SIAM J. ScI. STATIST. COMPUT. © 1991 Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. xxx—xxx, Month 1992 012

STABLE PARALLEL ALGORITHMS FOR TWO-POINT BOUNDARY
VALUE PROBLEMS*

STEPHEN J. WRIGHT'

Abstract. Some of the most widely used algorithms for two-point boundary value ODEs, namely
finite difference and collocation methods and standard multiple shooting, proceed by setting up and
solving a structured system of linear equations. It is well known that the linear system can be set
up efficiently in parallel; we show here that a structured orthogonal factorization technique can be
used to solve this system, and hence the overall problem, in an efficient, parallel, and stable way.

Key words. parallel algorithms, two-point boundary value problems, error analysis and stability

AMS(MOS) subject classifications. 65F05, 65G05, 65110, 651.20, 65W05

1. Introduction. Many numerical algorithms for solving the linear two-point
boundary value problem

(1) y' = M(t)y+Q(t), €la,b], yeR,
(2) (a)+Bby()=d

have been proposed and studied over the last 30 years. Many of these methods require
a structured linear algebraic system (for example, a block-tridiagonal or staircase
system) to be solved as a “core” operation, and considerable effort has been devoted to
minimizing the amount of computer time and storage required during the factorization
of the coefficient matrix of this system. Efficient factorization schemes, based on
structured Gaussian elimination, have been implemented and are widely available
(see §2, and Varah [19], Diaz, Fairweather and Keast [7], Lentini and Pereyra [13],
and Keller [9].)

During the last 10 years, the question of stability of algorithms for (1),(2) has
received a great deal of attention (see, for example, Mattheij [15].) Tt has been rec-
ognized that in a well-conditioned problem (that is, one whose solution is not too
sensitive to perturbations in M, q or the boundary conditions (2)), the fundamental
solution space generally contains both exponentially increasing and exponentially de-
creasing modes. The stability of a numerical method for (1),(2) depends on its ability
to at some point perform a “decoupling” of these modes. For the standard multiple
shooting and finite difference algorithms, this decoupling is performed implicitly, dur-
ing the factorization of the structured linear system, through the use of a pivoting
strategy that prevents element growth in the factors. Unfortunately, parallel and vec-
torizable algorithms that have been proposed for solving the linear system invariably
place some restriction on the choice of pivots. This can lead to undesirable element
growth in the factors, and such methods are in fact similar to compactification algo-
rithms for (1),(2) which are known to be unstable. In this paper, we use instead a
structured orthogonal factorization technique which is stable, has an identical serial
complexity to the best-known algorithms, and can be efficiently implemented on a
wide variety of parallel architectures. A variant of the algorithm vectorizes efficiently,

* Received by the editors September xx, 1990; accepted for publication (in revised form) January
xx, 1991. This research was supported by the Applied Mathematical Sciences subprogram of the
Office of Energy research, United States Department of Energy, contract W-31-109-Eng-38. A grant
of computer time at the North Carolina Supercomputing Center is gratefully acknowledged.

t Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439.

1

2 STEPHEN J. WRIGHT

in much the same way as cyclic reduction for block-tridiagonal linear systems. No
separability of the boundary conditions is needed. Although we focus on matrices
arising from multiple shooting and one-step differencing schemes, the technique can
be applied equally well to the more general staircase matrix structures which arise in
other numerical schemes, such as collocation.

We assume throughout that n is too small to allow efficient parallel or vector
implementation of order-n matrix and vector operations. Instead, parallelismis sought
by partitioning the domain [a, b] of the independent variable.

The remainder of the paper is organized as follows: in §2 we review the multiple
shooting and finite difference algorithms, the structured linear systems that result
from them, and the efficient Gaussian elimination techniques used to solve them on
serial computers. In §3 we briefly review previous work on parallel and vectorizable
algorithms. The new algorithm is presented in §4, together with a stability result and
analysis of serial and parallel complexity. In §5 we describe parallel implementation
of a standard technique for estimating the condition number of the coefficient ma-
trix, which can be used for purposes of a posterior: error analysis. Finally in §6 we
describe the results of implementation of the scheme on shared-memory and vector
architectures.

2. Serial algorithms. The “standard” multiple shooting technique for (1),(2)
proceeds by defining a mesh

(3) a:t1<t2<...<tk+1:b,
and finding a fundamental and particular solution on each interval of the mesh:

Y/ = MY, Yi(t) €RV™, t€lttin), Yilt) =1,

Ypi = M (t)ypi +q(1), Ypi(t) € ", teftitiza], ypi(ti) =0.
Then, we try to find s; € R*, ¢ =1,...,k+ 1, such that
y(t) =Yi(t)si +ypi(t), tE€[titia], i=1,... k.

(Note in particular that s; = y(¢;), i = 1,...,k + 1.) By applying the boundary
conditions (2), and continuity at the meshpoints, we obtain the following linear system

N S1,...,8641:
Ba Bb 51 d
Yl(tz) —1 S2 _ypl(tZ)
(4) Yz(tg) —1 53 = _yp2(t3)

Yi(te+1) —1 Sk+1 —Ypk (tr41)

In the (quite common) case in which the boundary conditions are separated, this
system can be rearranged into a block-banded form. If p is the number of initial
conditions and ¢ is the number of final conditions (p+ ¢ = n), we can assume without
loss of generality that the boundary data (2) can be partitioned as follows:

(%) (2] (8]

PARALLEL ALGORITHMS FOR BVP 3

If the rows p+ 1,...,n of (4) are moved to the bottom, we obtain the form

[a i [51 i [da i
Yi(ts) —I 83 —yp1(t2)
Yo(ts) —1 83 —Ypa(ta)
6 o S
Yk(tk+1) jI Sk _ypk(tk+1)
i By | | sp4r | i dy]

One-step finite difference methods proceed by again choosing a mesh of the
form (3) and seeking s1,...,sp41 to approximate y(¢1),...,y(tg+1). On the inter-
val [t;,t;41], (1) is approximated by the linear relationship

(6) SH—lhi_Sl = Ajsi + Cisiyr + fi

where h; =tip1—t;. Two scheme§ with a local truncation error of O(h?)iare the “box
scheme” (4; = C; = %M(tH_%), fi= ‘J(ti+§)) and the trapezoidal rule (4; = $M(t;),
C; = %M(tH_l), fi = %(q(tz) + q(ti4+1)).) By including (2), we obtain a linear system
of the form

Ba Bb 51 d
A Oy S2 1

(7) Ay O 53 —| f ,
A Cy Sk41 Ir

where A; = —1 — hifL', Ci=1- hiéi, and f; = hlﬁ If the boundary conditions are
separated, we obtain

Ba 51 da
A Gy S2 f1
Az O S3 fz
(8) o S Il B
Ap Gy Sk fe
i By | | se41 | | dp |

The accuracy of finite difference schemes 1s often enhanced by the use of deferred
correction techniques (see, for example, Pereyra [18]).

