
ADOL-C: 1A Package for the Automatic Di�erentiationof Algorithms Written in C/C++Version 1.5, December 1993Andreas Griewank2David Juedes3Jean Utke4AbstractThe C++ package ADOL-C described here facilitates the evaluation of �rst andhigher derivatives of vector functions that are de�ned by computer programs written inC or C++. The resulting derivative evaluation routines may be called from C/C++,Fortran, or any other language that can be linked with C.The numerical values of derivative vectors are obtained free of truncation errors ata small multiple of the run time and randomly accessed memory of the given functionevaluation program. Derivative matrices are obtained by columns or rows. For solutioncurves de�ned by ordinary di�erential equations, special routines are provided thatevaluate the Taylor coe�cient vectors and their Jacobians with respect to the currentstate vector. The derivative calculations involve a possibly substantial (but alwaysa priori predictable) amount of data that are accessed strictly sequentially and aretherefore automatically paged out to �les on external mass storage devices.Keywords: Automatic Di�erentiation, Chain Rule, Overloading, Taylor Coe�-cients, Gradients, Hessians, Reverse PropagationAbbreviated title: Automatic di�erentiation by overloading in C++1 Introduction: Di�erentiation of AlgorithmsMost nonlinear computations require the evaluation of �rst and higher derivatives of vectorfunctions with m components in n real or complex variables. This requirement arises par-ticularly in optimization, nonlinear equation solving, numerical studies of bifurcation, andthe solution of nonlinear di�erential or integral equations. Often these functions are de�nedby sequential evaluation procedures involving many intermediate variables. By eliminating1This work was supported in part by the O�ce of Scienti�c Computing, U.S. Department of Energy,under Contract W-31-109-Eng-38, and in part by funding from DOE's O�ce of Energy Research LaboratoryTechnology Transfer.2Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, andInstitut f�ur Wissenschaftliches Rechnen, Technical University Dresden, D-01062 Germany3Department of Computer Science, Iowa State University, Ames, IA 500104Institut f�ur Wissenschaftliches Rechnen, Technical University Dresden, D-01062 Germany1

the intermediate variables symbolically, it is theoretically always possible to express the mdependent variables directly in terms of the n independent variables. Typically, however,the attempt results in unwieldy algebraic formula, if it can be completed at all. Symbolicdi�erentiation of the resulting formulae will usually exacerbate this problem of expressionswell and often entails the repeated evaluation of common expressions.An obvious way to avoid such redundant calculations is to apply an optimizing compilerto the source code that can be generated from the symbolic representation of the derivativesin question. Exactly this approach was investigated by Bert Speelpenning, a student ofBill Gear, during his Ph.D. research [18] at the University of Illinois from 1977 to 1980.Eventually he realized that at least in the cases n = 1 and m = 1, the most e�cient codefor the evaluation of derivatives can be obtained directly from that for the evaluation of theunderlying vector function. In other words, he advocated the di�erentiation of evaluationalgorithms rather than formulae. In his thesis he made the particularly striking observationthat the gradient of a scalar-valued function (i.e., m = 1) can always be obtained for nomore than �ve times the operations count of evaluating the function itself. This bound iscompletely independent of n, the number of variables, and allows the row-wise computationof Jacobians for at most 5m times the e�ort of evaluating the underlying vector function.When m, the number of component functions, is larger than n, Jacobians can be ob-tained more cheaply column by column through propagating gradients forward. This clas-sical technique of automatic di�erentiation goes back at least to Wengert [20] and was laterpopularized by Rall [16]. It was noted in [7] that in general neither the row-by-row nor thecolumn-by-column method is optimal for the calculation of Jacobians. The potentially moree�cient alternatives, however, require some combinatorial optimization and involve largedata structures that are not necessarily accessed sequentially [9]. Therefore, the packageADOL-C described here was written primarily for the evaluation of derivative vectors (e.g.,rows or columns of Jacobians). This approach also simpli�es parameter passing betweensubroutines and calls in di�erent computer languages.The reverse propagation of gradients employed by Speelpenning is closely related to theadjoint sensitivity analysis for di�erential equations, which has been used at least since thelate sixties, especially in nuclear engineering [4],[5], weather forecasting [19], and neuralnetworks [21]. The discrete analog used here was apparently �rst discovered in the earlyseventies by Ostrovskii et al. [15] and Linnainmaa [14] in the context of rounding errorestimates. Since then, there have been numerous rediscoveries and various software imple-mentations. Speelpenning himself wrote a Fortran precompiler called JAKE, which wasupgraded at Argonne National Laboratory to JAKEF. Currently, there exist at least threeother precompilers for automatic di�erentiation, namely, GRESS/ADGEN [11],5 PADRE2[13],6 and ADIFOR [1]. 75Contact: Jim Horwedel, ORNL, P.O. Box X, Oak Ridge, TN 37831, e-mail: jqh%ornlstc.bitnet6Contact: K. Kubota, Keio Univ., 3-14-1 Hiyoshi, Yokohama 223, Japan, e-mail: kubota@ae.keio.ac.jp7Contact: Ch. Bischof, ANL-MCS, Argonne IL 60439-4844, e-mail: bischof@mcs.anl.gov2

