ADOL-C:!

A Package for the Automatic Differentiation
of Algorithms Written in C/C++

Version 1.5, December 1993

Andreas Griewank?
David Juedes®
Jean Utke?

Abstract

The C+4 package ADOL-C described here facilitates the evaluation of first and
higher derivatives of vector functions that are defined by computer programs written in
C or C++. The resulting derivative evaluation routines may be called from C/C++,
Fortran, or any other language that can be linked with C.

The numerical values of derivative vectors are obtained free of truncation errors at
a small multiple of the run time and randomly accessed memory of the given function
evaluation program. Derivative matrices are obtained by columns or rows. For solution
curves defined by ordinary differential equations, special routines are provided that
evaluate the Taylor coefficient vectors and their Jacobians with respect to the current
state vector. The derivative calculations involve a possibly substantial (but always
a priori predictable) amount of data that are accessed strictly sequentially and are
therefore automatically paged out to files on external mass storage devices.

Keywords: Automatic Differentiation, Chain Rule, Overloading, Taylor Coeffi-
cients, Gradients, Hessians, Reverse Propagation

Abbreviated title: Automatic differentiation by overloading in C++

1 Introduction: Differentiation of Algorithms

Most nonlinear computations require the evaluation of first and higher derivatives of vector
functions with m components in n real or complex variables. This requirement arises par-
ticularly in optimization, nonlinear equation solving, numerical studies of bifurcation, and
the solution of nonlinear differential or integral equations. Often these functions are defined
by sequential evaluation procedures involving many intermediate variables. By eliminating

!This work was supported in part by the Office of Scientific Computing, U.S. Department of Energy,
under Contract W-31-109-Eng-38, and in part by funding from DOE’s Office of Energy Research Laboratory
Technology Transfer.

?Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, and
Institut fur Wissenschaftliches Rechnen, Technical University Dresden, D-01062 Germany

*Department of Computer Science, lowa State University, Ames, IA 50010

*Institut fiir Wissenschaftliches Rechnen, Technical University Dresden, D-01062 Germany

the intermediate variables symbolically, it is theoretically always possible to express the m
dependent variables directly in terms of the n independent variables. Typically, however,
the attempt results in unwieldy algebraic formula, if it can be completed at all. Symbolic
differentiation of the resulting formulae will usually exacerbate this problem of ezpression
swell and often entails the repeated evaluation of common expressions.

An obvious way to avoid such redundant calculations is to apply an optimizing compiler
to the source code that can be generated from the symbolic representation of the derivatives
in question. Fxactly this approach was investigated by Bert Speelpenning, a student of
Bill Gear, during his Ph.D. research [18] at the University of Illinois from 1977 to 1980.
Eventually he realized that at least in the cases n = 1 and m = 1, the most efficient code
for the evaluation of derivatives can be obtained directly from that for the evaluation of the
underlying vector function. In other words, he advocated the differentiation of evaluation
algorithms rather than formulae. In his thesis he made the particularly striking observation
that the gradient of a scalar-valued function (i.e., m = 1) can always be obtained for no
more than five times the operations count of evaluating the function itself. This bound is
completely independent of n, the number of variables, and allows the row-wise computation
of Jacobians for at most 5m times the effort of evaluating the underlying vector function.

When m, the number of component functions, is larger than n, Jacobians can be ob-
tained more cheaply column by column through propagating gradients forward. This clas-
sical technique of automatic differentiation goes back at least to Wengert [20] and was later
popularized by Rall [16]. It was noted in [7] that in general neither the row-by-row nor the
column-by-column method is optimal for the calculation of Jacobians. The potentially more
efficient alternatives, however, require some combinatorial optimization and involve large
data structures that are not necessarily accessed sequentially [9]. Therefore, the package
ADOL-C described here was written primarily for the evaluation of derivative vectors (e.g.,
rows or columns of Jacobians). This approach also simplifies parameter passing between
subroutines and calls in different computer languages.

The reverse propagation of gradients employed by Speelpenning is closely related to the
adjoint sensitivity analysis for differential equations, which has been used at least since the
late sixties, especially in nuclear engineering [4],[5], weather forecasting [19], and neural
networks [21]. The discrete analog used here was apparently first discovered in the early
seventies by Ostrovskii et al. [15] and Linnainmaa [14] in the context of rounding error
estimates. Since then, there have been numerous rediscoveries and various software imple-
mentations. Speelpenning himself wrote a Fortran precompiler called JAKE, which was
upgraded at Argonne National Laboratory to JAKEF. Currently, there exist at least three
other precompilers for automatic differentiation, namely, GRESS/ADGEN [11],> PADRE?2
[13],° and ADIFOR [1]. 7

®Contact: Jim Horwedel, ORNL, P.O. Box X, Oak Ridge, TN 37831, e-mail: jqh%ornlstc.bitnet
SContact: K. Kubota, Keio Univ., 3-14-1 Hiyoshi, Yokohama 223, Japan, e-mail: kubota@ae.keio.ac.jp
"Contact: Ch. Bischof, ANL-MCS, Argonne IL 60439-4844, e-mail: bischof@mcs.anl.gov

Following the work of Kedem [12] with the Fortran preprocessor AUGMENT, Rall [17]
implemented in 1983 the forward propagation of gradients by overloading in PASCAL-SC.
In contrast to precompilation, overloading requires only minor modifications of the user’s
evaluation program and does not generate intermediate source code. Our package ADOL-C
utilizes overloading in C+4++, but the user has to know only C. The acronym stands for
Automatic Differentiation by OverLoading in C4++4. ADOL-C facilitates the simultane-
ous evaluation of arbitrarily high directional derivatives and the gradients of these Taylor
coeflicients with respect to all independent variables. Relative to the cost of evaluating the
underlying function, the cost for evaluating any such scalar-vector pair grows as the square
of the degree of the derivative but is still completely independent of the numbers m and n.

For the reverse propagation of derivatives, the whole execution trace of the original
evaluation program must be recorded, unless it is recalculated in pieces as advocated in [8].
In ADOL-C, this potentially very large data set is written first into a buffer array and later
into a file if the buffer is full or if the user wishes a permanent record of the execution trace.
In either case, we will refer to the recorded data as the tape. The user may create several
tapes in several named arrays or files. During subsequent derivative evaluations, tapes are
always accessed strictly sequentially, so that they can be paged in and out to disk without
significant runtime penalties. If written into a file, the tapes are self-contained and can be
used by other Fortran, C or C++ programs.

This paper is organized as follows. Section 2 explains the modifications required to
convert undifferentiated code to code that compiles with ADOL-C. For better efficiency
and programming convenience one may employ the vector and matrix classes described in
Section 3. Section 4 covers aspects of the tape of recorded data that ADOL-C uses to
evaluate arbitrarily high order derivatives. The discussion includes storage requirements
and the tailoring of certain tape characteristics to fit specific user needs. Section 5 offers
a more mathematical characterization of ADOL-C as well as descriptions of the calling
sequences of various derivative evaluation routines. Section 6 details the installation and
use of the ADOL-C package. It also provides a description of each of the C and C++
modules that the package comprises. Finally, Section 7 furnishes four example programs
that incorporate the ADOL-C package to evaluate first and higher-order derivatives. These
and other examples are distributed with the ADOL-C source; simply refer to them when
the more abstract and general descriptions of ADOL-C provided in this document do not
suffice.

2 Preparing a Section of C or C+4++ Code for Differentiation

ADOL-C was designed so that the user has to make only minimal changes to his undif-
ferentiated code. The main modifications concern variable declarations and input/output
operations.

2.1 Declaring Active Variables

The key ingredient of automatic differentiation by overloading is the concept of an active
variable. All variables that may at some time during the program execution be considered
differentiable quantities must be declared to be of an active type. ADOL-C uses one active
scalar type, called adouble, whose real part is of the standard type double. There are
corresponding types adoublev and adoublem of vectors and matrices, whose components
function like adoubles. Typically, one will declare the independent variables and all quanti-
ties that directly or indirectly depend on them as active. Other variables that do not depend
on the independent variables but enter, for example, as parameters, may remain one of the
passive types double, float, or int. There is no implicit type conversion from adouble to
any of these passive types; thus, failure to declare variables as active when they depend on
other active variables will result in a compile-time error message. In data flow terminology,
the set of active variable names must contain all its successors in the dependency graph.
All components of indexed arrays must have the same activity status.

The real component of an adouble x can be extracted as value(x). In particular,
such explicit conversions are needed for the standard output procedure printf. The output
stream operator << is overloaded such that first the real part of an adouble and then the
string “(a)” is added to the stream. Naturally, adoubles may be components of vectors,
matrices, and other arrays, as well as members of structures or classes. For regular arrays
it may be more efficient to use the vector and matrix classes discussed in Section 3.

The C++ class adouble, its member functions, and the overloaded versions of all
arithmetic operations, comparison operators, and ANSI C functions are contained in the
file adouble.c and its header adouble.h. The latter must be included for compilation of
all program files containing adoubles and corresponding operations.

