gk2�1~A1 ~C1 ~f1 3777775 :(21)Formally, the reduction process for partition j can be speci�ed as follows:�Ckj+1 = Ckj+1; �Gkj+1 = Akj+1; �fkj+1 = fkj+1:for i = kj + 1; : : : ; kj+1 � 1Find orthogonal Qi such thatQTi � �CiAi+1 � = � Ri0 � ;(22)where Ri 2 Rn�n is upper triangular;Set � Ei�Ci+1 � QTi � 0Ci+1 � ; � Gi�Gi+1 � QTi � �Gi0 � ;� gi�fi+1 � QTi � �fifi+1 � :end (for) Set ~Aj = �Gkj+1 ; ~Cj = �Ckj+1 ; ~fj = �fkj+1 :Clearly, if we knew the values of skj+1 and skj+1+1, the values of skj+2; : : : ; skj+1could be recovered by the simple back-substitution:for i = kj+1 � 1; kj+1 � 2; : : : ; kj + 1Solve Risi+1 = gi �Giskj �Eisi+2(23)

10 STEPHEN J. WRIGHTIn fact, these \separator" variables can be found by forming and solving a reducedsystem by taking the last n rows of each (processed) partition, and the boundaryconditions. This reduced system has the form2666664 Ba Bb~A1 ~C1~A2 ~C2.~AP ~CP 37777752666664 sk1+1sk2+1sk3+1...skP+1+1 3777775 = 2666664 d~f1~f2...~fP 3777775 :(24)The formof (24) is obviously identical to the form of the original system (7), so thisimmediately suggests that it may be possible to apply the whole process recursively,that is, (24) could be partitioned into P2 � P=2 pieces, and the algorithm describedabove could be applied to obtain a smaller reduced system. This process could berepeated for, say, L levels, so at the innermost level a (PL + 1)n-dimensional systemwould remain.In a parallel implementation of the algorithm, the number of levels L to be usedand the number of processors to be used at each level depend on the number ofavailable processors on the physical machine, and, on a distributed-memory machine,on the cost of interprocessor communication. The \extreme" cases are as follows:� A one-level version (P = 1; k2 = k), in which (7) is reduced to the 2n � 2nsystem � Ba Bb~A1 ~C1 �� s1sk+1 � = � d~f1 � ;(25)which is then solved by QR factorization. This is the \serial" version of thealgorithm.� A two-level version, in which P processors are used to do the reduction andback-substitution (23), and the system (24) is solved by the one-level algo-rithm just described. It is easy to see that, assuming that each partitioncontains about k=P rows of blocks, the time required for the reduction phaseis proportional to (k=P � 1)n3. The time required to solve (24) on a singleprocessor is proportional to (P + 1)n3. The latter operation will not be abottleneck for the whole process, provided that k � P 2.� A \cyclic reduction" version, in which P is equal to the number of availableprocessors (assuming that P � k=2), and then P2 = P=2, P3 = P=4, : : :,PL = 1. Here clearly L = log2 P + 1. The total computation time requiredwill be proportional to (k=P � 1 + log2P)n3, while the communication timewill be proportional to n2 log2 P . With regard to complexity, the algorithm isoptimal: when k = P log2P , the execution time is O(log2P) on P processors,while the serial time is O(P log2P).The cyclic reduction variant is also appropriate for implementation on a singlevector processor. In this environment, we could choose P = k=2; P2 = k=4; P3 =k=8; : : :, and so L = log2 k + 1. At level l, the reduction and back-substitutionprocesses can be coded so that most of the arithmetic involves vectors of length k=2l.At low levels, a reversal of the loop nesting can be used to ensure that vector lengthsdo not fall below n.It is not di�cult to see that the factorization and solution phases can be separated,provided that the Householder vectors are stored (in the locations vacated by the