As has been observed, the two algorithms are closely related, in the sense that
for a reasonable choice of the approximation (6), —C’Z»_lAZ' should be close to Yi(t;41).
Hence, the conditioning of the matrices in (4) and (7) is quite similar when the h;
are small. If we quantify the conditioning of the problem (1),(2) by a bound & on its
Green’s function (see Ascher, Mattheij, and Russell [3, §3.2]), it has been shown by
Osborne [16] (and also by Mattheij [14] and Lentini, Osborne, and Russell [12]) that
the inverse of Ag from (4) satisfies the bound

145 fleo < k.
Hence if we define v by

3= 14 max |[Viltis)]eo

4 STEPHEN J. WRIGHT

and assume that B, and By are scaled such that ||[Bg, By]||cc = 1, then from (4),(5),
(9) condes (Ag) < vkk.

For the finite-difference coefficient matrix Ap in (7), a similar analysis applies if
we note that v = 2 + O(h) for small h = max;—1,_ h;. We use this fact, together
with Ap = Ag 4+ O(h), to derive the bound

(10) conde (Ap) < (2 + O(h))ks.

The slightly different form of the bounds (9) and (10) is motivated by the fact that & is
typically larger in a finite difference algorithm than in a multiple shooting algorithm.
Bounds for the coefficient matrices in (5) and (8) are, of course, identical to their
non-separated counterparts.

As stated earlier, Gaussian elimination algorithms with various forms of pivoting
have been previously proposed for solving (4),(5),(7),(8). The practical stability of
such algorithms for general matrices is well known, but is also well known that the
worst-case behavior can be very bad, as a result of possible growth of elements in
the factors which is exponential in the dimension (k + 1)n of the system. It has been
shown (see, for example, Mattheij [15]) that the presence of an exponential dichotomy
in (1),(2) ensures that this worst-case behavior does not arise when elimination algo-
rithms are applied to the matrices in (4),(5),(7),(8). In the partially separated cases
(5),(8), similar results can be proved, without referring to the dichotomy at all, by
using the results of Bohte [4]. Bohte shows that for banded linear systems, the bound
on element growth in partial pivoting algorithms is exponential only in the bandwidth.

In the simplest case of Gaussian elimination with row partial pivoting (with co-
efficient matrices and right-hand sides denoted by Asp and fsp in (5) and App and
fop in (8)), possible fill-in of kpn elements can occur in the upper triangular fac-

tor. Element growth is, however, bounded by 2??~! and so we obtain the following
theorem:
THEOREM 2.1. Let s = (sT . ~~a5%+1)T denote the true solution of the system

(8), and suppose that 5 is the approzimate solution obtained by Gaussian elimination
with row partial prvoting. Then provided that
(i) h is chosen small enough that cond..(App) < 4kk,
(11) 8errku < 1, where e1 = (1.12)22"n3k(k + 1)(k +8) = O(k3n32%") and u is the
unit roundoff error,
the following relative error bound applies:

(11) % < 16¢; k0.
5)|oo

Suppose that the fundamental and particular solutions that are used to construct
Asp and fsp in (5) are calculated to a tolerance of T, that is,

(12) |Asp — Asp|loo

Ifsp — fspllco

|| Asp||eo

<
S T||fSP||oo~

Let 5 be the solution obtained by using Gaussian elimination with row partial pivoting.
Then provided that

(iii) Thry <1/2,

(iv) 6euky < 1,

PARALLEL ALGORITHMS FOR BVP 5

we have

(13) max;=1, . k+1 |15 — y(ti)|leo

< 4Avk[kT + 3c1u + cour],
max;=1, . k41 [|Y(ti)]]oo

where co = 12¢1kry.
Proof. For the first part of the theorem, the proof follows from Theorem 2.7.2 in
Golub and Van Loan [8], and §4 of Bohte [4]. The latter assumes that

u < .009 and (k+ 1nu < 0.1,

which are clearly implied by assumption (é¢), since k > 1, £ > 1 and n > 1. Bohte
then shows that s solves the system

(App + E)$ = fpp,
where E satisfies the bound
[[E]lec < Au(0.56)(4n — D)n(k + 1)(kn + 7n + 3),

and A is a bound on the maximal element which arises during the elimination. By
simplifying this expression, and noting from the discussion above that

A< 22n_1HZ.13}X|(ADP)ij| <2 App|lo,

we have that

1Ellee < (er/k)ullApp|loo-

The result now follows by setting » = 1/2 in [8, Theorem 2.7.2].
For the second part, note first that

|[Asplleo < (14 7)[|AsPlloo

and

145l <+ A5p(Asp — Asp)] ™ Hlco A5 plloo-
Provided
(14) 1A5p(Asp — Asp)lleo < 1,

we have from [8, Lemma 2.3.3] that

145 plleo ki

Azl <
Msplle < 1= A5 oo = 1 —Tkx

< 2kk.

The inequality (14) is implied by (#i). Since &, v and & are all at least 1, assumption
(#i¢) implies that 7 < 1/2, and so

(15) condeg (ASP) < 2(1 4)kry < 3kky.

Now let 5 be the exact solution of Asps = fsp. Direct application of [8, Theorem
2.7.2] with r = 1/2 shows, again using (7i¢), that

= 72' - tl [e’e}
(16) max;=1 g1 |5 — y(t:)|] < dcondeo (Agp)T < 4kkyT.
max;=1, . k41 [|Y(ti)]]oo

6 STEPHEN J. WRIGHT

Application of Bohte’s results shows that the computed solution s satisfies (Asp +
E)s = fsp, where

c —
1l < Ll dselle.
Assumption (iv) and (15) imply that

c%ucondOo (figp) <1/2,

and so
|5 = 5llec _ 4cim z
(17) Tl < k condeo (Agp) < 12¢ciuky.
Slloo
The result follows by combining (16) and (17) in an elementary way. n

A more economical scheme for solving (5) and (8), described by Varah [19] and
implemented by Diaz, Fairweather, and Keast [7], is the method of alternate row and
column elimination. For the first p stages of the process, we use column pivoting and
elimination (involving columns 1 through n); this produces no fill-in. For stages p+ 1
through n we use row pivoting and elimination for the same reason. Column and row
elimination alternate in this way until a factorization of the form

(18) App = PLBUT

is produced, where P and Il are permutation matrices, L. and U are lower and upper
triangular matrices of multipliers, and B has the form