Following the work of Kedem [12] with the Fortran preprocessor AUGMENT, Rall [17]implemented in 1983 the forward propagation of gradients by overloading in PASCAL-SC.In contrast to precompilation, overloading requires only minor modi�cations of the user'sevaluation program and does not generate intermediate source code. Our package ADOL-Cutilizes overloading in C++, but the user has to know only C. The acronym stands forAutomatic Di�erentiation by OverLoading in C++. ADOL-C facilitates the simultane-ous evaluation of arbitrarily high directional derivatives and the gradients of these Taylorcoe�cients with respect to all independent variables. Relative to the cost of evaluating theunderlying function, the cost for evaluating any such scalar-vector pair grows as the squareof the degree of the derivative but is still completely independent of the numbers m and n.For the reverse propagation of derivatives, the whole execution trace of the originalevaluation program must be recorded, unless it is recalculated in pieces as advocated in [8].In ADOL-C, this potentially very large data set is written �rst into a bu�er array and laterinto a �le if the bu�er is full or if the user wishes a permanent record of the execution trace.In either case, we will refer to the recorded data as the tape. The user may create severaltapes in several named arrays or �les. During subsequent derivative evaluations, tapes arealways accessed strictly sequentially, so that they can be paged in and out to disk withoutsigni�cant runtime penalties. If written into a �le, the tapes are self-contained and can beused by other Fortran, C or C++ programs.This paper is organized as follows. Section 2 explains the modi�cations required toconvert undi�erentiated code to code that compiles with ADOL-C. For better e�ciencyand programming convenience one may employ the vector and matrix classes described inSection 3. Section 4 covers aspects of the tape of recorded data that ADOL-C uses toevaluate arbitrarily high order derivatives. The discussion includes storage requirementsand the tailoring of certain tape characteristics to �t speci�c user needs. Section 5 o�ersa more mathematical characterization of ADOL-C as well as descriptions of the callingsequences of various derivative evaluation routines. Section 6 details the installation anduse of the ADOL-C package. It also provides a description of each of the C and C++modules that the package comprises. Finally, Section 7 furnishes four example programsthat incorporate the ADOL-C package to evaluate �rst and higher-order derivatives. Theseand other examples are distributed with the ADOL-C source; simply refer to them whenthe more abstract and general descriptions of ADOL-C provided in this document do notsu�ce.2 Preparing a Section of C or C++ Code for Di�erentiationADOL-C was designed so that the user has to make only minimal changes to his undif-ferentiated code. The main modi�cations concern variable declarations and input/outputoperations. 3

2.1 Declaring Active VariablesThe key ingredient of automatic di�erentiation by overloading is the concept of an activevariable. All variables that may at some time during the program execution be considereddi�erentiable quantities must be declared to be of an active type. ADOL-C uses one activescalar type, called adouble, whose real part is of the standard type double. There arecorresponding types adoublev and adoublem of vectors and matrices, whose componentsfunction like adoubles. Typically, one will declare the independent variables and all quanti-ties that directly or indirectly depend on them as active. Other variables that do not dependon the independent variables but enter, for example, as parameters, may remain one of thepassive types double,
oat, or int. There is no implicit type conversion from adouble toany of these passive types; thus, failure to declare variables as active when they depend onother active variables will result in a compile-time error message. In data
ow terminology,the set of active variable names must contain all its successors in the dependency graph.All components of indexed arrays must have the same activity status.The real component of an adouble x can be extracted as value(x). In particular,such explicit conversions are needed for the standard output procedure printf. The outputstream operator << is overloaded such that �rst the real part of an adouble and then thestring \(a)" is added to the stream. Naturally, adoubles may be components of vectors,matrices, and other arrays, as well as members of structures or classes. For regular arraysit may be more e�cient to use the vector and matrix classes discussed in Section 3.The C++ class adouble, its member functions, and the overloaded versions of allarithmetic operations, comparison operators, and ANSI C functions are contained in the�le adouble.c and its header adouble.h. The latter must be included for compilation ofall program �les containing adoubles and corresponding operations.2.2 Marking Active SectionsAll calculations involving active variables that occur between the void function callstrace on(tag,keep) and trace o�(�le)are recorded on a sequential data set called tape. Pairs of these function calls can appearanywhere in a C++ program, but they may not overlap. The nonnegative integer argu-ment tag identi�es the particular tape for subsequent function or derivative evaluations.Unless several tapes need to be kept, tag = 0 may be used throughout. The optionalinteger arguments keep and �le will be discussed in Section 4. We will refer to the se-quence of statements executed between a particular call to trace on and the following callto trace o� as an active section of the code. The same active section may be enteredrepeatedly, and one can successively generate several traces on distinct tapes by changingthe tag. 4

Active sections may contain nested or even recursive calls to functions provided bythe user. Naturally, their formal and actual parameters must have matching types. Inparticular, the functions must be compiled with their active variables declared as adoublesand with the header �le adouble.h included. Variables of type adouble may be declaredoutside an active section and need not go out of scope before the end of an active section.It is not necessary|though desirable|that free-store adoubles allocated within an activesection be deleted before its completion. The values of all adoubles that exist at thebeginning and end of an active section are recorded by trace on and trace o�, respectively.2.3 Selecting Independent and Dependent VariablesOne or more active variables that are read in or initialized to the values of constants orpassive variables must be distinguished as independent variables. Other active variables thatare similarly initialized may be considered as temporaries (e.g., a variable that accumulatesthe partial sums of a scalar product after being initialized to zero). In order to distinguishan active variable x as independent, ADOL-C requires an assignment of the formx �= px // px of any passive numeric typeThis special initialization ensures that value(x)=px, and it should precede any other as-signment to x. However, x may be reassigned other values subsequently. Similarly, one ormore active variables y must be distinguished as dependent by an assignment of the formy �= py // py of any passive typewhich ensures that py=value(y) and should not be succeeded by any other assignment toy. However, a dependent variable y may have been assigned other real values previously,and it could even be an independent variable as well. The derivative values calculated afterthe completion of an active section always represent derivatives of the �nal values ofthe dependent variables with respect to the initial values of the independentvariables.The order in which the independent and dependent variables are marked by the �=and �= statements matters crucially for the subsequent derivative evaluations. However,these variables do not have to be combined into continuous vectors. ADOL-C counts thenumber of independent and dependent variable speci�cations within each active section andrecords them in the header of the tape.2.4 A Subprogram as an Active SectionAs a generic example let us consider a C(++) function of the form shown in Figure 1.5