2.2 Marking Active Sections

All calculations involving active variables that occur between the void function calls
trace_on(tag,keep) and trace_off(file)

are recorded on a sequential data set called tape. Pairs of these function calls can appear
anywhere in a C+4 program, but they may not overlap. The nonnegative integer argu-
ment tag identifies the particular tape for subsequent function or derivative evaluations.
Unless several tapes need to be kept, tag = 0 may be used throughout. The optional
integer arguments keep and file will be discussed in Section 4. We will refer to the se-
quence of statements executed between a particular call to trace_on and the following call
to trace_off as an active section of the code. The same active section may be entered
repeatedly, and one can successively generate several traces on distinct tapes by changing
the tag.

Active sections may contain nested or even recursive calls to functions provided by
the user. Naturally, their formal and actual parameters must have matching types. In
particular, the functions must be compiled with their active variables declared as adoubles
and with the header file adouble.h included. Variables of type adouble may be declared
outside an active section and need not go out of scope before the end of an active section.
It is not necessary—though desirable—that free-store adoubles allocated within an active
section be deleted before its completion. The values of all adoubles that exist at the
beginning and end of an active section are recorded by trace_on and trace_off, respectively.

2.3 Selecting Independent and Dependent Variables

One or more active variables that are read in or initialized to the values of constants or
passive variables must be distinguished as independent variables. Other active variables that
are similarly initialized may be considered as temporaries (e.g., a variable that accumulates
the partial sums of a scalar product after being initialized to zero). In order to distinguish
an active variable z as independent, ADOL-C requires an assignment of the form

X <= px // px of any passive numeric type

This special initialization ensures that value(x)=px, and it should precede any other as-
signment to x. However, x may be reassigned other values subsequently. Similarly, one or
more active variables y must be distinguished as dependent by an assignment of the form

y >= py // py of any passive type

which ensures that py=value(y) and should not be succeeded by any other assignment to
y. However, a dependent variable y may have been assigned other real values previously,
and it could even be an independent variable as well. The derivative values calculated after
the completion of an active section always represent derivatives of the final values of
the dependent variables with respect to the initial values of the independent
variables.

The order in which the independent and dependent variables are marked by the <=
and >»>= statements matters crucially for the subsequent derivative evaluations. However,
these variables do not have to be combined into continuous vectors. ADOL-C counts the
number of independent and dependent variable specifications within each active section and
records them in the header of the tape.

2.4 A Subprogram as an Active Section

As a generic example let us consider a C(++) function of the form shown in Figure 1.

void eval(int n, int m, // number of independents and dependents

double *x, // independent variable vector
double *y, // dependent variable vector
int *k, // integer parameters
double *z) // real parameters
{ // beginning of function body
double t = 0; // local variable declaration
for(int i=0; i < n; i++) // begin crunch
t += z[i]*x[i]; // continue crunch

............ // continue crunch
............ // continue crunch
y[m-1] = t/m; // end crunch

} // end of function

Figure 1: Generic Example of an Active Subprogram

If eval is to be called from within an active C(4++4) section with x and y as vectors of
adoubles and the other parameters passive, then one merely has to change the type decla-
rations of all variables that depend on x from double or float to adouble. Subsequently,
the subprogram must be compiled with the header file adouble.h included as described
in Section 4. Now let us consider the situation when eval is still to be called with integer
and real arguments, possibly from a program written in Fortran 77, which does not allow
overloading.

To automatically compute derivatives of the dependent variables y with respect to the
independent variables x, we can make the body of the function into an active section. For
example, we may modify the previous program segment as in Figure 2. The renaming and
doubling up of the original independent and dependent variable vectors by active counter-
parts may seem at first a bit clumsy. However, this transformation has the advantage that
the calling sequence and the “crunchy” part of eval remain completely unaltered. If the
temporary variable t had remained a double, the code would not compile, because of a
type conflict in the assignment following the declaration. Four more detailed example codes
are listed in Section 7.

2.5 Overloaded Operators and Functions

As in the subprogram discussed above, the actual computational statements of a C(++)
code need not be altered for the purposes of automatic differentiation. All arithmetic
operations, as well as the comparison and assignment operators, are overloaded if at least

void eval(int n,m,
double *px,
double *py,
int *k,

double *z)

short int tag = 0;

trace_on(tag);

adouble *x, *y;

x=new adouble[n];

y=new adouble[m];

for(int i=0; i < nj; i++)
x[i] <= pxil;

adouble t;

for(int i=0; i < nj; i++)
¢ = 2fi]*x[i;

y[m-1] = t/m;

for(int j=0; j<m;j++)
ylil >= pylil;

delete[] y;

delete[] x;

trace_off();

// number of independents and dependents
// independent passive variable vector
// dependent passive variable vector
// integer parameters

// parameter vector

// beginning of function body

// tape array and/or tape file specifier
// start tracing

// declare active variable pointers

// declare active independent variables
// declare active dependent variables

// distinguish independent variables
// local variable declaration

// begin crunch

// continue crunch

// continue crunch

// continue crunch

// end crunch as before

// select dependent variables

// destruct dependent active variables
// destruct independent active variables
// complete tape

// end of function

Figure 2: The ADOL-C version of the code listed in Fig. 1

one of their arguments is an active variable. An adouble x occurring in a comparison
operator is effectively replaced by its real value value(x). Most functions contained in
the ANSI C standard for the math library are overloaded for active arguments. The only
exceptions are the nondifferentiable functions fmod, and modf. Otherwise, legitimate
C code in active sections can remain completely unchanged, provided the direct output
of active variables is avoided. Whenever derivatives are undefined or discontinuous, the
derivatives values are assigned to be the limit of the derivative values at arguments to the
right of the exceptional point. For example, at x = 0 the first derivatives of the square root
function sqrt(x) and the absolute value function fabs(x) are set to +1.0/0.0 and +1.0,
respectively. The general power function pow(x,y) = x¥ is computed whenever it is defined
for the corresponding double arguments. If the basis is negative, however, the partial with
respect to an integral exponent is set to zero. Similarly, the partial of pow with respect to
both arguments is set to zero at the origin, where both arguments vanish. The derivatives of
the step functions floor, ceil, frexp, and ldexp are set to zero at all arguments x. Some C
implementations supply other special functions, in particular the error function erf(x). For
the latter, we have included an adouble version in adouble.c, which has been commented
out for systems on which the double valued version is not available. The increment and
decrement operators ++, —— (pre- and postfix) are available for adoubles and also the
active subscripts described in the appendix. Ambiguous statements like a+=a++; must be
avoided because the compiler may sequence the evaluation of the overloaded expression
differently form the original in terms of doubles.

As we have indicated above, all subroutines called with active arguments must be mod-
ified or suitably overloaded. The simplest procedure is to declare the local variables of the
function as active so that their internal calculations are also recorded on the tape. Unfor-
tunately, this approach is likely to be unnecessarily inefficient and inaccurate if the original
subroutine evaluates a special function that is defined as the solution of a particular math-
ematical problem. The most important examples are implicit functions, quadratures, and
solutions of ordinary differential equations. Often the numerical methods for evaluating
such special functions are elaborate, and their internal workings are not at all differentiable
in the data. Rather than differentiating through such an adaptive procedure, one can obtain
first and higher derivatives directly from the mathematical definition of the special function.
Currently this direct approach has been implemented only for user-supplied quadratures as
described in Subsection 6.2.

2.6 Step-by-Step Modification Procedure

To prepare a section of given C or C++ code for automatic differentiation as described
above, one applies the following step-by-step procedure.

1. Use the statements trace_on(tag) [or trace_on(tag,keep)] and trace_off()
[or trace_off(file)] to mark the beginning and the end of the active section.

2. Select the set of active variables, and change their type from double or float to
adouble (or the array types adoublev and adoublem discussed in the next section).

3. Select a sequence of independent variables, and initialize them with <= assignments
from passive variables (or vectors).

4. Select a sequence of dependent variables among the active variables, and pass their
final values to passive variable (or vectors thereof) by >= assignments.

5. Compile the codes after including the header file adouble.h.

Typically, the first compilation will detect several type conflicts — usually attempts to
convert from active to passive variables or to perform standard 1/O of active variables.
(Some C++4 compilers may also disallow certain gotos which are legal in ANSI C, but this
problem is unrelated to ADOL-C.) Since all standard C programs can be activated by a
mechanical application of the procedure above, the following section is of importance only
to advanced users.

3 Active and Passive Arrays and Structures

Some or all real fields of structures or members of classes may be redeclared as adoubles
so that the differentiation can proceed by nested overloading without the explicit unroling
of composite structures and operations. In this way, one may activate standard vector and
matrix classes for numerical calculations. However, the individual activation of real fields
or members may entail a significant overhead, which can be avoided by using the following
active classes, if the scalars in question are arranged in regular arrays.

3.1 Active and Passive Vector Classes

To reduce the overhead in dealing with individual scalar variables and their operations,
we have introduced a class of active vectors called adoublevs and a corresponding class
of passive vectors called doublevs. Vectors a and b of p active and passive components,
respectively, are declared by the statement

adoublev a(p) , doublev b(p) .

where p can be an integer variable. Like all local variables, vectors are destructed when
they go out of scope at the end of the block in which they were declared. Nevertheless,
since their length is computed only at run time, the vector classes can often be used in lieu
of dynamically allocated arrays, which can drastically increase the storage requirement of
ADOL-C as discussed below. Vector elements of the form a[i] or b[¢] can take the place of
any scalar variable of type adouble or double, respectively.