L
X R X X
X L
X R X X
B = X L
X 0 L
X R |

(L denotes a lower triangular px p block, R denotes an upper triangular (n—p) x (n—p)
block, and X denotes a dense block.) Tt is easy to show that element growth in the B
factor is bounded by 27! and, hence, that the scheme is very stable. We can prove
the following:

THEOREM 2.2. Let s = (sT . ~~a5%+1)T denote the true solution of the system
(8), and let § be the approvimate solution calculated by alternate row and column
elimination. Suppose further that

(i) h is chosen small enough that cond..(App) < 4kk, and

(ii) 8caru < 1,

where
ca = k(k 4+ 2)n(5 + 6n)(1 + n?2"~1) = O(k*n*2").
Then
M < 16eqku.
18]l

Let § be obtained by multiple shooting with alternate row and column elimination,
and suppose that (12) holds, with

PARALLEL ALGORITHMS FOR BVP 7

(iii) Thry <1/2,
(iv) bequry < 1.
Then

max;=1, . k41|85 — y(ti)||o
max;=1, . k41 [|Y(ti)]]oo

< ykk[kT 4+ 3cqu + csur],

where c5 = 12¢cakky.

Proof. The assumptions of Lemma A.l are consequences of (i¢) and (iv) above.
The first part of the result follows directly from Lemma A.2 and [8, Theorem 2.7.2].
The second part is analogous to the second part of Theorem 2.1, with ¢4 replacing ¢y
and c5 replacing cs. n

3. Parallel elimination algorithms. Other parallel and vectorizable algorithms,
based on Gaussian elimination, have recently been proposed for (4),(5),(7),(8). In gen-
eral, they suffer either from poor stability properties or from limitations in the amount
of parallelism which is possible.

Wright and Pereyra [21] describe variants of a block factorization algorithm ap-
plied to (7). In the most highly vectorized variant, a factorization of the form

A R I W
Az I WZ
Ay I W
2 o . Zp Apm I
P A Gy
Py Az O
P, Ar Gy
Pk+1 Ba Bb

(where the P; are permutation matrices) is produced. Tt is easy to show that for
h sufficiently small, this factorization exists. It is equivalent to compactification [3,
page 153] which, because of its similarity to single shooting, is known to be potentially
unstable. However, this instability can usually be recognized by the presence of large
elements in the Z; blocks. The strategy described in [21, §5] is to use this factorization
where possible, and discard it in favor of a more stable method if the ||Z;]| are too
large. In many applications (such as the one described in [21]) the lack of stability is
not a problem.

Paprzycki and Gladwell [17] describe a partitioned elimination algorithm in which
(8) is torn into P submatrices, each of which has the same form as the original App,
and alternate row and column elimination is applied to each piece. This corresponds
to partitioning the interval [a, b] and solving a number of sub-BVPs, each of which has
p initial and ¢ final conditions. Although the number of initial and final conditions
is correct, this alone is not enough to ensure well-conditioning of the sub-BVPs. In a
linear algebra sense, well-conditioning of the whole matrix App does not guarantee
well-conditioning of each of the P submatrices. Ascher and Mattheij [2] develop a
“theoretical multiple shooting” framework in which they show how boundary values
for the sub-BVPs should be chosen to ensure well-conditioning. Ascher and Chan [1]
suggest how to implement this in a parallel environment.

8 STEPHEN J. WRIGHT

Another possibility, which leads to near-perfect speedup on two processors (but
cannot be generalized to a higher order of parallelism) is the “burn at both ends” or
“twisted” factorization. Here, some form of pivoted Gaussian elimination is applied
simultaneously from both ends of the matrix (either App or Agp). When the factor-
izations meet in the center, a small reduced system is formed and factored. This 1s
analogous to the approach of Lentini [11].

Finally, we mention the approach of Ascher and Chan [1], who form the normal
equations for (5) and (8), and factorize the resulting symmetric, positive definite,
block-tridiagonal system using cyclic reduction. In exact arithmetic, this scheme
produces a triangular factor which is identical to that given by the “cyclic reduction”
variant of the algorithm to be described in the next section. The difference lies in the
fact that by explicitly forming the normal equations, the condition number of a linear
system 1s squared, an effect that is avoided when the algorithm from §4 is used.

4. Structured orthogonal factorization. We now describe the structured QR
factorization algorithm, as applied to the system (7). It can of course be applied
equally well to the systems (8),(4),(5), since it is indifferent to separability of the
boundary conditions.

The first step is to partition the system into, say, P pieces of approximately equal
size. We choose indices k1, ka, ..., kpy1 to satisly

0=k <ka<...<kpy1=kF, k‘j+12]€]’—|—2,j21,...,P.

(P could for instance be the number of processors on the physical machine being used
to solve the problem.) Partition j then consists of rows (k; + L)n+1,..., (kj1+ 1)n
of (7). Each partition is now processed independently; in effect, the variables s; for
t#kj+1,j=0,..., P, are eliminated from the problem.

We describe this process in detail for the first partition, which, if augmented with
its right-hand side, has the form

Al Cl fl

AZ CZ f2

(19) L .
Ak2 Ck2 fk2

We first find an orthogonal matrix Q1 € R?*?7 such that
| Ci | _ | R
ali]=[v]
where Ry € R™*™ is upper triangular. If we form ()1 as a product of n Householder
transformations, the information needed to reconstruct ¢y could be stored in the
space formerly occupied by the “zeroed” elements of [CT, AT]T | plus an additional n

locations. We also need to apply Q7 to the other columns of the matrix (19), and the
overall effect is

A Gy f
] Ay Oy fa

Ak2 Ck2 fk2

PARALLEL ALGORITHMS FOR BVP 9

ql Rl El gﬁl
G2 0 CZ f2
(20) AS 03 f3

Ak2 Ck2 fk2
The next step is to find an orthogonal @, € R?"*?" such that
C R
T 2 | _ 2
ali]=[T]
and to apply Q¥ to rows n + 1,...,3n of the reduced system (20). This process is

repeated a total of k2 — 1 times, until finally we obtain a system equivalent to (19)
which has the form

Gy R E; g1

Go Ry D g2

(21) : KR :
Gha-1 Rio1 Epy—t | Ghy—1

Ay Ch 1

Formally, the reduction process for partition j can be specified as follows:

Crjv1 = Criq1, Grpr = Agjrr, feiv1 = fijrr

for i:k]'+1,...,]€]'+1—1
Find orthogonal @); such that

C; R;
T 7 _)
o &]-[4]
where R; € R™*™ is upper triangular;

Set

E; T 0 G T Gz
|:Ci+1:|<_Qi|:Ci+1:|’ |:Gi+1:| z|:0:|a
i r|[F
[Jiv1] — @ [fix1]
end (for)
Set Aj = G C; = Chjg JEJ = Jt -
Clearly, if we knew the values of s;, 41 and s;,,, 41, the values of s, 40,..., 54,

could be recovered by the simple back-substitution:
for i:k‘]’+1—1,k]’+1—2,...,]€]'—|—1