void eval(int n, int m, // number of independents and dependentsdouble *x, // independent variable vectordouble *y, // dependent variable vectorint *k, // integer parametersdouble *z) // real parametersf // beginning of function bodydouble t = 0; // local variable declarationfor(int i=0; i < n; i++) // begin cruncht += z[i]*x[i]; // continue crunch� � � � � � � � � � � � // continue crunch� � � � � � � � � � � � // continue crunchy[m-1] = t/m; // end crunchg // end of functionFigure 1: Generic Example of an Active SubprogramIf eval is to be called from within an active C(++) section with x and y as vectors ofadoubles and the other parameters passive, then one merely has to change the type decla-rations of all variables that depend on x from double or
oat to adouble. Subsequently,the subprogram must be compiled with the header �le adouble.h included as describedin Section 4. Now let us consider the situation when eval is still to be called with integerand real arguments, possibly from a program written in Fortran 77, which does not allowoverloading.To automatically compute derivatives of the dependent variables y with respect to theindependent variables x, we can make the body of the function into an active section. Forexample, we may modify the previous program segment as in Figure 2. The renaming anddoubling up of the original independent and dependent variable vectors by active counter-parts may seem at �rst a bit clumsy. However, this transformation has the advantage thatthe calling sequence and the \crunchy" part of eval remain completely unaltered. If thetemporary variable t had remained a double, the code would not compile, because of atype con
ict in the assignment following the declaration. Four more detailed example codesare listed in Section 7.2.5 Overloaded Operators and FunctionsAs in the subprogram discussed above, the actual computational statements of a C(++)code need not be altered for the purposes of automatic di�erentiation. All arithmeticoperations, as well as the comparison and assignment operators, are overloaded if at least6

void eval(int n,m, // number of independents and dependentsdouble *px, // independent passive variable vectordouble *py, // dependent passive variable vectorint *k, // integer parametersdouble *z) // parameter vectorf // beginning of function bodyshort int tag = 0; // tape array and/or tape �le speci�ertrace on(tag); // start tracingadouble *x, *y; // declare active variable pointersx=new adouble[n]; // declare active independent variablesy=new adouble[m]; // declare active dependent variablesfor(int i=0; i < n; i++)x[i] �= px[i]; // distinguish independent variablesadouble t; // local variable declarationfor(int i=0; i < n; i++) // begin cruncht += z[i]*x[i]; // continue crunch� � � � � � � � � � � � // continue crunch� � � � � � � � � � � � // continue crunchy[m-1] = t/m; // end crunch as beforefor(int j=0; j<m;j++)y[j] �= py[j]; // select dependent variablesdelete[] y; // destruct dependent active variablesdelete[] x; // destruct independent active variablestrace o�(); // complete tapeg // end of functionFigure 2: The ADOL-C version of the code listed in Fig. 17

one of their arguments is an active variable. An adouble x occurring in a comparisonoperator is e�ectively replaced by its real value value(x). Most functions contained inthe ANSI C standard for the math library are overloaded for active arguments. The onlyexceptions are the nondi�erentiable functions fmod, and modf. Otherwise, legitimateC code in active sections can remain completely unchanged, provided the direct outputof active variables is avoided. Whenever derivatives are unde�ned or discontinuous, thederivatives values are assigned to be the limit of the derivative values at arguments to theright of the exceptional point. For example, at x = 0 the �rst derivatives of the square rootfunction sqrt(x) and the absolute value function fabs(x) are set to +1:0=0:0 and +1:0,respectively. The general power function pow(x;y) = xy is computed whenever it is de�nedfor the corresponding double arguments. If the basis is negative, however, the partial withrespect to an integral exponent is set to zero. Similarly, the partial of pow with respect toboth arguments is set to zero at the origin, where both arguments vanish. The derivatives ofthe step functions
oor, ceil, frexp, and ldexp are set to zero at all arguments x. Some Cimplementations supply other special functions, in particular the error function erf(x). Forthe latter, we have included an adouble version in adouble.c, which has been commentedout for systems on which the double valued version is not available. The increment anddecrement operators ++;�� (pre- and post�x) are available for adoubles and also theactive subscripts described in the appendix. Ambiguous statements like a+=a++; must beavoided because the compiler may sequence the evaluation of the overloaded expressiondi�erently form the original in terms of doubles.As we have indicated above, all subroutines called with active arguments must be mod-i�ed or suitably overloaded. The simplest procedure is to declare the local variables of thefunction as active so that their internal calculations are also recorded on the tape. Unfor-tunately, this approach is likely to be unnecessarily ine�cient and inaccurate if the originalsubroutine evaluates a special function that is de�ned as the solution of a particular math-ematical problem. The most important examples are implicit functions, quadratures, andsolutions of ordinary di�erential equations. Often the numerical methods for evaluatingsuch special functions are elaborate, and their internal workings are not at all di�erentiablein the data. Rather than di�erentiating through such an adaptive procedure, one can obtain�rst and higher derivatives directly from the mathematical de�nition of the special function.Currently this direct approach has been implemented only for user-supplied quadratures asdescribed in Subsection 6.2.2.6 Step-by-Step Modi�cation ProcedureTo prepare a section of given C or C++ code for automatic di�erentiation as describedabove, one applies the following step-by-step procedure.1. Use the statements trace on(tag) [or trace on(tag,keep)] and trace o�()[or trace o�(�le)] to mark the beginning and the end of the active section.8

2. Select the set of active variables, and change their type from double or
oat toadouble (or the array types adoublev and adoublem discussed in the next section).3. Select a sequence of independent variables, and initialize them with �= assignmentsfrom passive variables (or vectors).4. Select a sequence of dependent variables among the active variables, and pass their�nal values to passive variable (or vectors thereof) by �= assignments.5. Compile the codes after including the header �le adouble.h.Typically, the �rst compilation will detect several type con
icts | usually attempts toconvert from active to passive variables or to perform standard I/O of active variables.(Some C++ compilers may also disallow certain gotos which are legal in ANSI C, but thisproblem is unrelated to ADOL-C.) Since all standard C programs can be activated by amechanical application of the procedure above, the following section is of importance onlyto advanced users.3 Active and Passive Arrays and StructuresSome or all real �elds of structures or members of classes may be redeclared as adoublesso that the di�erentiation can proceed by nested overloading without the explicit unrolingof composite structures and operations. In this way, one may activate standard vector andmatrix classes for numerical calculations. However, the individual activation of real �eldsor members may entail a signi�cant overhead, which can be avoided by using the followingactive classes, if the scalars in question are arranged in regular arrays.3.1 Active and Passive Vector ClassesTo reduce the overhead in dealing with individual scalar variables and their operations,we have introduced a class of active vectors called adoublevs and a corresponding classof passive vectors called doublevs. Vectors a and b of p active and passive components,respectively, are declared by the statementadoublev a(p) , doublev b(p) ,where p can be an integer variable. Like all local variables, vectors are destructed whenthey go out of scope at the end of the block in which they were declared. Nevertheless,since their length is computed only at run time, the vector classes can often be used in lieuof dynamically allocated arrays, which can drastically increase the storage requirement ofADOL-C as discussed below. Vector elements of the form a[i] or b[i] can take the place ofany scalar variable of type adouble or double, respectively.9