3.2 Overloaded Vector Operations

Provided their lengths are compatible, vectors can be added or subtracted, yielding a third
vector of the same length. Similarly, they can be multiplied by active or passive scalars,
whereas the product of two vectors is a scalar, which must be active if one of the factors is.
Moreover, the special operators <<= and >>= are also overloaded so that active vectors
can be marked as independent or dependent, respectively. As in the scalar versions, the
statement @ <<= b simultaneously initializes the active vector a with the values in the
passive vector b, and the statement a >>= b passes the values in the active vector a to
the passive vector b. In the example code above, one could therefore have replaced the first
loop in Fig. 2 by x <<= xp, the middle loop by t = z*x, and the last loop by y >>=
yp. The use of vector operations can reduce the length of the tape and the run time of the
code significantly. This advantage applies in particular for linear algebra operations, where
large amounts of unnecessary intermediates are kept track of in the scalar mode.

The following binary operations are defined between active or passive vectors:
+ ’ - ’ *

where * denotes the dot product. Its result is an adouble if at least one of the argument
vectors is active, and otherwise it is a doublev. The same rule applies to addition and
subtraction whose result is an adoublev or doublev. The assignments

= R — = R + = R <<= R >>=

may also be considered as binary operations between vectors. For the first three assignments
the left side must be active if the right side is. For the last two, the left side must be active
and the right side passive. The binary operations

7/7*:7/:

are also defined when the left argument is a vector and the right argument is a scalar. If the
scalar is an adouble, the vector must be a adoublev. Note that here * does not represent
the dot product. Mathematically meaningless operations between vectors and scalars will
produce a compiler error message or in some cases (e.g., scalar added to a vector) the
run-time error message Error in vector-oper.! None of the operations listed above are
currently defined for the active and passive matrix types described below.

*

3.3 Active and Passive Matrix Classes

The matrix types adoublem and doublem are used only to facilitate the automatic and
contiguous allocation (and deallocation) of arrays whose elements are adoublevs or dou-
blevs, respectively. The statements

10

adoublem A(q,p) , doublem B(q,p)

allocate g X p matrices of adoubles and doubles, respectively. The ¢ subscripted quantities
Ali] and B[i] represent adoublevs and doublevs of size p, respectively. Fortran-like access
by columns is not possible. As an example, consider the multiplication of a ¢ X p matrix A
by a vector b as shown in Figure 3. If one wishes to multiply A by a p X s matrix B instead
of the vector b, one might use the code in Figure 4, where we have omitted initializations
and independent/dependent selections. Even if no vector operations are performed, the use
of the active vector and matrix types in declarations is much preferable to the declaration of
adouble arrays, which should be avoided, especially in dynamic storage mode. The reasons
for this preference are explained in the following subsection, which can be skipped unless
the reader wishes to obtain some basic understanding of how the package works internally
and to tailor the package to his needs.

doublev bp(p);
doublem A(q,p);
for(int i=0; 1 < p; i++)
{
cin >> bpli; // Read in values
for(int j=0; j < q; j++)
cin >> AJi][j];
}
adoublev b(p);
b <<= bp; // Mark b as independent vector
adoublev ¢(q);
for(int i=0;1 < q; i++)

c[i] = A[i]*b; // dot product
doublev ep(q);
c >>= cp; // Mark ¢ as dependent vector
for(int i=0; 1 < p; i++)

cout << cpli]; // Output results

Figure 3: Matrix-Vector Multiplication using ADOL-C Arrays

The classes doublev and doublem have been defined with implicit conversions to the
types double* and double**, respectively. Consequently, these vectors and matrices can
be used as actual parameters in procedures, whose formal parameters are standard pointers
to doubles. Moreover, the vector-vector and vector-scalar operations listed above have also
been overloaded for cases where at most one of the vector arguments is simply an adouble*
or a double*. Naturally, the lack of size information precludes any format compatibility

11

doublem A(q,p);
adoublem B(p,s);
adoublem C(q,s);
initializations

for(int i=0; i < q; i++4)

{

Clij =0 ; // Set to zero
for(int j=0; j < p; j++)
C[i] += Af][]*B[]; // SAXPY

Figure 4: Matrix-Matrix Multiplication Using ADOL-C Arrays

checks in these cases.

3.4 Warnings and Suggestions for Improved Efficiency

Since the type adouble has a nontrivial constructor, the mere declaration of large adouble
arrays may take up considerable run time. The user should be warned against the usual
Fortran practice of declaring fixed-size arrays that can accommodate the largest possible
case of an evaluation program with variable dimensions. If such programs are converted to
or written in C, the overloading in combination with ADOL-C will lead to very large run-
time increases for comparatively small values of the problem dimension, because the actual
computation is completely dominated by the construction of the large adouble arrays. The
user is advised to either use the vector and matrix types in automatic storage mode or create
dynamic arrays of adoubles by using the C+4 operator new and to destroy them using
delete. For storage efficiency it is desirable that dynamic objects are created and destroyed
in a last-in-first-out (LIFO) fashion. DO NOT use malloc() and related C memory-
allocating functions when declaring adoubles (see following paragraph).

Whenever an adouble is declared, the constructor for the type adouble assigns it a
nominal address, which we will refer to as its location. The location is of the type locint
defined in the header file usrparms.h. Active vectors occupy a range of contiguous loca-
tions. As long as the program execution never involves more than 64,535 active variables,
the type locint may be defined as unsigned short int. Otherwise, the range may be
extended by defining locint as (unsigned) int or (unsigned) long, which may nearly
double the overall mass storage requirement. Sometimes one can avoid exceeding the range
of unsigned shorts by using more local variables and deleting adoubles or adoublevs
created by the new operator in a last-in-first-out fashion. When memory for adoubles is
requested through a call to malloc() or other related C memory-allocating functions, the

12

storage for these adoubles is allocated; however, the C++ adouble constructor is never
called. The newly defined adoubles are never assigned a location and are not counted in
the stack of live variables. Thus, any results depending upon these pseudo-adoubles will
be incorrect. The same point applies, of course, for active vectors. When an adouble or
adoublev goes out of scope or is explicitly deleted, the destructor notices that its loca-
tion(s) may be freed for subsequent (nominal) reallocation. In general, this is not done
immediately but is delayed until the locations to be deallocated form a contiguous tail of
all locations currently being used. At this time, a multiple death notice is recorded on the
tape.

As a consequence of this allocation scheme, the currently alive adouble locations always
form a contiguous range of integers that grows and shrinks like a stack. Newly declared
adoubles are placed on the top so that vectors of adoubles obtain a contiguous range of
locations. While the C++4 compiler can be expected to construct and destruct automatic
variables in a last-in-first-out fashion, the user may upset this desirable pattern by deleting
free-store adoubles too early or too late. Then the adouble stack may grow unnecessarily,
but the numerical results will still be correct, unless an exception occurs because the range
of locint is exceeded. In general, free-store adoubles and adoublevs should be deleted in
a last-in-first-out fashion toward the end of the program block in which they were created.
When this pattern is maintained, the maximum number of adoubles alive (and, as a
consequence, the core storage requirement of the derivative evaluation routines) is bounded
by a small multiple of the core memory used in the relevant section of the original program.
Failure to delete dynamically allocated adoubles may lead to longer and longer tapes if
the same active section is called repeatedly.

To avoid the storage and manipulation of structurally trivial derivative values one should
pay careful attention to the naming of variables. Ideally, the intermediate values generated
during the evaluation of the vector function in question should be assigned to program
variables that are consistently either active or passive, in that all their values either are
or are not dependent on the independent variables in a nontrivial way. For example, this
rule is violated if a temporary variable is successively used to accumulate inner products
involving first only passive and later active arrays. Then the first inner product and all
its successors in the data dependency graph become artificially active and the derivative
evaluation routines described in Section 5 will waste time allocating and propagating trivial
or useless derivatives. Sometimes even values that do depend on the independent variables
may be of only transitory importance and not affect the dependent variables. For example,
this is true for multipliers that are used to scale linear equations, but whose value does not
influence the dependent variables in a mathematical sense. Such dead-end variables can be
deactivated by the use of the value function, which converts adoubles to doubles. The
deleterious effects of unnecessary activity are partly alleviated by run-time activity flags in
the derivative routine hov_reverse mentioned in Section 6.

13

4 Numbering the Tapes and Controlling the Buffer

The trace generated by the execution of an active section is stored by ADOL-C as either a
triplet of internal arrays or as a triplet of files. We refer to these triplets as the tape array or
the tape file. Either triplet may subsequently be used to evaluate the underlying function
and its derivatives at the original point or at alternative arguments. Note that if the active
section involves user-defined quadratures or branches conditioned on adouble comparisons,
the function must be re-executed and retaped at each new argument. Otherwise, direct
evaluation from the tape by the routine function (Section 5.5) may be faster, but this
is not certain. (The requirement that functions with branches conditioned on adoubles
be re-evaluated at each new argument can be circumvented by using a recent extension to
ADOL-C. This extension to ADOL-C allows certain types of branches to be recorded on
the tape through the use of conditional assignments and active integers. This extension is

described in Appendix A.)