(23) Solve Ri5i+1 = g; — Giskj - Ei5i+2

10 STEPHEN J. WRIGHT

In fact, these “separator” variables can be found by forming and solving a reduced
system by taking the last n rows of each (processed) partition, and the boundary
conditions. This reduced system has the form

Bia 5 Bb Ski41 El

Ay Ql B Sko41 f;l

(24) Ay O Skat1 = | f
AP éP Skpt1+1 fP

The form of (24) is obviously identical to the form of the original system (7), so this
immediately suggests that it may be possible to apply the whole process recursively,
that is, (24) could be partitioned into P» < P/2 pieces, and the algorithm described
above could be applied to obtain a smaller reduced system. This process could be
repeated for, say, L levels, so at the innermost level a (Pr 4+ 1)n-dimensional system
would remain.

In a parallel implementation of the algorithm, the number of levels L to be used
and the number of processors to be used at each level depend on the number of
available processors on the physical machine, and, on a distributed-memory machine,
on the cost of interprocessor communication. The “extreme” cases are as follows:

e A one-level version (P = 1, k2 = k), in which (7) is reduced to the 2n x 2n

system
Ba Bb 51 d :|
25 ~ ~ - | =
() [z‘h 01:||:5k+1:| [f1 ’
which is then solved by QR factorization. This is the “serial” version of the
algorithm.

e A two-level version, in which P processors are used to do the reduction and
back-substitution (23), and the system (24) is solved by the one-level algo-
rithm just described. It is easy to see that, assuming that each partition
contains about k/P rows of blocks, the time required for the reduction phase
is proportional to (k/P — 1)n3. The time required to solve (24) on a single
processor is proportional to (P + 1)n3. The latter operation will not be a
bottleneck for the whole process, provided that & >» P2.

e A “cyclic reduction” version, in which P is equal to the number of available
processors (assuming that P < k/2), and then P, = P/2, Ps = P/4, ...,
Pr = 1. Here clearly L = log, P + 1. The total computation time required
will be proportional to (k/P — 1 + log, P)n®, while the communication time
will be proportional to n? log, P. With regard to complexity, the algorithm is
optimal: when k& = Plog, P, the execution time is O(log, P) on P processors,
while the serial time is O(P log, P).

The cyclic reduction variant is also appropriate for implementation on a single
vector processor. In this environment, we could choose P = k/2, P, = k/4, P35 =
k/8,..., and so L = log, k + 1. At level I/, the reduction and back-substitution
processes can be coded so that most of the arithmetic involves vectors of length k/2'.
At low levels, a reversal of the loop nesting can be used to ensure that vector lengths
do not fall below n.

It is not difficult to see that the factorization and solution phases can be separated,
provided that the Householder vectors are stored (in the locations vacated by the

PARALLEL ALGORITHMS FOR BVP 11

zeroed elements). This feature is useful when quasi-linearization is used to solve a first-
order nonlinear BVP. The same coefficient matrix (and its factorization) can be used
for a number of consecutive iterations to produce “chord method” approximations to
Newton steps.

It is important to note that the scheme proposed above is simply standard House-
holder QR factorization applied to an initial row- and column-permuted form of the
original matrix. Thus, we can apply the standard stability analysis for (k + 1)n-
dimensional matrices from Lawson and Hanson [10] to obtain error bounds for the
computed solutions. We have refined these bounds to take into account the structure
of the matrix. In addition, to allay any possible concerns about instability at the
level of the O(u?) terms, we have removed these terms using the style of analysis in
Wilkinson [20]. The relevant results are stated and proved in Appendix B. Here, we
summarize the analysis in the following Lemma and Theorem:

LeMMa 4.1. Let s = (s7,s7,. ~~a5%+1)T denote the true solution of the system
(7), and suppose that § is the approzimate solution obtained by using the structured
QR factorization and back-substitution. Suppose that the orthogonal matrices used in
the factorization are all constructed from Householder reflectors, and that n, k and u
satisfy

(26) (12n+5D)n(k+ 1u < 0.1.

Then s is the exact solution of a perturbed system

(27) (Ap +6Ap)s = fp +6fp,
where
(28) l6Ap|lr < (1.106)(12n+ 51)(k + 2)nu||Ap||F,
(29) l6fpll2 < (1.106)(12n + 51)(k 4+ 1)nul|fp]|2.
Proof. See Appendix B. [

THEOREM 4.2. Suppose that the conditions of Lemma 4.1 are satisfied. Then
provided that

(i) h is chosen small enough that cond..(App) < 4kk,

(11) 8egru < 1, where cg = (1.106)k(k + 2)?n?(12n + 51),

the following relative error bound applies:

[15 = 8lloo

< 16¢sku.
[15]]co

Suppose that the fundamental and particular solutions that are used to construct
As and fg in (4) are calculated to a tolerance of T, that is,

145 = As|lo 7[[As oo
1fs = fslleo 7||.f5leo-

Let § be the solution obtained by using structured QR algorithm, where (26} holds.
Then provided that

(iii) Thry <1/2,

(iv) begury < 1,

<
<

12 STEPHEN J. WRIGHT

we have
max;—1, . k41|85 — y(ti)||o
max;=1, . k41 [|Y(ti)]]oo

< 4yklkT + 3ceu + crur],

where ¢7 = 12¢kk7y.
Proof. The proofisidentical to that of Theorem 2.1, once we convert the Frobenius
norm bounds (28) and (29) into co-norm bounds. This is done by noting that for an

N x N matrix A,
1
7z llAllee < NlAlle < N Ao

Hence
16AD]|eo < (1.106)(k + 2)*n*(12n + 51)u||Ap||co.-
|

5. Condition estimation. For purposes of assessing the reliability of the com-
puted solution, it is useful to have an estimate of the conditioning of the discrete
system. Such an estimate can be obtained, simultaneously with the factorization
and solution process, by adapting the procedure described in Cline et al. [6] to our
situation.

We aim to compute an estimate of the quantity

i = ([Aol R oo,

where A is one of the coefficient matrices from (4),(7),(5),(8), and R is the upper
triangular factor produced by the procedure just described. It is easy to show that

mﬁf < condeo (A) < V/(k + D)nk.