3.2 Overloaded Vector OperationsProvided their lengths are compatible, vectors can be added or subtracted, yielding a thirdvector of the same length. Similarly, they can be multiplied by active or passive scalars,whereas the product of two vectors is a scalar, which must be active if one of the factors is.Moreover, the special operators <<= and >>= are also overloaded so that active vectorscan be marked as independent or dependent, respectively. As in the scalar versions, thestatement a <<= b simultaneously initializes the active vector a with the values in thepassive vector b, and the statement a >>= b passes the values in the active vector a tothe passive vector b. In the example code above, one could therefore have replaced the �rstloop in Fig. 2 by x <<= xp, the middle loop by t = z*x, and the last loop by y >>=yp. The use of vector operations can reduce the length of the tape and the run time of thecode signi�cantly. This advantage applies in particular for linear algebra operations, wherelarge amounts of unnecessary intermediates are kept track of in the scalar mode.The following binary operations are de�ned between active or passive vectors:+ ; � ; �where � denotes the dot product. Its result is an adouble if at least one of the argumentvectors is active, and otherwise it is a doublev. The same rule applies to addition andsubtraction whose result is an adoublev or doublev. The assignments= ; � = ; + = ; <<= ; >>=may also be considered as binary operations between vectors. For the �rst three assignmentsthe left side must be active if the right side is. For the last two, the left side must be activeand the right side passive. The binary operations� ; = ; � = ; = =are also de�ned when the left argument is a vector and the right argument is a scalar. If thescalar is an adouble, the vector must be a adoublev. Note that here � does not representthe dot product. Mathematically meaningless operations between vectors and scalars willproduce a compiler error message or in some cases (e.g., scalar added to a vector) therun-time error message Error in vector-oper.! None of the operations listed above arecurrently de�ned for the active and passive matrix types described below.3.3 Active and Passive Matrix ClassesThe matrix types adoublem and doublem are used only to facilitate the automatic andcontiguous allocation (and deallocation) of arrays whose elements are adoublevs or dou-blevs, respectively. The statements 10

adoublem A(q,p) , doublem B(q,p)allocate q�p matrices of adoubles and doubles, respectively. The q subscripted quantitiesA[i] and B[i] represent adoublevs and doublevs of size p, respectively. Fortran-like accessby columns is not possible. As an example, consider the multiplication of a q � p matrix Aby a vector b as shown in Figure 3. If one wishes to multiply A by a p� s matrix B insteadof the vector b, one might use the code in Figure 4, where we have omitted initializationsand independent/dependent selections. Even if no vector operations are performed, the useof the active vector and matrix types in declarations is much preferable to the declaration ofadouble arrays, which should be avoided, especially in dynamic storage mode. The reasonsfor this preference are explained in the following subsection, which can be skipped unlessthe reader wishes to obtain some basic understanding of how the package works internallyand to tailor the package to his needs.doublev bp(p);doublem A(q,p);for(int i=0; i < p; i++)f cin >> bp[i]; // Read in valuesfor(int j=0; j < q; j++)cin >> A[i][j];gadoublev b(p);b <<= bp; // Mark b as independent vectoradoublev c(q);for(int i=0; i < q; i++)c[i] = A[i]*b; // dot productdoublev cp(q);c >>= cp; // Mark c as dependent vectorfor(int i=0; i < p; i++)cout << cp[i]; // Output resultsFigure 3: Matrix-Vector Multiplication using ADOL-C ArraysThe classes doublev and doublem have been de�ned with implicit conversions to thetypes double* and double**, respectively. Consequently, these vectors and matrices canbe used as actual parameters in procedures, whose formal parameters are standard pointersto doubles. Moreover, the vector-vector and vector-scalar operations listed above have alsobeen overloaded for cases where at most one of the vector arguments is simply an adouble*or a double*. Naturally, the lack of size information precludes any format compatibility11

doublem A(q,p);adoublem B(p,s);adoublem C(q,s);initializationsfor(int i=0; i < q; i++)f C[i] = 0 ; // Set to zerofor(int j=0; j < p; j++)C[i] += A[i][j]*B[j]; // SAXPYgFigure 4: Matrix-Matrix Multiplication Using ADOL-C Arrayschecks in these cases.3.4 Warnings and Suggestions for Improved E�ciencySince the type adouble has a nontrivial constructor, the mere declaration of large adoublearrays may take up considerable run time. The user should be warned against the usualFortran practice of declaring �xed-size arrays that can accommodate the largest possiblecase of an evaluation program with variable dimensions. If such programs are converted toor written in C, the overloading in combination with ADOL-C will lead to very large run-time increases for comparatively small values of the problem dimension, because the actualcomputation is completely dominated by the construction of the large adouble arrays. Theuser is advised to either use the vector and matrix types in automatic storage mode or createdynamic arrays of adoubles by using the C++ operator new and to destroy them usingdelete. For storage e�ciency it is desirable that dynamic objects are created and destroyedin a last-in-�rst-out (LIFO) fashion. DO NOT use malloc() and related C memory-allocating functions when declaring adoubles (see following paragraph).Whenever an adouble is declared, the constructor for the type adouble assigns it anominal address, which we will refer to as its location. The location is of the type locintde�ned in the header �le usrparms.h. Active vectors occupy a range of contiguous loca-tions. As long as the program execution never involves more than 64,535 active variables,the type locint may be de�ned as unsigned short int. Otherwise, the range may beextended by de�ning locint as (unsigned) int or (unsigned) long, which may nearlydouble the overall mass storage requirement. Sometimes one can avoid exceeding the rangeof unsigned shorts by using more local variables and deleting adoubles or adoublevscreated by the new operator in a last-in-�rst-out fashion. When memory for adoubles isrequested through a call to malloc() or other related C memory-allocating functions, the12