A tape array is used as a triplet of buffers for a tape file if the length of any of the buffers
exceeds the array length of bufsize. The parameter bufsize is defined in the header file
usrparms.h and may be adjusted by the user. Several tape files may be generated and
kept simultaneously. For simple usage, trace_on may be called requiring only the tape tag
as an argument, and trace_off may be called without an argument.

The optional integer argument keep of tape_on determines whether the numerical
values of all active variables are recorded in an unnamed temporary file when they are
overwritten or go out of scope. This option takes effect if keep= 1 and prepares the
scene for an immediately following gradient evaluation by a call to the routine reverse (see
Sections 5.1 and 5.4). Alternatively, gradients may be evaluated by a call to gradient, which
includes a preparatory forward sweep for the creation of the temporary file. If omitted, the
argument keep defaults internally to 0, so that no temporary file is generated.

By setting the optional integer argument file of trace_off to 1, the user may force a
numbered tape file to be written even if the tape array (buffer) does not overflow. If the
argument file is omitted, it is internally set to the default value zero, so that the tape array
is written onto a tape only if the length of any of the buffers exceeds bufsize elements.

After the execution of an active section, if a tape file was generated (i.e., if the length
some buffer exceeded bufsize elements or if the argument file of trace_off was set to 1),
the files will be saved in the current working directory under the names FNAME.<tag>,
FNAME1l.<tag>, and FNAME2.<tag>, where tag is the mandatory argument to
trace_on and FNAME, FNAME1, and FNAME2 are the tape file names found in us-
rparms.h. Later, the problem-independent routines forward, reverse, function, gra-
dient, jacobian, vec_jac, jac_vec, hessian, hess vec, lagra_hess vec, and forode
accept as argument a tape’s tag to determine the tape on which their respective compu-
tational task is to be performed. By calling trace_on with different tape tags, one can
create several tapes for various function evaluations and subsequently perform function and

14

derivative evaluations on one or more of them.

For example, suppose one wishes to calculate for two smooth functions fi(z) and fa(z)

flz) = max{fi(z), fo(x)} , Vf(z) ,

and possibly higher derivatives where the two functions do not tie. Provided f; and f; are
evaluated in two separate active sections, one can generate two different tapes by calling
trace_on with tag = 1 and tag = 2 at the beginning of the respective active sections.
Subsequently, one can decide whether f(2) = fi(z)or f(z) = fa(z) at the current argument
and then evaluate the gradient V f(z) by calling gradient with the appropriate argument
value tag = 1 or tag = 2.

4.1 Examining the Tape and Predicting Storage Requirements

At any point in the program, one may call the routine
void tapestats(unsigned short tag, int* counts)

with counts an array of at least eleven integers. The first argument tag specifies the
particular tape of interest. The components of counts represent

counts[0] the number of independents, i.e., calls to <=

counts[1] the number of dependents, i.e., calls to >=

counts[2] the maximal number of live active variables

counts[3] the number of deaths and overwrites

counts[4] the buffer size (a multiple of eight)

counts[5] the total number of operations recorded

counts[6-10] other internal information about the tape

The values maxlive = counts[2] and deaths = counts[3] determine the temporary
storage requirements during calls to the workhorses forward and reverse. For a certain
degree deg > 0, the scalar verison of the routine forward involves (apart from the tape
buffers) an array of (deg+1)*maxlive doubles in core and, in addition, a sequential data
set of deaths*keep revreals if called with the option keep>0. Here the type revreal
is defined as double or float in the header file usrparms.h. The latter choice halves
the storage requirement for the sequential data set, which stays in core if its length is less
than bufsize bytes and is otherwise written out to a temporary file. The drawback of the

15

economical revreal=float choice is that subsequent calls to reverse yields gradients and
other adjoint vectors only in single-precision accuracy. This may be acceptable if the adjoint
vectors represent rows of a Jacobian that is used for the calculation of Newton steps. In
its scalar version, the routine reverse involves the same number of doubles and twice as
many revreals as forward. The storage requirements of the vector versions of forward
and reverse are equal to that of the scalar versions multiplied by the vector lenght.

4.2 Customizing ADOL-C

Based on the information provided by tapestats, the user may alter the following types
and constant dimensions set in usrparms.h to suit his problem and environment.

bufsize (default: 16384) This integer determines the length of internal buffers. If the
buffers are large enough to accommodate all required data, any disk access is avoided
unless trace_off is called with a positive argument. This desirable situation can
be achieved for many problem functions with an execution trace of moderate size.
Primarily bufsize occurs as an argument to malloc, so that setting it unnecessarily
large may have no ill effects, unless the operating system prohibits or penalizes large
array allocations.

locint (default: unsigned short) The range of the integer type locint determines how many
adoubles can be simultaneously alive. In extreme cases when there are more than
65,535 adoubles alive at any one time, the locint value must be changed to long
int.

revreal (default: double) The choice of this floating-point type trades accuracy with stor-
age during reverse sweeps. While functions and their derivatives are always evaluated
in double precision during forward sweeps, gradients and other adjoint vectors are ob-
tained with the precision determined by the type revreal. The more accurate choice
revreal = double virtually doubles the storage requirement during reverse sweeps.

npr (default: 0) If this integer is positive, ADOL-C prints out some basic messages about
its progress.

store (default: dontusethisuglymessplease) This is the name of another internal array,
which may not be reused.

FNAME (default: “_adol-op_tape.”) This is the physical name of the file that holds the
operations tape when the internal buffer is exceeded. An integer tag is appended to
the name to make it unique.

FNAMEL1 (default: “_adol-in_tape.”) This is the physical name of the file that holds the
integer tape when the internal buffer is exceeded. An integer tag is appended to the
name to make it unique.

16

FNAME2 (default: “_adol-rl_tape.”) This is the physical name of the file that holds the
real-valued tape when the internal buffer is exceeded. An integer tag is appended to
the name to make it unique.

The only other protected names are those of the external functions listed in the header
files adutils.h, adutilsc.h, taputill.h, taputil2.h, taputil3.h, and tayutils.h as well
as the pair of functions take_stock and keep_stock declared in adouble.h.

5 Evaluating Derivatives from a Tape

After the execution of an active section, the corresponding tape contains a detailed record
of the computational process by which the final values y of the dependent variables were
obtained from the values z of the independent variables.

5.1 General Mathematical Description

Provided no arithmetic exceptions occurred and all special functions were evaluated in the
interior of their domains, the functional relation between the input variables z and the
output variables y, which we will denote by y = F(z), is in fact analytic. In other words,
we can compute arbitrarily high derivatives of the vector function F : R"™ — R™ defined by
the active section. We find it most convenient to describe and compute derivatives in terms
of univariate Taylor expansions, which are truncated after the highest derivative degree d
that is desired by the user. Let

x(t) = Zd:xjﬁ : R—R" (1)

denote any vector polynomial in the scalar variable ¢ € IR. In other words z(t) decribes a
path in IR™ parametrized by t. The Taylor coefficient vectors

5 = %2

are simply the scaled derivatives of z(t) at the parameter origin ¢ = 0. The first two vectors
1,29 € R™ can be visualized as tangent and curvature at the base point zg, respectively.
Provided that ' is d times continuously differentiable it follows from the chain rule that
the image path

t=0

y(t) = F(z(t)) : R~—R™

is also smooth and has at least d Taylor coefficient vectors y; € R™ at ¢ = 0 so that

d
y(t) = Z GOty (2)

17

Also as a consequence of the chain rule one can observe that each y; is uniquely and smoothly
determined by the z; with 7 < j, i.e., by the coefficient vectors z; of the same or lower order
as y;. In particular we have

Yo = F(%) s 1= F’(%)%

and
y2 = F'(wo) wg + $F"(20) 21 21

In writing down the last term we have already departed from the usual matrix-vector
notation. It is well known that the number of terms that occur in these more or less
'symbolic” expressions for the y; in terms of the first j derivative tensors of /' and the
input’ coeflicients x; with ¢ < j grows very rapidly with j. Fortunately, this exponential
growth does not occur in automatic differentiation, where the many terms are somehow
implicitly combined so that storage and operations count grow only quadratically in the
bound d on j.

Provided F is analytic, this property is inherited by the functions
y]:y]($0,$1,,$])€Rm 5
and their derivatives satisfy the identity

Ayi _ 0yj~i _ , o
9e; = Org Aj_i(xo, 1,00, 2—4) (3)

which has been established in [6]. The m x n matrices A,k = 0,...,d are in fact the Taylor
coefficients of the Jacobian path F’(x(t)), a fact that is of interest primarily in the context
of ordinary differential equations and differential algebraic equations.

Given the tape of an active section and the coefficients z;, the resulting y; and their
derivatives A; can be evaluated by appropriate calls to the ADOL-C procedures forward
and reverse. The co-called scalar version of forward propagates just one truncated Taylor
series from the (2;);<q to the (y;);<4. The vector version of forward propagates families
of p > 1 such truncated Taylor series in order to reduce the relative cost of the overhead
incurred in the tape interpretation. There are also specialized codes for the cases d = 0 and
d = 1, where some unnecessary dereferencing can be avoided. Details of the appropriate
calling sequences are given in Subsection 5.4.