[|A]leo can of course be calculated directly, and so computation of the estimate of
||R71||co is the major part the task of finding k. Following [6], we do this by first
finding vectors z and v such that

RTy = 2,

where the components of z are all &1 and are chosen by a heuristic that attempts
to maximize ||v||co. This is done during the factorization of A; as reduction of each
partition into a single row of blocks i1s performed, the heuristic can be applied to find
the components of z and v corresponding to the rows and columns of the original
system that are eliminated. Next, the solution of

Rw=w

is found concurrently with the solution of the original linear system Rs = QT f. We
then use the estimate

1R oo ~

The operation count for calculation of K is approximately four times that of
doing a single backsolve with R, and the parallel complexity i1s the same as that of
the factorization and solution. Comparisons with the LINPACK condition number
estimator of cond;(A4) (which is based on an LU factorization of A but uses similar
heuristics) show that the two estimates are usually within a factor of 3 of each other.

PARALLEL ALGORITHMS FOR BVP 13

TaBLE 1
Operation counts and storage requirements for four algorithms, assuming separated end con-
ditions. k = number of meshpoints, n = dimension of y, p = number of left-hand end conditions,
R = number of right-hand sides

Algorithm Operation count Storage

LU (row pivoting) k[34+ 3pn? + R(4n? + 2pn)] | kn(2n + p)

Structured QR [46 34 (15R—|— 30)n?] 4kn?

Normal equations [33—8 3+ 12Rn? 4kn?

DECOMP/SOLVE k[2n® 4+ (4R + 5p)n® — 2np?] 2kn?
TABLE 2

Operation counts and storage requirements for four algorithms, assuming non-separated end
conditions. k = number of meshpoints, n = dimension of y, R = number of right-hand sides

Algorithm Operation count Storage
LU (row pivoting) | k[Z2n3 + 8Rn?] 4kn?
Structured QR [436 34+ (15R+30)n?] | 4kn?
Normal equations [632 3+ 12Rn? 5kn?
DECOMP/SOLVE [?471 + 4Rn? 3kn?

6. Computational results. Versions of the structured QR algorithm have been
implemented on the Alliant FX/8 vector multiprocessor at Argonne National Lab-
oratory and on the CRAY Y-MP at the North Carolina Supercomputing Center.
Performance comparisons were made with

e a row partial pivoting code (two versions, for separated and non-separated
boundary conditions), and

e the DECOMP and SOLVE routines from the PASVA codes [13]. The DECOMP routine
uses alternate row and column pivoting (as does the algorithm described in
Varah [19] and in §2) but always eliminates by rows.

Approximate operation counts and storage requirements for these algorithms and
the normal equations method of Ascher and Chan [1] are given in Tables 1 and 2, for
separated and non-separated boundary conditions, respectively. In tabulating storage
requirements, it has been assumed that intermediate information generated during
the factorization — namely, the multipliers and Householder vectors — is stored for
possible later use with a different right-hand side. In general, the structured QR
algorithms require the most operations. This result is not surprising, since it is well
known that orthogonal factorization of dense matrices requires about twice as much
work as Gaussian elimination. Moreover, in the case of separated end conditions,
structured QR generates fill-in that is avoided by the elimination-based methods, and
this adds further to the operation count. On the other hand, the operation counts
and storage requirements for strutured QR are not affected if the end conditions are
non-separated rather than separated, while for the other methods, they increase sub-
stantially. The method based on normal equations requires about the same amount
of work as structured QR,; however, as we noted earlier, it is less stable. We add the
caveat that operation counts are notoriously bad predictors of run time for factor-
izations of narrow-banded matrices. For small n, much of the CPU time is taken up
with non-numerical operations. This is borne out by our results, which show that the
QR algorithm does not do as badly as predicted in serial mode.

14 STEPHEN J. WRIGHT

The linear system solvers described above have been incorporated into both a
multiple shooting and finite difference (box method) framework. The dverk code
from netlib was used to solve the IVPs on each interval of multiple shooting, with the
global error tolerance parameter set to 10710, A user-specified number & of equally-
spaced intervals is used for both methods. For practical codes, the choice of the
number of intervals and their lengths (and efficient parallel implementation of this)
are important issues, but we focus here on the linear algebra, which typically 1s the
most computationally intensive part of a finite difference-based code. In accord with
the theoretical results of §2 and §4, virtually no difference was noted between the
stability properties of structured QR and row-pivoted LU. As evidence of this, we
quote results for the following test problem:

Problem 1 (Ascher and Chan [1]) a=0,6=1, n = 2,

—Acos2wt w+ Asin 2wt
/ —_
yit) = [—w 4+ Asin 2wt X cos 2wt] y(t) + f(1),

10 0

with f(t) and d chosen so that y(t) = e*(1,1)7.

o

A fundamental solution 1s

Y(t) = [

coswt slnwt e~ 0
—sinwt coswt 0 et |

so clearly there exist one growing and one decaying mode. The problem was solved
using both multiple shooting and the box method for A = 200 and w = 1. Four
different algorithms were used to solve the linear system, namely,

e SQR-1 — one-level structured QR,;

e ROWPP — LU factorization with row partial pivoting;

e DECOMP — the DECOMP and SOLVE routines from PASVA; and

e COMPACT — compactification, as implemented in the codes D4/S4 described

in [21].
Tables 3 and 4 show the maximum error in the first component of the computed result.
Because of its failure to decouple the fundamental solution modes, compactification
performs poorly. The accuracy of box method solutions 1s limited by discretization
error, while the multiple shooting solutions are accurate up to the conditioning of the
discrete system and the tolerance imposed on the IVP solver. The DECOMP code gives
accurate results here because the end conditions are separated. When this i1s not the
case, as in problem 3 below, DECOMP is known to be unstable.
To test the relative speed of the linear solvers, two further problems from the

literature were used in addition to problem 1. These were

Problem 2 (Brown and Lorenz [5]) a = —1, 6 =1, n = 4,

—ey — zy’ 4 zz’ 4z = enlcosml + l71'15 sin 7t
2 2 2 ’
e = z
y(—-1) = -1 y(1) = e~ 2/VE

H(-1)=1 2(1) = e 2/VE

PARALLEL ALGORITHMS FOR BVP

Box method, error in first component of computed solution for Problem 1 for four different

linear system solvers

TABLE 3

Multiple shooting, error in first component of computed solution for Problem 1 for four different

linear system solvers

k=16 k=64 | k=1024
2 17(+2) | B1(+1) | 21(+1)
ROWPP 21(-2) | .10(-3) .32(-6)
DECOMP 22(-2) | .10(-3) .32(-6)
SQR-1 21(-2) 10(-3) 32(-6)
COMPACT | .22(-2) | .93(+27) | .16(+72)
TABLE 4

k=16 k=32 k=128
R 85(4+6) | 17(+4) | .13(+2)
ROWPP A45(-3) .67(-6) 64(-7)
DECOMP A45(-3) .67(-6) 64(-7)
SQR-1 A45(-3) .67(-6) 64(-7)
COMPACT | 51(472) | .21(4+72) | .11(+72)
(We use € = .001.)
Problem 3 (Mattheij [15]) a =0, b =m, n =3,
1—19cos2t 0 1+ 19sin2t
y(t) = 0 19 0 y(t)
—1+19sin2t 0 14 19cos2t

—1 4 19(cos 2t — sin 2t)
+ € —18 ,
1 —19(cos 2t + sin2t)

y1(0) = 1
y3(0) + ys(m) = 14¢€"
y2(0) + ya(m) = 14€".