PARALLEL ALGORITHMS FOR BVP 11zeroed elements). This feature is useful when quasi-linearization is used to solve a �rst-order nonlinear BVP. The same coe�cient matrix (and its factorization) can be usedfor a number of consecutive iterations to produce \chord method" approximations toNewton steps.It is important to note that the scheme proposed above is simply standard House-holder QR factorization applied to an initial row- and column-permuted form of theoriginal matrix. Thus, we can apply the standard stability analysis for (k + 1)n-dimensional matrices from Lawson and Hanson [10] to obtain error bounds for thecomputed solutions. We have re�ned these bounds to take into account the structureof the matrix. In addition, to allay any possible concerns about instability at thelevel of the O(u2) terms, we have removed these terms using the style of analysis inWilkinson [20]. The relevant results are stated and proved in Appendix B. Here, wesummarize the analysis in the following Lemma and Theorem:Lemma 4.1. Let s = (sT1 ; sT2 ; : : : ; sTk+1)T denote the true solution of the system(7), and suppose that ŝ is the approximate solution obtained by using the structuredQR factorization and back-substitution. Suppose that the orthogonal matrices used inthe factorization are all constructed from Householder re
ectors, and that n, k and usatisfy (12n+ 51)n(k+ 1)u � 0:1:(26)Then ŝ is the exact solution of a perturbed system(AD + �AD)ŝ = fD + �fD;(27)where k�ADkF � (1:106)(12n+ 51)(k + 2)nukADkF ;(28) k�fDk2 � (1:106)(12n+ 51)(k + 1)nukfDk2:(29)Proof. See Appendix B.Theorem 4.2. Suppose that the conditions of Lemma 4.1 are satis�ed. Thenprovided that(i) �h is chosen small enough that cond1(ADP) � 4k�,(ii) 8c6�u � 1, where c6 = (1:106)k(k+ 2)2n2(12n+ 51),the following relative error bound applies:kŝ� sk1ksk1 � 16c6�u:Suppose that the fundamental and particular solutions that are used to constructAS and fS in (4) are calculated to a tolerance of � , that is,kAS � �ASk1 � �kASk1kfS � �fSk1 � �kfSk1:Let ~s be the solution obtained by using structured QR algorithm, where (26) holds.Then provided that(iii) �k�
 � 1=2,(iv) 6c6u�
 � 1,

12 STEPHEN J. WRIGHTwe have maxi=1;:::;k+1 k~si � y(ti)k1maxi=1;:::;k+1 ky(ti)k1 � 4
�[k� + 3c6u+ c7u�];where c7 = 12c6k�
.Proof. The proof is identical to that of Theorem 2.1, once we convert the Frobeniusnorm bounds (28) and (29) into 1-norm bounds. This is done by noting that for anN � N matrix A, 1N1=2kAk1 � kAkF � N1=2kAk1:Hence k�ADk1 � (1:106)(k+ 2)2n2(12n+ 51)ukADk1:5. Condition estimation. For purposes of assessing the reliability of the com-puted solution, it is useful to have an estimate of the conditioning of the discretesystem. Such an estimate can be obtained, simultaneously with the factorizationand solution process, by adapting the procedure described in Cline et al. [6] to oursituation.We aim to compute an estimate of the quantity�̂ = kAk1kR�1k1;where A is one of the coe�cient matrices from (4),(7),(5),(8), and R is the uppertriangular factor produced by the procedure just described. It is easy to show that1p(k + 1)n�̂ � cond1(A) �p(k + 1)n�̂:kAk1 can of course be calculated directly, and so computation of the estimate ofkR�1k1 is the major part the task of �nding �̂. Following [6], we do this by �rst�nding vectors z and v such that RTv = z;where the components of z are all �1 and are chosen by a heuristic that attemptsto maximize kvk1. This is done during the factorization of A; as reduction of eachpartition into a single row of blocks is performed, the heuristic can be applied to �ndthe components of z and v corresponding to the rows and columns of the originalsystem that are eliminated. Next, the solution ofRw = vis found concurrently with the solution of the original linear system Rs = QT f . Wethen use the estimate kR�1k1 � kwk1kvk1 :The operation count for calculation of �̂ is approximately four times that ofdoing a single backsolve with R, and the parallel complexity is the same as that ofthe factorization and solution. Comparisons with the LINPACK condition numberestimator of cond1(A) (which is based on an LU factorization of A but uses similarheuristics) show that the two estimates are usually within a factor of 3 of each other.