Given a weighting vector u, the ADOL-C procedure reverse computes the collection of
row vectors

dy; n
z; = UTa—xi) =ulA; €R (4)

for j =0,1,...,d. If j = 0 and u is the i-th Cartesian basis vector in R™, then (4) yields
the i-th row of the Jacobian F’'(z). To produce the entire Jacobian in this mode, one may
make m calls to reverse setting u to the i-th Cartesian basis vector for ¢ = 0,1,...,m.

18

An alternative to this method is provided by the vector version of reverse, which yields
a collection of matrices of the form
Jy;
Z; = UL ¢ RP*" 5
J 8$0 9 ()
where U € RP*™ represents a weighting matriz. When U = I,, with p = m, one call to

reverse yields the set of full Jacobians dy;/0x¢. This choice requires more storage, but it
significantly reduces the relative cost of the tape interpretation when the degree d is small.

5.2 Derivatives for Optimization Calculations

When d = 0 in the vector mode, we have the undifferentiated relation yo = F(zg), and
20 = ul F'(z0) (6)

yields the Jacobian of F' multiplied from the left by v € R™. In nonlinear least squares
calculations, one may use u! = F(wo)T so that zg € R™ is simply the gradient of the
sum of squares. For the iterative computation of Newton-like steps, one may wish to
calculate u® F'(z) for a sequence of m vectors u. Thus, reverse with d = 0 can be used to
premultiply the Jacobian by one (or more) row vector u? from the left. Similarly, one can
use forward with d = 1 to calculate the matrix-vector product

= F’(wo) T T, (7)

where x1 is an arbitrary n vector. In contrast to reverse, forward does not currently have
the capability to multiply the Jacobian simultaneously by several column vectors.

For a scalar function F' (i.e., m = 1), one finds that with u! = 1 € R, the adjoint
zg = F'(x¢) is the gradient of I, and the adjoint

. 8@/1 . 8F’($0)$1

2 = Jeg = e - [V2F(20)x1]F (8)

represents the product of the Hessian VZF(x¢) with an arbitrary vector 1. More generally,
let us consider the case where F7(z) = [f(x), ¢! ()] consists of a scalar objective function
f(z) and an m — 1 vector ¢(z) of constraint functions. Here one may choose u’ as a
vector of Lagrange multiplier estimates such that approximately uTF’(x) = 0 with the
first component normalized to 1. Then zy € R” represents the gradient of the Lagrangian

function uTF(w), and z; € R"™ represents its Hessian multiplied by the vector .

5.3 Derivatives for Differential Equations

When F is the right-hand side of an (autonomous) ordinary differential equation
(1) = Fla(1)),

19

we must have m = n. Along any solution path z(t) its Taylor coefficients z; at some time,
say t = 0, must satisfy the relation (1) with the y; the Taylor coefficients of its derivative
y(t) = (1), namely,

Titl = 11?3/2
Using this relation, one can generate the coeflicients z; recursively from the current point

xg by calling forward with increasing degree ¢ = 0,1,...,d — 1. This task is achieved by
the driver routine forode.

For the numerical solutions of ordinary differential equations, one also may wish to

calculate the Jacobians
dzji

B]‘ = € Rnxn, (9)

d$0

which exist provided F' is sufficiently smooth. These matrices can be obtained from the
partial derivatives dy;/0dxo obtained from reverse by an appropriate version of the chain
rule. This task is performed by the utility accode, which involves %d(d — 1) matrix-matrix
products. Through an optional argument of reverse one can find out which entries of
the Jacobian F'(z(t)) are zero or constant with respect to ¢, and this sparsity information
can be exploited by accode and other utilities. In particular, there need be no loss in

computational efficiency if a time-dependent ODE is rewritten in an autonomous form.

5.4 Forward and Reverse Calls

The following calling sequences utilize the overloading capabilities of C+4 and can there-
fore not be called directly from C or Fortran. However, the ADOL-C source (see the file
driversc.c) contains C and Fortran-callable versions of forward and reverse, and the opti-
mization drivers described in the following section are all C functions with Fortran-callable
companions. Given any correct tape, one may call from within the generating program, or
subsequently during another run, the following procedure:

void forward(tag,m,n,d,keep,X,Y)

short int tag; // tape identification

int m; // number of dependent variables
int n; // number of independent variables
int d; // highest derivative degree

int keep; // flag for reverse sweep

double X[n][d+1]; // independent-variable values
double Y[m][d+1]; // result coefficients as in (2)

The rows of the matrix X must correspond to the independent variables in the order of
their initialization by the <= operator. The columns of X = {z;},—0. 4 represent Taylor

20

coefficient vectors as in Equation (2). The rows of the matrix Y must correspond to the
dependent variables in the order of their selection by the = operator. Thus the first
column of Y contains the function value F(z) itself, the next column represents the first
Taylor coefficient vector of F', and the last column the d-th Taylor coefficient vector. The
integer flag keep plays a similar role as in the call to trace_on; it determines how many
Taylor coefficients of all intermediate quantities forward writes into a buffered temporary
file in preparation for a subsequent reverse sweep. If keep is omitted, the variable defaults
internally to 0.

The given tag value is used by forward to determine the name of the file on which
the tape was written. If the tape file does not exist, forward assumes that the relevant
tape is still in core and reads from the buffers. Provided the original code involves neither
user-defined quadratures nor conditional branches, forward can be used to evaluate the
vector-function F at arguments z other than the point a. However, if these preconditions
are not met, forward and subsequently reverse may appear to function properly, but the
numerical values will be incorrect.

After the execution of an active section with keep = 1 or a call to forward with keep
< d+41, one may call the function reverse with d=keep-1 and the same tape identifier
tag. When u is a vector and z an n X (d 4+ 1) matrix as in (4), reverse is executed in the
scalar mode by the following calling sequence:

void reverse(tag,m,n,d,u,Z)

short int tag; // tape identification

int m; // number of dependent variables
int n; // number of independent variables
int d; // highest-derivative degree
double u[m]; /] weighting vector

double Z[n][d+1]; // result adjoints as in (4)

When U is a matrix as in (5), reverse is executed in the vector mode by the following
calling sequence:

void reverse(tag,m,n,d,p,U,Z,nz)

short int tag; // tape identification

int m; // number of dependent variables
int n; // number of independent variables
int d; // highest derivative degree

int p; // number of weight vectors
double Ul[p][m]; // domain weight vector

double Z[p][n][d+1]; // result adjoints as in (5)

short nz[p][n]; // nonzero pattern of Z

21

The last argument can be omitted. Otherwise each short nz[i][j] has a value of 0, 1, 2, 3,
or 4 which characterizes the (1, j)-th entry of the weighted Jacobian Z as a zero, constant,
polynomial, rational, or transcendental function of the independents, respectively. When
the arguments p and U are omitted, they default to m and the identity matrix of order m,
respectively.

In both scalar and vector mode, the degree d must agree with keep-1 for the most
recent call to forward, or it must be equal to zero if reverse directly follows the taping of
an active section. Otherwise, reverse will return control with a suitable error message. In
order to avoid possible confusion, the first four arguments must always be present in the
calling sequence. However, if m or d attain their trivial values 1 and 0, respectively, then
corresponding dimensions of the arrays X, Y, u, U, or Z can be omitted, thus eliminating
one level of indirection. For example, we may call reverse(tag,1,n,0,1.0,g) after double
g[n] or doublev g(n) to calculate a gradient of a scalar-valued function.

Sometimes it may be useful to perform the forward sweep for families of Taylor series
with the same leading term. This vector version of forward can be called in the form

void forward(tag,m,n,d,p,x,X,y,Y)

short int tag; // tape identification

int m; // number of dependent variables

int n; // number of independent variables

int d; // highest derivative degree

int p; // number of Taylor series

double x[n]; //common leading terms

double X[n][p][d]; //Taylor coefficients of independent variables
double y[m]; //values of dependent variables

double Y[m][p][d]; //Taylor coefficients of dependent variables

where X and Y hold the Taylor coefficients of first and higher degree and x, y the common
Taylor coefficients of degree 0. There is no option to keep the values of active variables that
are going out of scope or that are overwritten. Therefore this function cannot prepare a
subsequent reverse sweep.

Since the calculation of Jacobians is probably the most important automatic differenti-
ation task we have provide a specialization of vector forward to the case where d = 1. This
version can be called in the form

22

void forward(tag,m,n,p,x,X,y,Y)

short int tag; // tape identification

int m; // number of dependent variables

int n; // number of independent variables

int p; // number of partial derivatives

double x[n]; //common leading terms

double X[n][p]; //Seed derivatives of independent variables
double y[m]; //values of dependent variables

double Y[m][p]; //First derivatives of dependent variables

When this routine is called with p = n and X the identity matrix the resulting Y is simply
the Jacobian F’(z). In general, one obtaines the m x p matrix Y = F'(2) X for the chosen
initialization of X. In a work station environment a value of p somewhere between 10 and
50 appears to be fairly optimal. For smaller p the interpretive overhead is not appropriately
amortized and for larger p the p-fold increase in storage causes too many page faults.
Therefore, large Jacobians that cannot be compressed via column coloring (as was done for
example in [2]) should be strip-minedin that the above first-order-vector version of forward
is called repeatedly with the successive n X p matrices X forming a partition of the identity
matrix of order n.