The solution is y(t) = ¢'(1,1,1)T.

Problems 1 and 2 have separated end conditions, while two of the three end conditions
for problem 3 are non-separated. We report on five cases (two different values of &
were tried for problems 1 and 2, and values of A = 1 and w = 50 were used in problem
1). Table 5 gives condition estimates for the multiple shooting and finite difference
matrices.

Results from “scalar” implementations on one processor of the Alliant FX/8 are
shown in Table 6. We have tabulated the times required to solve the linear systems.
The -0g compiler option was used with each code, so the vector processing capabilities
of the Alliant were not used. In addition to the linear solvers already mentioned, we
tested SQR-CR, which was the cyclic-reduction variant of structured QR. Note that the
SQR codes typically take two to three times as long as ROWPP, though the penalty is

16 STEPHEN J. WRIGHT

TABLE 5
Dimensions of the five test cases, and conditioning of the multiple shooting and finite difference
matrices

Alliant FX/8, one-processor timings for linear system solvers (times in seconds)

Problem | ROWPP | DECOMP | SQR-1 | SQR-CR
la .041 .081 071 .098
1b 439 .660 .813 1.04
2a .094 181 .220 312
2b 1.32 1.95 3.22 4.55
3 1.23 1.44 1.72 2.34
TABLE 7
CRAY Y-MP, one-processor timings for linear system solvers. Vectorized code (times in mil-
liseconds)
Problem | ROWPP | DECOMP | SQR-1 | SQR-CR
la 2.19 3.05 8.63 1.45
1b 34.6 48.3 139. 10.9
2a 5.32 8.38 21.1 6.40
2b 84.4 133. 341. 51.6
3 136. 116. 232. 26.3
TABLE 8

Problem | n k ms conditioning | fd conditioning
la 2| 64 A1(+2) A17(+2)
1b 2 | 1024 30(+2) 30(+2)
2a 41 64 37(49) 83(+3)
2b 4 11024 26(+2) A17(+2)
3 3 | 1024 20(+1) 34(+1)
TABLE 6

Alliant FX/8, eight-processor timings for linear system solvers (times in seconds)

Problem | ROWPP | DECOMP | SQR-2
la .029 072 031
1b .367 697 136
2a .053 150 .067
2b 739 1.67 463
3 .685 1.39 .262
TABLE 9

Alliant FX/8, Ratio of times for ROWPP (one-processor) to times for SQR-2 (eight processors)

Problem | Speedup
la 1.3
1b 3.2
2a 1.4
2b 2.9
3 4.7

PARALLEL ALGORITHMS FOR BVP 17

much smaller when the end conditions are not separated (as in problem 3). In either
case, the overhead for using structured QR 1s not as great as the operation counts in
Tables 1 and 2 would suggest.

Timings for a vectorized implementation on one processor of a CRAY Y-MP are
shown in Table 7. In general, the SQR-CR code becomes very competitive, particularly
when n = 2 or 3, k is large, and/or the end conditions are not separated. This
code performs extremely well on problems 1b and 3. When n = 4 (problem 2), the
small amount of vectorization that occurs in the other codes lessens the advantage of
SQR-CR, while in problems la and 2a the value of k¥ makes the overall computational
task to small to benefit from vectorization.

Table 8 gives results for an eight-processor parallel implementation on the Alliant
FX/8. The -0gc option was used during compilation. Here, SQR-2 refers to the
two-level version of structured QR, in which the original system is broken into eight
partitions of equal size, which are factorized concurrently. On the largest problem, the
parallel efficiency of structured QR (measured by comparing serial SQR-1 to parallel
SQR-2) is 87% — quite acceptable, given that the solution of the reduced system is
an unavoidable bottleneck. The efficiency improves further for still larger problems.
Defining speedup as the ratio of the one-processor time for the best serial algorithm to
the eight-processor time for the best parallel algorithm, we see, from Table 9, that in
three of the five cases good parallel efficiency is attained. The remaining two problems
were too small for parallelism to have much effect.

Comparing Tables 6 and 8, it can be seen that ROWPP and DECOMP also speed up
a little when extra processors are available. This is because the Alliant is a shared-
memory machine. It is important to note that on the current generation of message-
passing machines, these algorithms will not benefit from multiprocessing unless n is
large enough that rows or columns within each block can profitably be distributed
around the processor array. This is unlikely to happen until n 1s at least 50 or 100.
On the other hand, efficient implementations of multilevel SQR on these machines will
be possible for much more typical problem sizes.

To summarize, we conclude that the structured QR codes are useful in the fol-
lowing circumstances:

e when the computational task of solving the linear equations is substantial
enough to benefit from vectorization or parallelism,;

e especially, when the end conditions are not separated;

e on a vector processor, when the value of n is too small (say, only 2 or 3) to
allow efficient vectorized factorization of n x n blocks;

e on the current generation of distributed-memory multiprocessors, unless n is
very large and the number of processors 1s very small,;

e on a shared-memory multiprocessor, unless n is quite large (say, greater than
8) and there are fewer than four processors.

A. Appendix A. We start with a result which is similar to [8, Theorem 3.3.1]:

LEMMA A.1. Suppose that alternate row and column elimination, without pivot-
g, 1s applied to an N x N matriz A with bandwidth by, to produced computed factors
L, B, U. Assume that N, by, and the unit roundoff error u satisfy

(30) Nu < 0.1
(31) Nu(2+ 1.06by, + 2.12b,u) < 0.5.

18 STEPHEN J. WRIGHT

Then
LBU = A+ H,
where
(32) |H] < es(N = Du{|A]+ [L]|B||IU]}
and
cs =5+ 3by.

Proof. The result is trivially true for N = 1. Suppose for induction that (30)
holds for matrices of size up to N — 1. Let

Osz
A_|:U A1:|’

where o € R, Ay € RIN-DX(N=1) "otc and suppose that row elimination will be
used to eliminate v. We compute

(33) i=Lu+ s, 11 < I,

(34) A=A — 2T + F, |F| < 2u(|A] + 2] |w]T),
It follows immediately from (34) that

(35) | Ar] < (1+20)(|A] + [2]Jw]).