PARALLEL ALGORITHMS FOR BVP 13Table 1Operation counts and storage requirements for four algorithms, assuming separated end con-ditions. k = number of meshpoints, n = dimension of y, p = number of left-hand end conditions,R = number of right-hand sidesAlgorithm Operation count StorageLU (row pivoting) k[53n3 + 3pn2 +R(4n2 + 2pn)] kn(2n+ p)Structured QR k[463 n3 + (15R+ 30)n2] 4kn2Normal equations k[383 n3 + 12Rn2] 4kn2DECOMP/SOLVE k[23n3 + (4R+ 5p)n2 � 2np2] 2kn2Table 2Operation counts and storage requirements for four algorithms, assuming non-separated endconditions. k = number of meshpoints, n = dimension of y, R = number of right-hand sidesAlgorithm Operation count StorageLU (row pivoting) k[233 n3 + 8Rn2] 4kn2Structured QR k[463 n3 + (15R+ 30)n2] 4kn2Normal equations k[623 n3 + 12Rn2] 5kn2DECOMP/SOLVE k[143 n3 + 4Rn2] 3kn26. Computational results. Versions of the structured QR algorithm have beenimplemented on the Alliant FX/8 vector multiprocessor at Argonne National Lab-oratory and on the CRAY Y-MP at the North Carolina Supercomputing Center.Performance comparisons were made with� a row partial pivoting code (two versions, for separated and non-separatedboundary conditions), and� the DECOMP and SOLVE routines from the PASVA codes [13]. The DECOMP routineuses alternate row and column pivoting (as does the algorithm described inVarah [19] and in x2) but always eliminates by rows.Approximate operation counts and storage requirements for these algorithms andthe normal equations method of Ascher and Chan [1] are given in Tables 1 and 2, forseparated and non-separated boundary conditions, respectively. In tabulating storagerequirements, it has been assumed that intermediate information generated duringthe factorization | namely, the multipliers and Householder vectors | is stored forpossible later use with a di�erent right-hand side. In general, the structured QRalgorithms require the most operations. This result is not surprising, since it is wellknown that orthogonal factorization of dense matrices requires about twice as muchwork as Gaussian elimination. Moreover, in the case of separated end conditions,structured QR generates �ll-in that is avoided by the elimination-based methods, andthis adds further to the operation count. On the other hand, the operation countsand storage requirements for strutured QR are not a�ected if the end conditions arenon-separated rather than separated, while for the other methods, they increase sub-stantially. The method based on normal equations requires about the same amountof work as structured QR; however, as we noted earlier, it is less stable. We add thecaveat that operation counts are notoriously bad predictors of run time for factor-izations of narrow-banded matrices. For small n, much of the CPU time is taken upwith non-numerical operations. This is borne out by our results, which show that theQR algorithm does not do as badly as predicted in serial mode.

14 STEPHEN J. WRIGHTThe linear system solvers described above have been incorporated into both amultiple shooting and �nite di�erence (box method) framework. The dverk codefrom netlib was used to solve the IVPs on each interval of multiple shooting, with theglobal error tolerance parameter set to 10�10. A user-speci�ed number k of equally-spaced intervals is used for both methods. For practical codes, the choice of thenumber of intervals and their lengths (and e�cient parallel implementation of this)are important issues, but we focus here on the linear algebra, which typically is themost computationally intensive part of a �nite di�erence-based code. In accord withthe theoretical results of x2 and x4, virtually no di�erence was noted between thestability properties of structured QR and row-pivoted LU. As evidence of this, wequote results for the following test problem:Problem 1 (Ascher and Chan [1]) a = 0, b = 1, n = 2,y0(t) = � �� cos 2!t ! + � sin 2!t�! + � sin 2!t � cos 2!t � y(t) + f(t);Ba = � 1 00 0 � ; Bb = � 0 01 0 � ;with f(t) and d chosen so that y(t) = et(1; 1)T .A fundamental solution isY (t) = � cos !t sin!t� sin!t cos !t �� e��t 00 e�t � ;so clearly there exist one growing and one decaying mode. The problem was solvedusing both multiple shooting and the box method for � = 200 and ! = 1. Fourdi�erent algorithms were used to solve the linear system, namely,� SQR-1 | one-level structured QR;� ROWPP | LU factorization with row partial pivoting;� DECOMP | the DECOMP and SOLVE routines from PASVA; and� COMPACT | compacti�cation, as implemented in the codes D4/S4 describedin [21].Tables 3 and 4 show the maximumerror in the �rst component of the computed result.Because of its failure to decouple the fundamental solution modes, compacti�cationperforms poorly. The accuracy of box method solutions is limited by discretizationerror, while the multiple shooting solutions are accurate up to the conditioning of thediscrete system and the tolerance imposed on the IVP solver. The DECOMP code givesaccurate results here because the end conditions are separated. When this is not thecase, as in problem 3 below, DECOMP is known to be unstable.To test the relative speed of the linear solvers, two further problems from theliterature were used in addition to problem 1. These wereProblem 2 (Brown and Lorenz [5]) a = �1, b = 1, n = 4,��y00 � t2y0 + t2z0 + z = ��2 cos �t + 12�t sin�t;�z00 = zy(�1) = �1 y(1) = e�2=p�z(�1) = 1 z(1) = e�2=p�:

PARALLEL ALGORITHMS FOR BVP 15Table 3Box method, error in �rst component of computed solution for Problem 1 for four di�erentlinear system solvers k = 16 k = 64 k = 1024�̂ .17(+2) .51(+1) .21(+1)ROWPP .21(-2) .10(-3) .32(-6)DECOMP .22(-2) .10(-3) .32(-6)SQR-1 .21(-2) .10(-3) .32(-6)COMPACT .22(-2) .93(+27) .16(+72)Table 4Multiple shooting, error in �rst component of computed solution for Problem 1 for four di�erentlinear system solvers k = 16 k = 32 k = 128�̂ .85(+6) .17(+4) .13(+2)ROWPP .45(-3) .67(-6) .64(-7)DECOMP .45(-3) .67(-6) .64(-7)SQR-1 .45(-3) .67(-6) .64(-7)COMPACT .51(+72) .21(+72) .11(+72)(We use � = :001.)Problem 3 (Mattheij [15]) a = 0, b = �, n = 3,y0(t) = 24 1� 19 cos 2t 0 1 + 19 sin2t0 19 0�1 + 19 sin 2t 0 1 + 19 cos 2t 35 y(t)+ et 24 �1 + 19(cos 2t � sin 2t)�181� 19(cos 2t + sin2t) 35 ;y1(0) = 1y3(0) + y3(�) = 1 + e�y2(0) + y2(�) = 1 + e� :The solution is y(t) = et(1; 1; 1)T .Problems 1 and 2 have separated end conditions, while two of the three end conditionsfor problem 3 are non-separated. We report on �ve cases (two di�erent values of kwere tried for problems 1 and 2, and values of � = 1 and ! = 50 were used in problem1). Table 5 gives condition estimates for the multiple shooting and �nite di�erencematrices.Results from \scalar" implementations on one processor of the Alliant FX/8 areshown in Table 6. We have tabulated the times required to solve the linear systems.The -Og compiler option was used with each code, so the vector processing capabilitiesof the Alliant were not used. In addition to the linear solvers already mentioned, wetested SQR-CR, which was the cyclic-reduction variant of structured QR. Note that theSQR codes typically take two to three times as long as ROWPP, though the penalty is

16 STEPHEN J. WRIGHTTable 5Dimensions of the �ve test cases, and conditioning of the multiple shooting and �nite di�erencematrices Problem n k ms conditioning fd conditioning1a 2 64 .41(+2) .17(+2)1b 2 1024 .30(+2) .30(+2)2a 4 64 .37(+9) .83(+3)2b 4 1024 .26(+2) .17(+2)3 3 1024 .20(+1) .34(+1)Table 6Alliant FX/8, one-processor timings for linear system solvers (times in seconds)Problem ROWPP DECOMP SQR-1 SQR-CR1a .041 .081 .071 .0981b .439 .660 .813 1.042a .094 .181 .220 .3122b 1.32 1.95 3.22 4.553 1.23 1.44 1.72 2.34Table 7CRAY Y-MP, one-processor timings for linear system solvers. Vectorized code (times in mil-liseconds) Problem ROWPP DECOMP SQR-1 SQR-CR1a 2.19 3.05 8.63 1.451b 34.6 48.3 139. 10.92a 5.32 8.38 21.1 6.402b 84.4 133. 341. 51.63 136. 116. 232. 26.3Table 8Alliant FX/8, eight-processor timings for linear system solvers (times in seconds)Problem ROWPP DECOMP SQR-21a .029 .072 .0311b .367 .697 .1362a .053 .150 .0672b .739 1.67 .4633 .685 1.39 .262Table 9Alliant FX/8, Ratio of times for ROWPP (one-processor) to times for SQR-2 (eight processors)Problem Speedup1a 1.31b 3.22a 1.42b 2.93 4.7