storage for these adoubles is allocated; however, the C++ adouble constructor is nevercalled. The newly de�ned adoubles are never assigned a location and are not counted inthe stack of live variables. Thus, any results depending upon these pseudo-adoubles willbe incorrect. The same point applies, of course, for active vectors. When an adouble oradoublev goes out of scope or is explicitly deleted, the destructor notices that its loca-tion(s) may be freed for subsequent (nominal) reallocation. In general, this is not doneimmediately but is delayed until the locations to be deallocated form a contiguous tail ofall locations currently being used. At this time, a multiple death notice is recorded on thetape.As a consequence of this allocation scheme, the currently alive adouble locations alwaysform a contiguous range of integers that grows and shrinks like a stack. Newly declaredadoubles are placed on the top so that vectors of adoubles obtain a contiguous range oflocations. While the C++ compiler can be expected to construct and destruct automaticvariables in a last-in-�rst-out fashion, the user may upset this desirable pattern by deletingfree-store adoubles too early or too late. Then the adouble stack may grow unnecessarily,but the numerical results will still be correct, unless an exception occurs because the rangeof locint is exceeded. In general, free-store adoubles and adoublevs should be deleted ina last-in-�rst-out fashion toward the end of the program block in which they were created.When this pattern is maintained, the maximum number of adoubles alive (and, as aconsequence, the core storage requirement of the derivative evaluation routines) is boundedby a small multiple of the core memory used in the relevant section of the original program.Failure to delete dynamically allocated adoubles may lead to longer and longer tapes ifthe same active section is called repeatedly.To avoid the storage and manipulation of structurally trivial derivative values one shouldpay careful attention to the naming of variables. Ideally, the intermediate values generatedduring the evaluation of the vector function in question should be assigned to programvariables that are consistently either active or passive, in that all their values either areor are not dependent on the independent variables in a nontrivial way. For example, thisrule is violated if a temporary variable is successively used to accumulate inner productsinvolving �rst only passive and later active arrays. Then the �rst inner product and allits successors in the data dependency graph become arti�cially active and the derivativeevaluation routines described in Section 5 will waste time allocating and propagating trivialor useless derivatives. Sometimes even values that do depend on the independent variablesmay be of only transitory importance and not a�ect the dependent variables. For example,this is true for multipliers that are used to scale linear equations, but whose value does notin
uence the dependent variables in a mathematical sense. Such dead-end variables can bedeactivated by the use of the value function, which converts adoubles to doubles. Thedeleterious e�ects of unnecessary activity are partly alleviated by run-time activity
ags inthe derivative routine hov reverse mentioned in Section 6.13

4 Numbering the Tapes and Controlling the Bu�erThe trace generated by the execution of an active section is stored by ADOL-C as either atriplet of internal arrays or as a triplet of �les. We refer to these triplets as the tape array orthe tape �le. Either triplet may subsequently be used to evaluate the underlying functionand its derivatives at the original point or at alternative arguments. Note that if the activesection involves user-de�ned quadratures or branches conditioned on adouble comparisons,the function must be re-executed and retaped at each new argument. Otherwise, directevaluation from the tape by the routine function (Section 5.5) may be faster, but thisis not certain. (The requirement that functions with branches conditioned on adoublesbe re-evaluated at each new argument can be circumvented by using a recent extension toADOL-C. This extension to ADOL-C allows certain types of branches to be recorded onthe tape through the use of conditional assignments and active integers. This extension isdescribed in Appendix A.)A tape array is used as a triplet of bu�ers for a tape �le if the length of any of the bu�ersexceeds the array length of bufsize. The parameter bufsize is de�ned in the header �leusrparms.h and may be adjusted by the user. Several tape �les may be generated andkept simultaneously. For simple usage, trace on may be called requiring only the tape tagas an argument, and trace o� may be called without an argument.The optional integer argument keep of tape on determines whether the numericalvalues of all active variables are recorded in an unnamed temporary �le when they areoverwritten or go out of scope. This option takes e�ect if keep= 1 and prepares thescene for an immediately following gradient evaluation by a call to the routine reverse (seeSections 5.1 and 5.4). Alternatively, gradients may be evaluated by a call to gradient, whichincludes a preparatory forward sweep for the creation of the temporary �le. If omitted, theargument keep defaults internally to 0, so that no temporary �le is generated.By setting the optional integer argument �le of trace o� to 1, the user may force anumbered tape �le to be written even if the tape array (bu�er) does not over
ow. If theargument �le is omitted, it is internally set to the default value zero, so that the tape arrayis written onto a tape only if the length of any of the bu�ers exceeds bufsize elements.After the execution of an active section, if a tape �le was generated (i.e., if the lengthsome bu�er exceeded bufsize elements or if the argument �le of trace o� was set to 1),the �les will be saved in the current working directory under the names FNAME.<tag>,FNAME1.<tag>, and FNAME2.<tag>, where tag is the mandatory argument totrace on and FNAME, FNAME1, and FNAME2 are the tape �le names found in us-rparms.h. Later, the problem-independent routines forward, reverse, function, gra-dient, jacobian, vec jac, jac vec, hessian, hess vec, lagra hess vec, and forodeaccept as argument a tape's tag to determine the tape on which their respective compu-tational task is to be performed. By calling trace on with di�erent tape tags, one cancreate several tapes for various function evaluations and subsequently perform function and14