An LBU factorization of A; is then performed, yielding
L\BiU, = Ay + Hy,

with

(36) |H| < es(N = 2)u{|Ay] + |[L1]|Bi|U1]}.

The calculated factors of A are therefore
. 1 0 . a wT N 1 0
L = - B = ~ = ~
N B A S R A

where w is the computed solution of the system UlTib = w. Defining b, = 1.06b,,

and noting that U{ has lower bandwidth b,,, it is easy to show that w ezactly solves
(UlT + (SU)lf} = w,

where

67| < byu|U3 |7

(37) 0T @ = w| = [sw| < |6u o] < buulU:[F]al,

PARALLEL ALGORITHMS FOR BVP

and so
(38) Jwl < (14 bwu)| 01| |a].
Now
Ay = A —s' 4+ F
=0T + L1BU, = A+ F+H —:w-UlwT.
Combining this with (33),
(39) i At w0 —w'

af F+H —z:w—Ulw)”
Now, combining (34), (35), (36) and (38), we find that
|F+ Hy — 2[w— UTw]7|
|F|+ [Hi| + |2|[w — UF w| T
[e3(N — 2)u(l 4 2u) + 2u]| A4
+les(N — 2)u(l 4 2u)(1 + byu) 4+ 2u(1 + byu) + byu]|2||w| U]
(40) —|—63(N — 2)u|L1||Bl||U1|

INIA

We now show that
(41) c3(N — 2)u(1 4 2u)(1 + byu) + 2u(1 + byu) + byu < c3(N — Du.
This is equivalent to

e3(N — 2)u(2u+ byu + 213wu2) +(2u+ b + 213wu2)
& ezl — (N = 2)u(2 + by + 2b,u)]

c3ua

(24 by + 2by,u).

IV IA

Since by assumption (31),

1= (N =2)u(2+ by +2b,u) > 1/2,
inequality (41) will hold provided that
(42) s > 2(2 + by + 2b,u).

From (30), and using b, < N, it is clear that 2b,u < 0.5, so (42) follows trivially.

19

Since the left-hand side of (41) is the largest of the three coefficients in (40), we

can combine (40) and (41) to obtain
(43) |F + Hy — 2[w — U w]"| < es(N = Dyu{|As| + |Z|[@]" |U2] + [La|[Ba]| U4]}
Combining (39), (33), (37) and (43), we therefore find that
|A - LBU|
_ 0 wT Uy — w”
N af F+Hy—zw—-UlwT

SRR vl K R | R AR P)

es(N = Du{]A] + ||| BI[U]}.

IN

20 STEPHEN J. WRIGHT

This proves the result for the case in which row elimination is used at stage N.
When column elimination is used instead, the proof is analogous. [

LEMMA A.2. If the alternate row and column elimination is used to solve (5) or
(8), and the assumptions of Lemma A.1 hold, with N = (k 4+ 1)n and by, = 2n, then
the computed solution s is the exact solution of the perturbed system

(A+E)s = 1,
where
1Ellee < (k4 2)n(5 + 6n)(1 4+ n*2" Y| Applleu.

Proof. Note first that the pivoting does not alter the sparsity structure of A. We
can, therefore, view alternate row and column elimination as being applied to PT ATl
(where P and II are permutation matrices) to produce a computed factorization

PTANT + H = LBU.

It is easy to show that the procedure leading to s results in the following sequence of
perturbed problems:

(L+6)w = PTy, 62| < (1.06)nu]L],

(B+6p)0 = w, 65| < 2(1.06)nu| B,

U4bv): = o, 67| < (1.06)nu|U],
§ = mlz

(The bounds on [6.], |65], |6 are a consequence of the maximum number of nonzeros
in each row of L, B, U, respectively.) Hence

PTENT = H4(L+6.)(B+6p)U+6y)— LBU
= 1Ellee < ||H]loo + [4(1.06)nu + 5(1.06)*n%u? + 2(1.06)*n2u®]|| L] co|| B|loo || U || oo -

It follows from (30) that nu < 0.1, so the coefficient of ||ﬁ||oo||B||oo||U||Oo can be
bounded above by 5nu. Since element growth in B is bounded by 27~1 and since all
entries in L and U are bounded by 1, we have

1Bllee < 21 [PTAN oo < 2" [[Alleo, [1Lllee <1, [[U]]ee < 1.

Combining these observations with the result of Lemma A.1, we obtain

1Elloo < (54 60)(k + nuf]|Alleo + 1Ll o[l Blleo||U oo } + 5l | Lloo | Blleo U oo
< {BG+6n)(k+Dn+[(5+6n)n(k + 1) + 5n]n?2" "1 }[|Al|u
< (k+2)n(5 4+ 6n)(1 4+ 222"~ H)||Al|cou.

as required. [

B. Appendix B. We start by stating two results on the rounding error due to
Householder reduction. These results are similar to those in Lawson and Hanson [10,
pp- 85—-89] and Wilkinson [20, pp. 157-162]. They differ from Lawson and Hanson’s
results in that the O(u?) term is explicitly accounted for at every stage, and from
Wilkinson’s in that we do not assume double-precision accumulation of inner products.
Since the proofs are tedious and do not offer any new insight, they are omitted.

PARALLEL ALGORITHMS FOR BVP 21

LEMMA B.1. Suppose that an mq X ms matriz X 1s multiplied by an my x my
Houscholder reflector (). Then provided that

(6my + 18)u < 0.1,
the computed result Y satisfies
Y = QLY + E),
where
1Elr < (T + 42)u]| X||F.

LEmMa B.2. If @ is a product of v Householder reflectors whose effect is to
introduce zeros into the subdiagonals into the first r columns of the my X ms matriz
X, then provided that

(Tmy +42)ru < 0.1,
the computed result Y satisfies
Y = QLY + E),
where
1Bl < (8m1 — 47 4+ 51)rul| X]|F.

For the purpose of this Appendix, it is simplest to view the structured fac-
torization process as the application of & — 1 orthogonal transformation matrices
Q1,Q2,...,Qr—1 to a row- and column-reordered version of Ap (and the right-hand
side fp), followed by the application of another two matrices @y and Qp41 to effect
the final reduction of (25). (Qr and Q41 reduce the first and last n columns of the
coefficient matrix in (25), respectively.) Each of the);, j = 1,...,k— 1 are products
of n Householder reflectors, and each operates on only a small part of the matrix that
it multiplies: to be precise, a 2n x 3n submatrix. Since we wish to reduce (7) to (25),
it follows that exactly k& — 1 such transformations are needed.