PARALLEL ALGORITHMS FOR BVP 17much smaller when the end conditions are not separated (as in problem 3). In eithercase, the overhead for using structured QR is not as great as the operation counts inTables 1 and 2 would suggest.Timings for a vectorized implementation on one processor of a CRAY Y-MP areshown in Table 7. In general, the SQR-CR code becomes very competitive, particularlywhen n = 2 or 3, k is large, and/or the end conditions are not separated. Thiscode performs extremely well on problems 1b and 3. When n = 4 (problem 2), thesmall amount of vectorization that occurs in the other codes lessens the advantage ofSQR-CR, while in problems 1a and 2a the value of k makes the overall computationaltask to small to bene�t from vectorization.Table 8 gives results for an eight-processor parallel implementation on the AlliantFX/8. The -Ogc option was used during compilation. Here, SQR-2 refers to thetwo-level version of structured QR, in which the original system is broken into eightpartitions of equal size, which are factorized concurrently. On the largest problem, theparallel e�ciency of structured QR (measured by comparing serial SQR-1 to parallelSQR-2) is 87% | quite acceptable, given that the solution of the reduced system isan unavoidable bottleneck. The e�ciency improves further for still larger problems.De�ning speedup as the ratio of the one-processor time for the best serial algorithm tothe eight-processor time for the best parallel algorithm, we see, from Table 9, that inthree of the �ve cases good parallel e�ciency is attained. The remaining two problemswere too small for parallelism to have much e�ect.Comparing Tables 6 and 8, it can be seen that ROWPP and DECOMP also speed upa little when extra processors are available. This is because the Alliant is a shared-memory machine. It is important to note that on the current generation of message-passing machines, these algorithms will not bene�t from multiprocessing unless n islarge enough that rows or columns within each block can pro�tably be distributedaround the processor array. This is unlikely to happen until n is at least 50 or 100.On the other hand, e�cient implementations of multilevel SQR on these machines willbe possible for much more typical problem sizes.To summarize, we conclude that the structured QR codes are useful in the fol-lowing circumstances:� when the computational task of solving the linear equations is substantialenough to bene�t from vectorization or parallelism;� especially, when the end conditions are not separated;� on a vector processor, when the value of n is too small (say, only 2 or 3) toallow e�cient vectorized factorization of n� n blocks;� on the current generation of distributed-memory multiprocessors, unless n isvery large and the number of processors is very small;� on a shared-memory multiprocessor, unless n is quite large (say, greater than8) and there are fewer than four processors.A. Appendix A. We start with a result which is similar to [8, Theorem 3.3.1]:Lemma A.1. Suppose that alternate row and column elimination, without pivot-ing, is applied to an N �N matrix A with bandwidth bw to produced computed factorsL̂, B̂, Û . Assume that N , bw and the unit roundo� error u satisfyNu < 0:1(30) Nu(2 + 1:06bw + 2:12bwu) < 0:5:(31)

18 STEPHEN J. WRIGHTThen L̂B̂Û = A +H;where jHj � c3(N � 1)ufjAj+ jL̂jjB̂jjÛ jg(32)and c3 = 5 + 3bw:Proof. The result is trivially true for N = 1. Suppose for induction that (30)holds for matrices of size up to N � 1. LetA = � � wTv A1 � ;where � 2 R, A1 2 R(N�1)�(N�1), etc., and suppose that row elimination will beused to eliminate v. We computeẑ = 1�v + f; jf j � jvj� u;(33) Â1 = A1 � ẑwT + F; jF j � 2u(jA1j+ jẑjjwjT);(34)It follows immediately from (34) thatjÂ1j � (1 + 2u)(jA1j+ jẑjjwjT):(35)An LBU factorization of Â1 is then performed, yieldingL̂1B̂1Û1 = Â1 +H1;with jH1j � c3(N � 2)ufjÂ1j+ jL̂1jjB̂1jjÛ1jg:(36)The calculated factors of A are thereforeL̂ = � 1 0ẑ L̂1 � ; B̂ = � � ŵT0 B̂1 � ; Û = � 1 00 Û1 � ;where ŵ is the computed solution of the system ÛT1 ~w = w. De�ning �bw = 1:06bw,and noting that ÛT1 has lower bandwidth bw, it is easy to show that ŵ exactly solves(ÛT1 + �U)ŵ = w;where j�U j � �bwujÛ1jT :Hence jÛT1 ŵ � wj = j�U ŵj � j�U jjŵj � �bwujÛ1jT jŵj;(37)