derivative evaluations on one or more of them.For example, suppose one wishes to calculate for two smooth functions f1(x) and f2(x)f(x) = maxff1(x); f2(x)g ; rf(x) ;and possibly higher derivatives where the two functions do not tie. Provided f1 and f2 areevaluated in two separate active sections, one can generate two di�erent tapes by callingtrace on with tag = 1 and tag = 2 at the beginning of the respective active sections.Subsequently, one can decide whether f(x) = f1(x) or f(x) = f2(x) at the current argumentand then evaluate the gradient rf(x) by calling gradient with the appropriate argumentvalue tag = 1 or tag = 2.4.1 Examining the Tape and Predicting Storage RequirementsAt any point in the program, one may call the routinevoid tapestats(unsigned short tag, int* counts)with counts an array of at least eleven integers. The �rst argument tag speci�es theparticular tape of interest. The components of counts representcounts[0] the number of independents, i.e., calls to �=counts[1] the number of dependents, i.e., calls to �=counts[2] the maximal number of live active variablescounts[3] the number of deaths and overwritescounts[4] the bu�er size (a multiple of eight)counts[5] the total number of operations recordedcounts[6-10] other internal information about the tapeThe values maxlive = counts[2] and deaths = counts[3] determine the temporarystorage requirements during calls to the workhorses forward and reverse. For a certaindegree deg � 0, the scalar verison of the routine forward involves (apart from the tapebu�ers) an array of (deg+1)*maxlive doubles in core and, in addition, a sequential dataset of deaths*keep revreals if called with the option keep�0. Here the type revrealis de�ned as double or
oat in the header �le usrparms.h. The latter choice halvesthe storage requirement for the sequential data set, which stays in core if its length is lessthan bufsize bytes and is otherwise written out to a temporary �le. The drawback of the15

economical revreal=
oat choice is that subsequent calls to reverse yields gradients andother adjoint vectors only in single-precision accuracy. This may be acceptable if the adjointvectors represent rows of a Jacobian that is used for the calculation of Newton steps. Inits scalar version, the routine reverse involves the same number of doubles and twice asmany revreals as forward. The storage requirements of the vector versions of forwardand reverse are equal to that of the scalar versions multiplied by the vector lenght.4.2 Customizing ADOL-CBased on the information provided by tapestats, the user may alter the following typesand constant dimensions set in usrparms.h to suit his problem and environment.bufsize (default: 16384) This integer determines the length of internal bu�ers. If thebu�ers are large enough to accommodate all required data, any disk access is avoidedunless trace o� is called with a positive argument. This desirable situation canbe achieved for many problem functions with an execution trace of moderate size.Primarily bufsize occurs as an argument to malloc, so that setting it unnecessarilylarge may have no ill e�ects, unless the operating system prohibits or penalizes largearray allocations.locint (default: unsigned short) The range of the integer type locint determines how manyadoubles can be simultaneously alive. In extreme cases when there are more than65,535 adoubles alive at any one time, the locint value must be changed to longint.revreal (default: double) The choice of this
oating-point type trades accuracy with stor-age during reverse sweeps. While functions and their derivatives are always evaluatedin double precision during forward sweeps, gradients and other adjoint vectors are ob-tained with the precision determined by the type revreal. The more accurate choicerevreal = double virtually doubles the storage requirement during reverse sweeps.npr (default: 0) If this integer is positive, ADOL-C prints out some basic messages aboutits progress.store (default: dontusethisuglymessplease) This is the name of another internal array,which may not be reused.FNAME (default: \ adol-op tape.") This is the physical name of the �le that holds theoperations tape when the internal bu�er is exceeded. An integer tag is appended tothe name to make it unique.FNAME1 (default: \ adol-in tape.") This is the physical name of the �le that holds theinteger tape when the internal bu�er is exceeded. An integer tag is appended to thename to make it unique. 16

FNAME2 (default: \ adol-rl tape.") This is the physical name of the �le that holds thereal-valued tape when the internal bu�er is exceeded. An integer tag is appended tothe name to make it unique.The only other protected names are those of the external functions listed in the header�les adutils.h, adutilsc.h, taputil1.h, taputil2.h, taputil3.h, and tayutils.h as wellas the pair of functions take stock and keep stock declared in adouble.h.5 Evaluating Derivatives from a TapeAfter the execution of an active section, the corresponding tape contains a detailed recordof the computational process by which the �nal values y of the dependent variables wereobtained from the values x of the independent variables.5.1 General Mathematical DescriptionProvided no arithmetic exceptions occurred and all special functions were evaluated in theinterior of their domains, the functional relation between the input variables x and theoutput variables y, which we will denote by y = F (x), is in fact analytic. In other words,we can compute arbitrarily high derivatives of the vector function F : IRn 7! IRm de�ned bythe active section. We �nd it most convenient to describe and compute derivatives in termsof univariate Taylor expansions, which are truncated after the highest derivative degree dthat is desired by the user. Letx(t) � dXj=0 xjtj : IR 7! IRn (1)denote any vector polynomial in the scalar variable t 2 IR. In other words x(t) decribes apath in IRn parametrized by t. The Taylor coe�cient vectorsxj = 1j! @j@tj x(t)���t=0are simply the scaled derivatives of x(t) at the parameter origin t = 0. The �rst two vectorsx1; x2 2 IRn can be visualized as tangent and curvature at the base point x0, respectively.Provided that F is d times continuously di�erentiable it follows from the chain rule thatthe image path y(t) � F (x(t)) : IR 7! IRmis also smooth and has at least d Taylor coe�cient vectors yj 2 IRm at t = 0 so thaty(t) = dXj=0 yjtj +O(td+1) : (2)17