Proof. (Lemma4.1) Let AD,z’+1 be the transformed version of Ap after i stages of

the structured factorization, and flpyl = Ap. Let AD,z’+1 be the submatrix which is

actually affected at stage ¢, by the matrix @; from (22), and let Q; be the orthogonal
matrix which is obtained by embedding Q; into a (k+ 1)n—dimen§ional identity matrix.
For:=1,...,k+ 1, we have from Lemma B.2 that Ap; and Ap ;41 are related by

AD,Z’+1 = Qi(AD,z’ + Bi),

where E; consists of the 2n x 3n “error” submatrix corresponding to the factorization

of AD,z’, padded out with zeros to dimension (k + 1)n. Hence

|Eillr < (8(2n) — 4n + 51)nu||Ap ;||r < (1204 51)nul|Ap 4|
Hence

|Ap,is1lle < [1+ (12n+51)nu]||Ap i|lp < [1+ (120 + 51)nu]’||Ap||F.

22 STEPHEN J. WRIGHT

The errors made in stages & and k + 1 are bounded in the same way, since the
submatrices affected at these stages are no larger than those affected at the earlier
stages. Under the assumption (12n 4+ 51)n(k + 1)u < 0.1, we therefore obtain

|4 i1l < [L+(1.06)(12n + 51)n(k + Lu]||Ap[|lr < (1.106)[|Ap|F,
fori=1,...,k+ 1. Hence
[|1E:]|lr < (1.106)(12n 4+ 51)nu||Ap||F.

The final (upper triangular) matrix is AD7k+2, which satisfies

AD,k+2 = Qk+1(AD,k+1 + Ert1)
Qri1Qr(Ap i + Ex) + Qri1 Frga

Qi1 QiAD + Qry1 . QLB+ Qry1 .. . QoEs+ ...+ Qe Er

= Q[Ap + Ep].
Here Q = Qk+1@k .. .Ql is orthogonal, and Fp satisfies the bound

k41
|Epllr < Z [|1Z:]|r = (1.106)(12n 4+ 51)n(k + 1)u||Ap||r.

i=1

Similarly, application of @ to the right-hand side fp results in a computed vector fD
which satisfies

fo = Qlfp + 8fp),
where
[|6fp]]2 < (1.106)(12n 4+ 51)n(k + L)ul|fpl|2

(since ||v]|p = [|v[]z2 when v is a vector.) Finally, back-substitution is used on the
system with coefficient matrix Ap 42 and right-hand side fp. The computed solution
satisfies

(44) (Ap g2+ Es)s = fp,
where, since AD7k+2 has at most 3n nonzeros per row,

3(1.06)nu||Ap kol r
3(1.06)nu[l + (1.106)(12n 4 51)n(k + 1)u]||Ap||r
3(1.06)(1.1106)nul|Ap||r.

1Es|lF

ININIA

Substituting in (44),

QAp + Epl+ Es|s = Qlfpo +46fp]
= (Ap + Ep+QTEs)s (fo+6fp).

PARALLEL ALGORITHMS FOR BVP 23

Defining
§Ap = Ep + QT Es,
we have
leApllr < [IEpllr + ||Es]lF
< [(1.106)(12n+ 51)n(k + 1) + 3(1.06)(1.1106)n]u||Ap||F
< (1.106)(12n+ b)n(k + 2)ul|Apl|F,
as required. [

(13]

(14]
15]
(16]
(17]
18]
(19]

(20]

REFERENCES

U. M. AsCHER aND P. S. Y. CHaN, On parallel methods for boundary value odes, Computing,
46 (1991), pp. 1-17.

U. M. AscHER AND R. M. M. MATTHEW, General framework, stability and error analysis for
numerical stiff boundary value problems, Numerische Mathematik, 54 (1988), pp. 355-372.

U. M. AscHER, R. M. M. MATTHELJ, AND R. D. RUsSELL, Numerical Solution of Boundary
Value Problems for Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, 1988.

Z. BOHTE, Bounds for rounding errors in the Gaussian elimination for band systems, Journal
of the Institute of Mathematics and its Applications, 16 (1975), pp. 133-142.

D. L. BRowN AND J. LORENZ, A high order method for stiff boundary value problems with
turning points, SIAM Journal on Scientific and Statistical Computing, 8 (1987), pp. 790—
805.

A. K. Cuing, C. B. MoLER, G. W. STEWART, AND J. H. WILKINSON, An estimate for the
condition number of a matriz, SIAM Journal on Numerical Analysis, 16 (1979), pp. 368—
375.

J. C. D1az, A. FAIRWEATHER, AND P. KEasT, FORTRAN packages for solving certain almost
block diagomal linear systems by modified alternate row and column elimination, ACM
Transactions on Mathematical Software, 9 (1983), pp. 358-375.

G. H. GorLuB anD C. F. VAN LoaN, Matriz Computations, The Johns Hopkins University
Press, Baltimore, MD, second ed., 1989.

H. B. KELLER, Accurate difference methods for two-point boundary wvalue problems, SIAM
Journal on Numerical Analysis, 11 (1974), pp. 305-320.

C. L. LawsoN aND R. J. HANSON, Solving Least Squares Problems, Prentice-Hall, Englewood
Cliffs, NJ, 1974.

M. LENTINI, Parallel solution of special large block tridiagonal systems: Tpbvp. Manuscript,
1989.

M. LeNTINI, M. R. OSBORNE, AND R. D. RUsSELL, The close relationships between methods
for solving two-point boundary value problems, SIAM Journal on Numerical Analysis, 22
(1985), pp. 280-309.

M. LENTINI AND V. PEREYRA, An adaptive finite difference solver for monlinear two-point
boundary value problems with mild boundary layers, SIAM Journal on Numerical Analysis,
14 (1977), pp. 91-111.

R. M. M. MATTHEL, The conditioning of linear boundary value problems, SIAM Journal on
Numerical Analysis, 19 (1982), pp. 963-978.

, Decoupling and stability of algorithms for boundary value problems, SIAM Review, 27
(1985), pp. 1-44.

M. R. OSBORNE, Aspects of the numerical solution of boundary value problems with separated
boundary conditions. Manuscript, 1978.

M. PAPRZYCKI AND I. GLADWELL, Solving almost block diagonal systems on parallel computers,
Parallel Computing, 17 (1991), pp. 133-153.

V. PEREYRA, lterated deferred corrections for nonlinear boundary value problems, Numerische
Mathematik, 8 (1968), pp. 111-125.

J. M. VARAH, Alternate row and column elimination for solving certain linear systems, SIAM
Journal on Numerical Analysis, 13 (1976), pp. 71-75.

J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965.

24 STEPHEN J. WRIGHT

[21] S. J. WRIGHT AND V. PEREYRA, Adaptation of a two-point boundary value problem solver to a
vector-multiprocessor environment, SIAM Journal on Scientific and Statistical Computing,
11 (1990), pp. 425-449.