PARALLEL ALGORITHMS FOR BVP 19and so jwj � (1 + �bwu)jÛ1jT jŵj:(38)Now Â1 = A1 � ẑwT + F) ẑŵT Û1 + L̂1B̂1Û1 = A1 + F +H1 � ẑ[w � ÛT1 ŵ]T :Combining this with (33),L̂B̂Û = A+ � 0 ŵT Û1 � wT�f F +H1 � ẑ[w� ÛT1 ŵ]T � :(39)Now, combining (34), (35), (36) and (38), we �nd thatjF +H1 � ẑ[w� ÛT1 ŵ]T j� jF j+ jH1j+ jẑjjw� ÛT1 ŵjT� [c3(N � 2)u(1 + 2u) + 2u]jA1j+[c3(N � 2)u(1 + 2u)(1 + �bwu) + 2u(1 + �bwu) + �bwu]jẑjjŵjT jÛ1j+c3(N � 2)ujL̂1jjB̂1jjÛ1j:(40)We now show thatc3(N � 2)u(1 + 2u)(1 + �bwu) + 2u(1 + �bwu) + �bwu � c3(N � 1)u:(41)This is equivalent toc3(N � 2)u(2u+ �bwu+ 2�bwu2) + (2u+ �bwu+ 2�bwu2) � c3u, c3[1� (N � 2)u(2 + �bw + 2�bwu)] � (2 + �bw + 2�bwu):Since by assumption (31),1� (N � 2)u(2 + �bw + 2�bwu) � 1=2;inequality (41) will hold provided thatc3 � 2(2 + �bw + 2�bwu):(42)From (30), and using bw < N , it is clear that 2�bwu � 0:5, so (42) follows trivially.Since the left-hand side of (41) is the largest of the three coe�cients in (40), wecan combine (40) and (41) to obtainjF +H1 � ẑ[w � ÛT1 ŵ]T j � c3(N � 1)ufjA1j+ jẑjjŵjT jÛ1j+ jL̂1jjB̂1jjÛ1jg:(43)Combining (39), (33), (37) and (43), we therefore �nd thatjA� L̂B̂Û j= ����� 0 ŵT Û1 � wT�f F +H1 � ẑ[w � ÛT1 ŵ]T ������ c3(N � 1)u�� j�j jwjTjvj jA1j �+ � 1 0jẑj jL̂1j � � j�j jŵjT0 jB̂1j �� 1 00 jÛ1j ��= c3(N � 1)ufjAj+ jL̂jjB̂jjÛ jg:

20 STEPHEN J. WRIGHTThis proves the result for the case in which row elimination is used at stage N .When column elimination is used instead, the proof is analogous.Lemma A.2. If the alternate row and column elimination is used to solve (5) or(8), and the assumptions of Lemma A.1 hold, with N = (k + 1)n and bw = 2n, thenthe computed solution ŝ is the exact solution of the perturbed system(A+ E)ŝ = f;where kEk1 � (k + 2)n(5 + 6n)(1 + n22n�1)kADP k1u:Proof. Note �rst that the pivoting does not alter the sparsity structure of A. Wecan, therefore, view alternate row and column elimination as being applied to PTA�T(where P and � are permutation matrices) to produce a computed factorizationPTA�T +H = L̂B̂Û :It is easy to show that the procedure leading to ŝ results in the following sequence ofperturbed problems:(L̂ + �L)ŵ = PT f; j�Lj � (1:06)nujL̂j;(B̂ + �B)v̂ = ŵ; j�B j � 2(1:06)nujB̂j;(Û + �U)ẑ = v̂; j�U j � (1:06)nujÛj;ŝ = �T ẑ:(The bounds on j�Lj, j�B j, j�U j are a consequence of the maximumnumber of nonzerosin each row of L̂, B̂, Û , respectively.) HencePTE�T = H + (L̂+ �L)(B̂ + �B)(Û + �U)� L̂B̂Û) kEk1 � kHk1 + [4(1:06)nu+ 5(1:06)2n2u2 + 2(1:06)3n3u3]kL̂k1kB̂k1kÛk1:It follows from (30) that nu � 0:1, so the coe�cient of kL̂k1kB̂k1kÛk1 can bebounded above by 5nu. Since element growth in B is bounded by 2n�1, and since allentries in L̂ and Û are bounded by 1, we havekB̂k1 � 2n�1kP TA�Tk1 � 2n�1kAk1; kL̂k1 � n; kÛk1 � n:Combining these observations with the result of Lemma A.1, we obtainkEk1 � (5 + 6n)(k + 1)nufkAk1 + kL̂k1kB̂k1kÛk1g+ 5nukL̂k1kB̂k1kÛk1� f(5 + 6n)(k + 1)n+ [(5 + 6n)n(k + 1) + 5n]n22n�1gkAk1u� (k + 2)n(5 + 6n)(1 + n22n�1)kAk1u:as required.B. Appendix B. We start by stating two results on the rounding error due toHouseholder reduction. These results are similar to those in Lawson and Hanson [10,pp. 85{89] and Wilkinson [20, pp. 157{162]. They di�er from Lawson and Hanson'sresults in that the O(u2) term is explicitly accounted for at every stage, and fromWilkinson's in that we do not assume double-precision accumulation of inner products.Since the proofs are tedious and do not o�er any new insight, they are omitted.