Also as a consequence of the chain rule one can observe that each yj is uniquely and smoothlydetermined by the xi with i � j, i.e., by the coe�cient vectors xi of the same or lower orderas yj . In particular we have y0 = F (x0) ; y1 = F 0(x0) x1and y2 = F 0(x0) x2 + 12F 00(x0) x1 x1 :In writing down the last term we have already departed from the usual matrix-vectornotation. It is well known that the number of terms that occur in these more or less'symbolic' expressions for the yj in terms of the �rst j derivative tensors of F and the'input' coe�cients xi with i � j grows very rapidly with j. Fortunately, this exponentialgrowth does not occur in automatic di�erentiation, where the many terms are somehowimplicitly combined so that storage and operations count grow only quadratically in thebound d on j.Provided F is analytic, this property is inherited by the functionsyj = yj(x0; x1; : : : ; xj) 2 Rm ;and their derivatives satisfy the identity@yj@xi = @yj�i@x0 = Aj�i(x0; x1; : : : ; xj�i) (3)which has been established in [6]. The m�n matrices Ak; k = 0; : : : ; d are in fact the Taylorcoe�cients of the Jacobian path F 0(x(t)), a fact that is of interest primarily in the contextof ordinary di�erential equations and di�erential algebraic equations.Given the tape of an active section and the coe�cients xj , the resulting yj and theirderivatives Aj can be evaluated by appropriate calls to the ADOL-C procedures forwardand reverse. The co-called scalar version of forward propagates just one truncated Taylorseries from the (xj)j�d to the (yj)j�d. The vector version of forward propagates familiesof p � 1 such truncated Taylor series in order to reduce the relative cost of the overheadincurred in the tape interpretation. There are also specialized codes for the cases d = 0 andd = 1, where some unnecessary dereferencing can be avoided. Details of the appropriatecalling sequences are given in Subsection 5.4.Given a weighting vector u, the ADOL-C procedure reverse computes the collection ofrow vectors zj � uT @yj@x0 = uTAj 2 Rn (4)for j = 0; 1; : : : ; d. If j = 0 and u is the i-th Cartesian basis vector in Rm, then (4) yieldsthe i-th row of the Jacobian F 0(x). To produce the entire Jacobian in this mode, one maymake m calls to reverse setting u to the i-th Cartesian basis vector for i = 0; 1; : : : ; m.18

An alternative to this method is provided by the vector version of reverse, which yieldsa collection of matrices of the formZj � U @yj@x0 2 Rp�n; (5)where U 2 Rp�n represents a weighting matrix. When U = Im with p = m, one call toreverse yields the set of full Jacobians @yj=@x0. This choice requires more storage, but itsigni�cantly reduces the relative cost of the tape interpretation when the degree d is small.5.2 Derivatives for Optimization CalculationsWhen d = 0 in the vector mode, we have the undi�erentiated relation y0 = F (x0), andz0 = uT F 0(x0) (6)yields the Jacobian of F multiplied from the left by u 2 Rm. In nonlinear least squarescalculations, one may use uT � F (x0)T so that z0 2 Rn is simply the gradient of thesum of squares. For the iterative computation of Newton-like steps, one may wish tocalculate uTF 0(x0) for a sequence of m vectors u. Thus, reverse with d = 0 can be used topremultiply the Jacobian by one (or more) row vector uT from the left. Similarly, one canuse forward with d = 1 to calculate the matrix-vector producty1 = F 0(x0) � x1; (7)where x1 is an arbitrary n vector. In contrast to reverse, forward does not currently havethe capability to multiply the Jacobian simultaneously by several column vectors.For a scalar function F (i.e., m = 1), one �nds that with uT = 1 2 R, the adjointz0 = F 0(x0) is the gradient of F , and the adjointz1 = @y1@x0 = @F 0(x0)x1@x0 = [r2F (x0)x1]T (8)represents the product of the Hessian r2F (x0) with an arbitrary vector x1. More generally,let us consider the case where FT (x) � [f(x); cT(x)] consists of a scalar objective functionf(x) and an m � 1 vector c(x) of constraint functions. Here one may choose uT as avector of Lagrange multiplier estimates such that approximately uTF 0(x) = 0 with the�rst component normalized to 1. Then z0 2 Rn represents the gradient of the Lagrangianfunction uTF (x), and z1 2 Rn represents its Hessian multiplied by the vector x1.5.3 Derivatives for Di�erential EquationsWhen F is the right-hand side of an (autonomous) ordinary di�erential equationx0(t) = F (x(t));19

we must have m = n. Along any solution path x(t) its Taylor coe�cients xj at some time,say t = 0, must satisfy the relation (1) with the yj the Taylor coe�cients of its derivativey(t) = x0(t), namely, xi+1 = 11+iyi :Using this relation, one can generate the coe�cients xi recursively from the current pointx0 by calling forward with increasing degree i = 0; 1; : : : ; d� 1. This task is achieved bythe driver routine forode.For the numerical solutions of ordinary di�erential equations, one also may wish tocalculate the Jacobians Bj � dxj+1dx0 2 Rn�n ; (9)which exist provided F is su�ciently smooth. These matrices can be obtained from thepartial derivatives @yi=@x0 obtained from reverse by an appropriate version of the chainrule. This task is performed by the utility accode, which involves 12d(d� 1) matrix-matrixproducts. Through an optional argument of reverse one can �nd out which entries ofthe Jacobian F 0(x(t)) are zero or constant with respect to t, and this sparsity informationcan be exploited by accode and other utilities. In particular, there need be no loss incomputational e�ciency if a time-dependent ODE is rewritten in an autonomous form.5.4 Forward and Reverse CallsThe following calling sequences utilize the overloading capabilities of C++ and can there-fore not be called directly from C or Fortran. However, the ADOL-C source (see the �ledriversc.c) contains C and Fortran-callable versions of forward and reverse, and the opti-mization drivers described in the following section are all C functions with Fortran-callablecompanions. Given any correct tape, one may call from within the generating program, orsubsequently during another run, the following procedure:void forward(tag,m,n,d,keep,X,Y)short int tag; // tape identi�cationint m; // number of dependent variablesint n; // number of independent variablesint d; // highest derivative degreeint keep; //
ag for reverse sweepdouble X[n][d+1]; // independent-variable valuesdouble Y[m][d+1]; // result coe�cients as in (2)The rows of the matrix X must correspond to the independent variables in the order oftheir initialization by the �= operator. The columns of X = fxjgj=0::d represent Taylor20