5.5 Drivers for Optimization and Nonlinear Equations

For convenience one may use instead of forward and reverse the following C driver rou-
tines:

void function(tag,m,n,x,y)

short int tag; // tape identification

int m; // number of dependent variables
int n; // number of independent variables
double x[n]; // independent vector zq as in (1)
double y[m]; // result yo as in (2)

void gradient(tag,n,x,g)

short int tag; // tape identification

int n; // number of independent variables
double x[n]; // independent vector zq as in (1)
double g[n]; // result zg as in (6) for m =1

void vec_jac(tag,m,n,repeat,x,u,z)

23

short int tag;
int m;

int n;

int repeat;
double x[n];
double u[m];

double z[n];

void jacobian(tag,m,n,x,J)
short int tag;

int m;

int n;

double x[n];

double J[m][n];

void jac_vec(tag,m,n,x,v,z)
short int tag;

int m;

int n;

double x[n];

double v[n];

double z[m];

void hess_vec(tag,n,x,v,z)
short int tag;

int n;

double x[n];

double v[n];

double z[n];

void hessian(tag,n,x,H)
short int tag;

int n;

double x[n];

double H[n][n];

24

// tape identification

// number of dependent variables
// number of independent variables
// has vec_jac been called here ?
// independent vector zq as in (1)
// range weight vector

// result zy as in (6)

// tape identification

// number of dependent variables
// number of independent variables
// independent vector zq as in (1)
// output Jacobian F'(2)

// tape identification

// number of dependent variables
// number of independent variables
// independent vector zq as in (1)
// tangent vector

// result y; as in (7)

// tape identification

// number of independent variables
// independent vector zq as in (1)
// tangent vector x

// result z; as in (8)

// tape identification

// number of independent variables
// independent vector zq as in (1)
// Hessian matrix (lower half)

void lagra_hess_vec(tag,m,n,x,v,u,h)

short int tag; // tape identification

int m; // number of dependent variables
int n; // number of independent variables
double x[n]; // independent vector zq as in (1)
double v[n]; // tangent vector x

double u[m]; // range weight vector

double h[n]; // result z1 as in (4)

These procedures are prototyped in adutilsc.h for compilation in a C program. This
header file is included as extern “C” within the corresponding C++ header file adutils.h.
All drivers have companion Fortran functions which are obtained by adding a trailing un-
derscore to the name and replacing all short and integer arguments with integer pointers.
For example, the Fortan version of gradient is declared in adutilsc.h as

int gradient_(int* tag, int* n, double* x, double* g)

and defined in driversc.c.

The scalar-mode drivers gradient and hess_vec create a temporary file by an appropri-
ate call to forward with keep=1 and then call reverse with the corresponding argument.
The routine vec_jac functions in the same way, except that the internal call to forward is
omitted if a nonzero value of the parameter repeat indicates that forward has already been
called at the same argument. When m=1 and the original evaluation code contains neither
quadratures nor branches, function, gradient, and hessian can be used to evaluate the
scalar function and its derivatives at any argument in its domain.

5.6 Drivers for ODEs

Given the basis point x¢, we can obtain the matrix X=(2z;);<4 of the Taylor coefficient
defined by an autonomous right-hand side recorded on the tape by the following call:

void forode(tag,n,tau,dol,deg,X)

short int tag; // tape identification

int n; // number of state variables
double tau; // scaling parameter

int dol; // degree on previous call
int deg; // degree on current call
double X[n][deg+1]; // Taylor coefficient vectors

25

If dol is positive, it is assumed that forode has been called before at the same point so
that all Taylor coeflicient vectors up to the dol-th are already correct. Subsequently one
may call

hov_reverse(tag,n,n,deg-1,n,I,Z,nz)
to compute the family of square matrices Z[n][n][deg] defined in equation (5) of subsection
5.1. Here double** T must be the identity matrix of order n. To compute the total

derivatives B=(B;)o<j<q defined in (9), one may finally call the following:

void accode(n,tau,deg,Z,B,nz)

int n; // number of state variables
double tau; // scaling parameter

int deg; // degree on current call
double Z[n][n][deg]; // partials of coefficient vectors
double B[n][n][deg]; // results as defined in (9)
short nz[n][n]; // optional sparsity pattern

Naturally, nz can be used by accode only if it has been set in the call to reverse above.
The nonpositive entries of nz are changed by accode so that upon return

Bl = 0 if k< —nali]lj].

In other words, the matrices By=B][][][k] have a sparsity pattern that fills in as & grows.

6 Installing and Using ADOL-C

The ADOL-C package consists of the following sixteen modules and eleven header files.
Only two header files are needed for simple applications of ADOL-C and three more for
more advanced uses. The remaining sources are compiled into the library libad.a. Thirteen
of the sixteen modules can be compiled with either C+4 or ANSI C, and only the first four
in the following list are written in C++.

adouble.c avector.c drivers.c utils.c
taputill.c taputil2.c taputil3.c tayutil.c
hos_forward.c fov_forward.c hov_forward.c fos_reverse.c
hos_reverse.c fov_reverse.c hov_reverse.c driversc.c

adouble.h avector.h adutils.h adutilsc.h usrparms.h

dvlparms.h taputill.h taputil2.h taputil3.h oplate.h tayutil.h

26

The sixteen modules contain the following functions. The module adouble.c controls
the nominal allocation and elementary operations for variables of the class adouble as
defined in adouble.h. The module avector.c contains the routines for the elementary
operations for the classes doublev and adoublev as defined in avector.h. The module
tayutil.c controls the storage and retrieval of Taylor series coefficients during forward
and reverse sweeps, respectively. The modules taputill.c, taputil2.c, and taputil3.c
contain all the functions and variables needed for the taping of arithmetic operations and
function evaluations in an active section. The modules hos_forward.c, fov_forward.c,
hov_forward.c, fos_reverse.c, fov_reverse.c, hos_reverse.c, and hov_reverse.c consist
of the core procedures for evaluating derivatives from a given tape. They are called from
various driver routines contained in the files drivers.c and driversc.c; these modules are
natural places for additional user-defined drivers and utilities. The module utils.c contains
the routines trace_on and trace_off.

The user may modify the header file usrparms.h in order to tailor the package to
one’s needs in the particular system environment as discussed in Section 4.2. To generate
the library libad.a one should use one of the executables <operating_system>install (e.g.
aixinstall) according to the given operating system. They call make with the appropriate
makefiles; the source contains makefiles for IBM RS/6000 and various other environments.
Notice that the only files that need to be compiled with a C4++4 compiler are adouble.c,
avector.c, drivers.c, and utils.c. The user has to ensure that the suitable compilers and
their corresponding libraries are in the path.

6.1 Compiling and Linking C++ Programs with Active Sections

To compile a C++4 program that involves variables of type adouble or adoublev, one must
add the directive #include “adouble.h” at the beginning of the program file. Programs
that call on the various derivative evaluation routines must include the header adutils.h.
For linking the resulting object codes, the options pointing to the header files and the library
libad.a must be used.

6.2 Adding Quadratures as Special Functions

Let us suppose an integral

is evaluated numerically by a user-supplied function
double integral(double& x)

Similarly, let us suppose that the integrand itself is evaluated by a user-supplied block of
C code integrand, which computes a variable with the fixed name val from a variable with

27

the fixed name arg. In many cases of interest, integrand will simply be of the form
{ val = expression(arg) }

In general, the final assignment to val may be preceded by several intermediate calculations,
possibly involving local automatic variables of type adouble, but no external or static
variables of that type. However, integrand may involve local or global variables of type
double or int, provided they do not depend on the value of arg. The variables arg and
val are declared automatically; and as integrand is a block rather than a function, integrand
should have no header line.

Now the function integral can be overloaded for adouble arguments and thus included
in the library of elementary functions by the following modifications.

1. At the end of the file adouble.c, include the full code defining
double integral(double& x), and add the line

extend_quad(integral, integrand);

this is a macro that is extended to the full definition of
adouble integral(adouble& arg). Then remake the library libad.a.

2. In the definition of the class adouble in adouble.h, add the statement

friend adouble integral(adouble&:).

In the first modification, integral represents the name of the double function, whereas
integrand represents the actual block of C code.

For example, in case of the arcos of the hyperbolic cosine, we have integral=acosh.
Integrand can be written as

{ val = sqrt(arg*arg-1) }
so that the line

extend_quad(acosh,val = sqrt(arg*arg-1))

can be added to the file adouble.c. A mathematically equivalent but longer representation
of integrand is

{adouble temp = arg;
temp = temp *xtemp;
val = sqrt(temp);}

28

The integrands may call on any elementary function that has already been defined in adou-
ble.c, so that one may also introduce iterated integrals.

7 Example Codes

The following listings are all simplified versions of codes that are contained in the examples
subdirectory */SRC/DEX of ADOL-C. In particular, we have left out timings and correctness
checks, which are included in the full codes.

7.1 Product Example

The first example evaluates the gradient and a Hessian-vector product for the function

n—1
y = flz) = [=
=0
using the appropriate drivers gradient and hessian.