PARALLEL ALGORITHMS FOR BVP 21Lemma B.1. Suppose that an m1 �m2 matrix X is multiplied by an m1 �m1Householder re
ector Q. Then provided that(6m1 + 18)u � 0:1;the computed result Y satis�es Y = Q(X +E);where kEkF � (7m1 + 42)ukXkF :Lemma B.2. If Q is a product of r Householder re
ectors whose e�ect is tointroduce zeros into the subdiagonals into the �rst r columns of the m1 �m2 matrixX, then provided that (7m1 + 42)ru � 0:1;the computed result Y satis�es Y = Q(X +E);where kEkF � (8m1 � 4r + 51)rukXkF :For the purpose of this Appendix, it is simplest to view the structured fac-torization process as the application of k � 1 orthogonal transformation matricesQ1; Q2; : : : ; Qk�1 to a row- and column-reordered version of AD (and the right-handside fD), followed by the application of another two matrices Qk and Qk+1 to e�ectthe �nal reduction of (25). (Qk and Qk+1 reduce the �rst and last n columns of thecoe�cient matrix in (25), respectively.) Each of the Qj, j = 1; : : : ; k� 1 are productsof n Householder re
ectors, and each operates on only a small part of the matrix thatit multiplies: to be precise, a 2n� 3n submatrix. Since we wish to reduce (7) to (25),it follows that exactly k � 1 such transformations are needed.Proof. (Lemma 4.1) Let ÂD;i+1 be the transformed version of AD after i stages ofthe structured factorization, and ÂD;1 = AD . Let ^̂AD;i+1 be the submatrix which isactually a�ected at stage i, by the matrix Qi from (22), and let Q̂i be the orthogonalmatrix which is obtained by embedding Qi into a (k+1)n-dimensional identity matrix.For i = 1; : : : ; k+ 1, we have from Lemma B.2 that ÂD;i and ÂD;i+1 are related byÂD;i+1 = Q̂i(ÂD;i + Ei);where Ei consists of the 2n�3n \error" submatrix corresponding to the factorizationof ^̂AD;i, padded out with zeros to dimension (k + 1)n. HencekEikF � (8(2n)� 4n+ 51)nuk ^̂AD;ikF � (12n+ 51)nukÂD;ikF :Hence kÂD;i+1kF � [1 + (12n+ 51)nu]kÂD;ikF � [1 + (12n+ 51)nu]ikADkF :

22 STEPHEN J. WRIGHTThe errors made in stages k and k + 1 are bounded in the same way, since thesubmatrices a�ected at these stages are no larger than those a�ected at the earlierstages. Under the assumption (12n+ 51)n(k + 1)u � 0:1, we therefore obtainkÂD;i+1kF � [1 + (1:06)(12n+ 51)n(k + 1)u]kADkF � (1:106)kADkF ;for i = 1; : : : ; k+ 1. HencekEikF � (1:106)(12n+ 51)nukADkF :The �nal (upper triangular) matrix is ÂD;k+2, which satis�esÂD;k+2 = Q̂k+1(ÂD;k+1 + Ek+1)= Q̂k+1Q̂k(ÂD;k + Ek) + Q̂k+1Ek+1...= Q̂k+1 : : : Q̂1AD + Q̂k+1 : : : Q̂1E1 + Q̂k+1 : : : Q̂2E2 + : : :+ Q̂k+1Ek+1= Q̂[AD +ED]:Here Q̂ = Q̂k+1Q̂k : : : Q̂1 is orthogonal, and ED satis�es the boundkEDkF � k+1Xi=1 kEikF = (1:106)(12n+ 51)n(k + 1)ukADkF :Similarly, application of Q̂ to the right-hand side fD results in a computed vector f̂Dwhich satis�es f̂D = Q̂[fD + �fD];where k�fDk2 � (1:106)(12n+ 51)n(k+ 1)ukfDk2(since kvkF = kvk2 when v is a vector.) Finally, back-substitution is used on thesystem with coe�cient matrix ÂD;k+2 and right-hand side f̂D. The computed solutionsatis�es (ÂD;k+2 +ES)ŝ = f̂D;(44)where, since ÂD;k+2 has at most 3n nonzeros per row,kESkF � 3(1:06)nukÂD;k+2kF� 3(1:06)nu[1+ (1:106)(12n+ 51)n(k + 1)u]kADkF� 3(1:06)(1:1106)nukADkF :Substituting in (44), hQ̂[AD + ED] + ESi ŝ = Q̂[fD + �fD]) (AD + ED + Q̂TES)ŝ = (fD + �fD):

PARALLEL ALGORITHMS FOR BVP 23De�ning �AD = ED + Q̂TES ;we havek�ADkF � kEDkF + kESkF� [(1:106)(12n+ 51)n(k + 1) + 3(1:06)(1:1106)n]ukADkF� (1:106)(12n+ 51)n(k+ 2)ukADkF ;as required. REFERENCES[1] U. M. Ascher and P. S. Y. Chan, On parallel methods for boundary value odes, Computing,46 (1991), pp. 1{17.[2] U. M. Ascher and R. M. M. Mattheij, General framework, stability and error analysis fornumerical sti� boundary value problems, Numerische Mathematik, 54 (1988), pp. 355{372.[3] U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical Solution of BoundaryValue Problems for Ordinary Di�erential Equations, Prentice-Hall, Englewood Cli�s, 1988.[4] Z. Bohte, Bounds for rounding errors in the Gaussian elimination for band systems, Journalof the Institute of Mathematics and its Applications, 16 (1975), pp. 133{142.[5] D. L. Brown and J. Lorenz, A high order method for sti� boundary value problems withturning points, SIAM Journal on Scienti�c and Statistical Computing, 8 (1987), pp. 790{805.[6] A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson, An estimate for thecondition number of a matrix, SIAM Journal on Numerical Analysis, 16 (1979), pp. 368{375.[7] J. C. Diaz, A. Fairweather, and P. Keast, FORTRAN packages for solving certain almostblock diagonal linear systems by modi�ed alternate row and column elimination, ACMTransactions on Mathematical Software, 9 (1983), pp. 358{375.[8] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins UniversityPress, Baltimore, MD, second ed., 1989.[9] H. B. Keller, Accurate di�erence methods for two-point boundary value problems, SIAMJournal on Numerical Analysis, 11 (1974), pp. 305{320.[10] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, Prentice-Hall, EnglewoodCli�s, NJ, 1974.[11] M. Lentini, Parallel solution of special large block tridiagonal systems: Tpbvp. Manuscript,1989.[12] M. Lentini, M. R. Osborne, and R. D. Russell, The close relationships between methodsfor solving two-point boundary value problems, SIAM Journal on Numerical Analysis, 22(1985), pp. 280{309.[13] M. Lentini and V. Pereyra, An adaptive �nite di�erence solver for nonlinear two-pointboundary value problems with mild boundary layers, SIAM Journal on Numerical Analysis,14 (1977), pp. 91{111.[14] R. M. M. Mattheij, The conditioning of linear boundary value problems, SIAM Journal onNumerical Analysis, 19 (1982), pp. 963{978.[15] , Decoupling and stability of algorithms for boundary value problems, SIAM Review, 27(1985), pp. 1{44.[16] M. R. Osborne, Aspects of the numerical solution of boundary value problems with separatedboundary conditions. Manuscript, 1978.[17] M. Paprzycki and I. Gladwell, Solving almost block diagonal systems on parallel computers,Parallel Computing, 17 (1991), pp. 133{153.[18] V. Pereyra, Iterated deferred corrections for nonlinear boundary value problems, NumerischeMathematik, 8 (1968), pp. 111{125.[19] J. M. Varah, Alternate row and column elimination for solving certain linear systems, SIAMJournal on Numerical Analysis, 13 (1976), pp. 71{75.[20] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965.

24 STEPHEN J. WRIGHT[21] S. J. Wright and V. Pereyra, Adaptation of a two-point boundary value problem solver to avector-multiprocessor environment, SIAM Journal on Scienti�c and Statistical Computing,11 (1990), pp. 425{449.