#include "adouble.h"
#include "adutils.h"
#include <stream.h>
main() {
int n,i,j,counts[12];
cout << '"number of independent variables = 7 \n'";
cin >> n;
double* xp = new double[n]; // or: doublev xp(n);
adouble* x = new adouble[n]; // or: adoublev x(n);
for(i=0;i<n;i++)
xplil = (i+1.0)/(2.0+1); // some initializations
trace_on(1); // tag =1, keep=0 by default
adouble y = 1;
for(i=0;i<n;i++){
x[i] <<= xpl[i]; // or x<<= xp outside the loop
y *= x[i]; }
double yp=0.0;
y >>= yp;
delete[] x; // Not needed if x adoublev
trace_off();
tapestats(l,counts); // Reading of tape statistics
cout<<"maxlive "<<counts[2]<<"\n";

29

/... print other tape stats

double* g = new double[n]; // or: doublev g(n);
gradient(1,n,xp,g); // gradient evaluation.
doublem h(n,n);

hessian(1l,n,xp,h); // h equals (n-1)g since g is
double errg =0; // homogeneous of degree n-1.

double errh =0;
for(i=0;i<n;i++)

errg += abs(gli]l-yp/xpl[il); // vanishes analytically.
for(i=0;i<n;i++) {

for(j=0;j<n;j++) {
if (i>3) // lower half of hessian
errh += abs(h[i]l[j]1-glil/xp[jl); + }

cout << yp-1/(1.0+n) << " error in function \n";
cout << errg <<" error in gradient \n";
cout << errh <<'" consistency check \n";

¥

7.2 Scalar Example

The second example function evaluates the n-th power of a real variable z in log, n multipli-
cations by recursive halving of the exponent. Since there is only one independent variable,
the scalar derivative can be computed by using both forward and reverse, and the results
are subsequently compared.

#include "adouble.h"
#include "adutils.h"
#include <stream.h>
adouble power(adouble x, int n) {

adouble z=1;
if (n>0) { // Recursion and branches
int nh =n/2; // that do not depend on
z = power(x,nh); // adoubles are fine !!!!
z *= z;
if (2%nh '= n) z *= x;
return z; }
else {
if (n==0) return z; // The local adouble z dies
else return 1/power(x,-n); } // as it goes out of scope.

30

The function power(...) above was obtained from the original undifferentiated version by
simply changing the type of all doubles including the return variable to adoubles. The new
version can now be called from within any active section, as in the following main program.

#include as above
main() {
int i,tag=1;
cout<<'"monomial degree=7 \n"; // Input the desired degree.

int n; cin >> n;

/*Allocations and Initializations*/
doublex Y[1];
*Y = new double[n+2];

doublex X[1]; // Allocate passive variables with
*X = new double[n+4]; // extra dimension for derivatives
X[0][0] = 0.5; // function value = 0. coefficient
X[0][1] = 1.0; // first derivative = 1. coefficient
for(i=0; i < n+2; i++)
X[0] [1+2]=0; // further coefficients.
doublex Z[1]; // used for checking consistency
*7Z = new double[n+2]; // between forward and reverse
adouble y,x; // Declare active variables
/*Beginning of Active Sectionx/
trace_on(1); // tag = 1 and keep = 0
x <<= X[0][0]; // Only one independent var
y = power(x,n); // Actual function call
y >>= Y[0][0]; // Only one dependent adouble
trace_off(); // No global adouble has died
/*End of Active Section */
double ul1]; // weighting vector
ul[0]=1; // for reverse call
for(i=0; i < n+2; i++) { // Note that keep = i+1 in call
forward(tag,1,1,i,i+1,X,Y); // Evaluate the i-the derivative
if (i==0)
cout << Y[O][i] << "=?" << value(y) << " should be the same \n";
else
cout << Y[0][i] << "=?" << Z[0][i] << " should be the same \n";
reverse(tag,1,1,i,u,Z); // Evaluate the (i+1)-st deriv.
zZ[o][i+1]=Z[0] [il1/(i+1); } // Scale derivative to Taylorcoeff.

¥

Since this example has only one independent and one dependent variable, forward and
reverse have the same complexity and calculate the same scalar derivatives, albeit with a
slightly different scaling. By replacing the function power with any other univariate test

31

function, one can check that forward and reverse are at least consistent. In the following
example the number of independents is much larger than the number of dependents, which
makes the reverse mode preferable.

7.3 Determinant Example

Now let us consider an exponentially expensive calculation, namely, the evaluation of a
determinant by recursive expansion along rows. The gradient of the determinant with
respect to the matrix elements is simply the adjoint (i.e., the matrix of cofactors). Hence
the correctness of the numerical result is easily checked by matrix-vector multiplication.
The example illustrates the use of adouble arrays and pointers.

#include as above

adoublex* A; // A is an n x n matrix

int n; // k <= n is the order

adouble det(int k, int m) { // of the submatrix
if(m == 0) return 1.0 ; // its column indices
else { // are encoded in m.

adouble* pt = Al[k-1];
adouble t =0 ;
int s, p =1;
if (k%2) s = 1; else s = -1;
for(int i=0;i<n;i++) {
int pl = 2x%p;
if (m4pl >=p) {
t += *pt*sxdet(k-1, m-p); // Recursive call to det.
s = -s; }
++pt;
p=pl;}
return t; }

As one can see, the overloading mechanism has no problem with pointers and looks exactly
the same as the original undifferentiated function except for the change of type from double
to adouble. If the type of the temporary t or the pointer pt had not been changed, a
compile time error would have resulted. Now consider a corresponding calling program.

#include as above
main() {
int i, m=1,tag=1,keep=1;
cout << '"order of matrix = ? \n"; // Select matrix size

32

cin >> n;
A = new adoublex[n];

trace_on(tag,keep) ; // tag=1=keep

double detout=0.0 , diag = 1.0; // here keep the intermediates for

for (i=0; i<n; i++) { // the subsequent call to reverse
m *=2;

A[i] = new adouble[n];
adouble* pt = A[i];
for (int j=0;j<n; j++)

ATi][j] <<= j/(1.0+1); //make all elements of A independent
diag += value(A[i]l[il); //value(adouble) converts to double
A[i][i] += 1.0; }

det(n,m-1) >>= detout; // Actual function call.

printf("\n %f =7 Jf should be the same \n'",detout,diag);
trace_off();
double ul1];
ul[0] = 1.0;
double* B = new double[n*n];
reverse(tag,1,n*n,1,u,B);
cout <<" \n first base? : ";
for (i=0;i<n;i++) {
adouble sum = 0;

for (int j=0;j<n;j++) // The matrix A times the first n
sum += A[i][j1*B[j]; // components of the gradient B
cout<<value(sum)<<" "; } // must be a Cartesian basis vector
cout<<"\n";

The variable diag should be equal to the determinant, because the matrix A is defined as
a rank 1 perturbation of the identity

7.4 ODE Example

Finally, we use the right-hand side of a nonlinear ordinary differential equation.

#include as above
void tracerhs(short int tag, double* py, double* pyprime)

{

adoublev y(3); //This time we left the parameters
adoublev yprime(3); // passive and use the vector types.
trace_on(tag);

y <<= py; //Initialize and mark independents

33

yprime[0] = -sin(y[2]) + 1e8xy[2]*(1-1/y[0]);

yprime[1] = -10*y[0] + 3e7*xy[2]*(1-y[1]1);

yprime[2] = -yprime[0] - yprime[1];

yprime >>= pyprime; //Mark and pass dependents
trace_off(tag);

+

This function is a slight modification of Robertson test problem given in Hairer and Wan-
ner’s book on the numerical solution of ODEs [10]. The Jacobian of the right-hand side has
large negative eigenvalues, which make the ODE quite stiff. We have added some numer-
ically benign transcendentals to make the differentiation more interesting. The following
program uses forode to calculate the Taylor series defined by the ODE at the given point
1o and reverse as well as accode to compute the Jacobians of the coeflicient vectors with
respect to xg.

#include as above
main() {

int i,]j,deg;

int n=3;

doublev py(3);

doublev pyp(3);

cout << ''degree of Taylor series =7\n";
cin >> deg;

doublem X(n,deg+1);
doublex** Z=new doublexx[n];
doublex** B=new doublexx[n];
short** nz = new shortx*[n];
for(i=0;i<n;i++) {

py[il = (1 == 0) ? 1.0 : 0.0; // Initialize the base point
X[il[0] = pylil; // and the Taylor coefficient
nz[i] = new short[n]; // set up sparsity array

Z[il=*(new doublem(n,deg));
B[i]=*(new doublem(n,deg));}

tracerhs(1,py,pyp); // trace RHS with tag = 1
forode(1,n,deg,X); // compute deg coefficients
reverse(l,n,n,deg-1,Z,nz); // U defaults to the identity

accode(n,deg-1,Z,B,nz);
cout << ''monzero pattern:\n";
for(i=0;i<n;i++) {
for(j=0;j<n; j++)
cout << nz[i][jI<<"\t";
cout <<'"\n"; }

34

The pattern nz returned by accode is

3 -1 4
1 2 2
3 2 4

The original pattern nz returned by reverse is the same except that the negative entry —1
was zero.

A Extended Features

A.1 Conditional Assignments

In some situations it may be desirable to calculate the value and derivatives of a function
at arbitrary arguments by using a tape of the function evaluation at one argument and
reevaluating the function and its derivatives using the given routines. This approach can
significantly reduce run times, and it also allows one to port problem functions, in the form
of the corresponding tape files, into a computing environment that does not support C++
but does support C or Fortran.

Unfortunately, the evaluation utilities function, gradient, etc., may appear to work
correctly but quite likely produce incorrect results if the program contains quadratures
and/or branches conditioned on the arguments or their descendents in the data flow sense.
The crux of the problem lies in the fact that the tape records only the operations that are
executed during one evaluation of the function. It also has no way to evaluate integrals
since the corresponding quadratures are never recorded on the tape.

It appears unsatisfactory that, for example a simple table lookup of some physical
property forces the rerecording of a possibly much larger calculation. However, the basic
philosophy of ADOL-C is to overload arithmetic, rather than to generate a new program
with jumps between ’instructions’, which would destroy the strictly sequential tape access
and require the infusion of substantial compiler technology. Therefore, we introduced the
two constructs of conditional assignments and active integers as partial remedies to the
branching problem.

In many cases, the functionality of branches can be replaced by conditional assignments.
For this purpose, we provide a special function called condassign(a,b,c,d). Its calling
sequence corresponds to the syntax of the conditional assignment ¢ = b7 ¢ : d, which
C++ inherited from C. However, here the arguments are restricted to be active or passive
scalar arguments, and all expression arguments are evaluated before the test on b, which is
different from the usual conditional assignment or the code segment.

Suppose the original program contains the code segment

35

if (condition)
res = argl;
else

res = arg2;

Here, only one of the expressions (or, more generally, program block) argl and arg2 is
evaluated, which exactly constitutes the problem for ADOL-C. To obtain the correct value
res with ADOL-C, one may first execute both branches and then pick either argl or arg2
using condassign(a,b,c,d). To maintain consistency with the original code, one has to
make sure that the two branches do not have any side effects that can interfere with each
other or may be important for subsequent calculations. The header file adouble.h contains
a definition of condassign(a,b,c,d) and condassign(a,b,c) for four/three passive argu-
ments so that the modified code without any differentiation can be tested for correctness.
If there is no else part in a conditional assignment, one may call the three argument version
condassign(a,b,c), which is logically equivalent to condassign(a,b,c,a) in that nothing
happens if b is nonpositive.

A.2 Active Subscripts

In many important procedures such as table lookup or numerical pivoting, the result of a
conditional assignment is not a real variable but an integer that is subsequently used as an
index into an array of active reals. For that purpose we have introduced the class along
of active integers, which are implemented as a derived class of active doubles, so that all
arithmetic operations involving them are recorded on the tape. The key functionality is
that of subscripting; that is for an along j the expressions

a[j] with a an adoublev
A[j] with A an adoublem

are considered and recorded as a binary operation between a or A and j. The resulting a[j]
and A[j] behave like variables of type adouble and adoublev except that they may not
occur as arguments of the operators <<= and >>=.

Using the conditional assignment of active integers, one can, for example, fully record
a function that involves Gaussian elimination with pivoting on a tape. In that case the
recoding effort is minimal, and there is not much overhead at run time, either.

A.3 Example Gaussian Elimination

The following example uses conditional assignments as well as active subscripts to illustrate
the correct usage of these extended features of ADOL-C. In this example the elimination is

36

performed with column pivots.

void gausselim(int n, adoublem& A, adoublev& bv)
{

along 1i;

adoublev temp(n);

adouble r,rj,temps;

int j,k,ik;
for (k=0; k < n; k++) /* elimination loop */
{
i = k;
r = fabs(A[k][k]); /* initial pivot size */
for (j=k+1; j<n; j++)
{
rj = fabs(A[j][k]); /* look for a larger element */
condassign(i,(rj >r),j); /* in the same column */
condassign(r,(rj >r),rj);
} // endfor
temp = A[i]; /* switch rows */
A[i] = A[k];
ATk] = temp;

temps = bv[i];
bv[il=bv[k];
bv[k]=temps;
if ('value(A[k][k1))
exit(1); /* Matrix singular! */
temps= A[k][k];
ATk] = A[k]/temps;
bv[k] = bv[k]/temps;
for (j=k+1; j<n; j++)
{
temps= A[j][k];
Alj] -= temps*A[k];
bv[j] -= temps*bv[k];
} // endfor
} // endfor elimination loop
temp=0.0;
for(k=n-1; k >= 0; k--)
temp[k] = (bv[k]-(AL[k]*temp))/A[k] [k];
bv=temp;
return;
} // end gausselim

37

This function can be called from any program that suitably initializes the components of
A and bv as independents. The resulting tape can be used to solve any nonsingular linear
system of the same size and to get the sensitivities of the solution with respect to the system
matrix and the right hand side.

Acknowledgments

Parts of the ADOL-C source were developed by Jay Srinivasan, Chuck Tyner, and Duane
Yoder. We are also indebted to Joe Chou (CADSI), George Corliss, Tom Epperly, Brad
Karp, Koichi Kubota, Bob Olson, Marcela Rosemblun, Jeng Yen (CADSI), and the TOMS
referees for helping in various ways with the development and documentation of ADOL-C.

References

[1]

[6]

[7]

[8]

C. H. Bischof, A. Carle, G. F. Corliss, A. Griewank, and P. Hovland. ADIFOR: Gen-
erating derivative codes from Fortran programs. Scientific Programming, 1(1):1-29,
1992.

Brett Averick, Jorge Moré, Christian Bischof, Alan Carle, and Andreas Griewank.
Computing large sparse Jacobian matrices using automatic differentiation. Preprint
MCS-P348-0193, Argonne National Laboratory, 1993.

K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial Value
Problems in Differential-Algebraic Equations. Flsevier (North Holland), 1989.

D. G. Cacuci. Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis
approach. J. Math. Phys., 22(12):2794-2802, 1981.

D. G. Cacuci. Sensitivity theory for nonlinear systems. II. Extension to additional
classes of responses. J. Math. Phys., 22(12):2803-2812, 1981.

Bruce Christianson. Reverse accumulation and accurate rounding error estimates for
taylor series. Optimization Methods and Software, pages 81-94, 1(92).

Andreas Griewank. Direct calculation of Newton steps without accumulating Jaco-
bians. In T. F. Coleman and Yuying Li, editors, Large-Scale Numerical Optimization,
pages 115 — 137. SIAM, Philadelphia, Penna., 1990.

Andreas Griewank. Achieving logarithmic growth of temporal and spatial complexity in
reverse automatic differentiation. Optimization Methods and Software, 1:35-54, 1992.

38

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[18]

[19]

Andreas Griewank and Shawn Reese. On the calculation of Jacobian matrices by the
Markowitz rule. In Andreas Griewank and George F. Corliss, editors, Automatic Dif-
ferentiation of Algorithms: Theory, Implementation, and Application. STAM, Philadel-
phia, Penna., 1991.

E. Hairer and G. Wanner, Solving Ordinary Differential Fquations II, Springer-Verlag,
Berlin, 1991.

Jim E. Horwedel, Brian A. Worley, E. M. Oblow, and F. G. Pin. GRESS version
1.0 users manual. Technical Memorandum ORNL/TM 10835, Oak Ridge National
Laboratory, Oak Ridge, Tenn., 1988.

G. Kedem. Automatic differentiation of computer programs. ACM Trans. Math. Soft-
ware, 6(2):150-165, June 1980.

Koichi Kubota. PADRE2, a FORTRAN precompiler yielding error estimates and sec-
ond derivatives. In Andreas Griewank and George F. Corliss, editors, Automatic Dif-
ferentiation of Algorithms: Theory, Implementation, and Application. STAM, Philadel-
phia, Penna., 251-262, 1991.

S. Linnainmaa. Taylor expansion of the accumulated rounding error. BIT (Nordisk
Tidskrift for Informationsbehandling), 16(1):146-160, 1976.

G. M. Ostrovskii, Yu. M. Volin, and W. W. Borisov. Uber die Berechnung von
Ableitungen. Wissenschaftliche Zeitschrift der Technischen Hochschule fir Chemie,
Leuna-Merseburg, 13(4):382-384, 1971.

Louis B. Rall. Automatic Differentiation: Techniques and Applications, volume 120 of
Lecture Notes in Computer Science. Springer Verlag, Berlin, 1981.

Louis B. Rall. Differentiation and generation of Taylor coefficients in Pascal-SC. In
Ulrich W. Kulisch and Willard L. Miranker, editors, A New Approach to Scientific
Computation, pages 291-309. Academic Press, New York, 1983.

B. Speelpenning. Compiling Fast Partial Derivatives of Functions Given by Algo-
rithms. Ph.D. thesis, Department of Computer Science, University of [llinois at Urbana-
Champaign, Urbana-Champaign, Ill., January 1980.

Olivier Talagrand and P. Courtier. Variational assimilation of meteorological observa-
tions with the adjoint vorticity equation — Part I. Theory. . J. R. Meteorol. Soc.,
113:1311-1328, 1987.

R. E. Wengert. A simple automatic derivative evaluation program. Comm. ACM,
7(8):463-464, 1964.

Paul Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behav-
ioral Sciences. Ph.D/ thesis, Committee on Applied Mathematics, Harvard University,
Cambridge, Mass., November 1974.

39