coe�cient vectors as in Equation (2). The rows of the matrix Y must correspond to thedependent variables in the order of their selection by the =� operator. Thus the �rstcolumn of Y contains the function value F (x) itself, the next column represents the �rstTaylor coe�cient vector of F , and the last column the d-th Taylor coe�cient vector. Theinteger
ag keep plays a similar role as in the call to trace on; it determines how manyTaylor coe�cients of all intermediate quantities forward writes into a bu�ered temporary�le in preparation for a subsequent reverse sweep. If keep is omitted, the variable defaultsinternally to 0.The given tag value is used by forward to determine the name of the �le on whichthe tape was written. If the tape �le does not exist, forward assumes that the relevanttape is still in core and reads from the bu�ers. Provided the original code involves neitheruser-de�ned quadratures nor conditional branches, forward can be used to evaluate thevector-function F at arguments x other than the point a. However, if these preconditionsare not met, forward and subsequently reverse may appear to function properly, but thenumerical values will be incorrect.After the execution of an active section with keep = 1 or a call to forward with keep� d+1, one may call the function reverse with d=keep-1 and the same tape identi�ertag. When u is a vector and z an n� (d+ 1) matrix as in (4), reverse is executed in thescalar mode by the following calling sequence:void reverse(tag,m,n,d,u,Z)short int tag; // tape identi�cationint m; // number of dependent variablesint n; // number of independent variablesint d; // highest-derivative degreedouble u[m]; // weighting vectordouble Z[n][d+1]; // result adjoints as in (4)When U is a matrix as in (5), reverse is executed in the vector mode by the followingcalling sequence:void reverse(tag,m,n,d,p,U,Z,nz)short int tag; // tape identi�cationint m; // number of dependent variablesint n; // number of independent variablesint d; // highest derivative degreeint p; // number of weight vectorsdouble U[p][m]; // domain weight vectordouble Z[p][n][d+1]; // result adjoints as in (5)short nz[p][n]; // nonzero pattern of Z21

The last argument can be omitted. Otherwise each short nz[i][j] has a value of 0, 1, 2, 3,or 4 which characterizes the (i; j)-th entry of the weighted Jacobian Z as a zero, constant,polynomial, rational, or transcendental function of the independents, respectively. Whenthe arguments p and U are omitted, they default to m and the identity matrix of order m,respectively.In both scalar and vector mode, the degree d must agree with keep-1 for the mostrecent call to forward, or it must be equal to zero if reverse directly follows the taping ofan active section. Otherwise, reverse will return control with a suitable error message. Inorder to avoid possible confusion, the �rst four arguments must always be present in thecalling sequence. However, if m or d attain their trivial values 1 and 0, respectively, thencorresponding dimensions of the arrays X, Y, u, U, or Z can be omitted, thus eliminatingone level of indirection. For example, we may call reverse(tag,1,n,0,1.0,g) after doubleg[n] or doublev g(n) to calculate a gradient of a scalar-valued function.Sometimes it may be useful to perform the forward sweep for families of Taylor serieswith the same leading term. This vector version of forward can be called in the formvoid forward(tag,m,n,d,p,x,X,y,Y)short int tag; // tape identi�cationint m; // number of dependent variablesint n; // number of independent variablesint d; // highest derivative degreeint p; // number of Taylor seriesdouble x[n]; //common leading termsdouble X[n][p][d]; //Taylor coe�cients of independent variablesdouble y[m]; //values of dependent variablesdouble Y[m][p][d]; //Taylor coe�cients of dependent variableswhere X and Y hold the Taylor coe�cients of �rst and higher degree and x, y the commonTaylor coe�cients of degree 0. There is no option to keep the values of active variables thatare going out of scope or that are overwritten. Therefore this function cannot prepare asubsequent reverse sweep.Since the calculation of Jacobians is probably the most important automatic di�erenti-ation task we have provide a specialization of vector forward to the case where d = 1. Thisversion can be called in the form 22

void forward(tag,m,n,p,x,X,y,Y)short int tag; // tape identi�cationint m; // number of dependent variablesint n; // number of independent variablesint p; // number of partial derivativesdouble x[n]; //common leading termsdouble X[n][p]; //Seed derivatives of independent variablesdouble y[m]; //values of dependent variablesdouble Y[m][p]; //First derivatives of dependent variablesWhen this routine is called with p = n and X the identity matrix the resulting Y is simplythe Jacobian F 0(x). In general, one obtaines the m� p matrix Y = F 0(x)X for the choseninitialization of X . In a work station environment a value of p somewhere between 10 and50 appears to be fairly optimal. For smaller p the interpretive overhead is not appropriatelyamortized and for larger p the p-fold increase in storage causes too many page faults.Therefore, large Jacobians that cannot be compressed via column coloring (as was done forexample in [2]) should be strip-mined in that the above �rst-order-vector version of forwardis called repeatedly with the successive n� p matrices X forming a partition of the identitymatrix of order n.5.5 Drivers for Optimization and Nonlinear EquationsFor convenience one may use instead of forward and reverse the following C driver rou-tines: void function(tag,m,n,x,y)short int tag; // tape identi�cationint m; // number of dependent variablesint n; // number of independent variablesdouble x[n]; // independent vector x0 as in (1)double y[m]; // result y0 as in (2)void gradient(tag,n,x,g)short int tag; // tape identi�cationint n; // number of independent variablesdouble x[n]; // independent vector x0 as in (1)double g[n]; // result z0 as in (6) for m = 1void vec jac(tag,m,n,repeat,x,u,z)23

short int tag; // tape identi�cationint m; // number of dependent variablesint n; // number of independent variablesint repeat; // has vec jac been called here ?double x[n]; // independent vector x0 as in (1)double u[m]; // range weight vectordouble z[n]; // result z0 as in (6)void jacobian(tag,m,n,x,J)short int tag; // tape identi�cationint m; // number of dependent variablesint n; // number of independent variablesdouble x[n]; // independent vector x0 as in (1)double J[m][n]; // output Jacobian F 0(x)void jac vec(tag,m,n,x,v,z)short int tag; // tape identi�cationint m; // number of dependent variablesint n; // number of independent variablesdouble x[n]; // independent vector x0 as in (1)double v[n]; // tangent vectordouble z[m]; // result y1 as in (7)void hess vec(tag,n,x,v,z)short int tag; // tape identi�cationint n; // number of independent variablesdouble x[n]; // independent vector x0 as in (1)double v[n]; // tangent vector x1double z[n]; // result z1 as in (8)void hessian(tag,n,x,H)short int tag; // tape identi�cationint n; // number of independent variablesdouble x[n]; // independent vector x0 as in (1)double H[n][n]; // Hessian matrix (lower half)24

void lagra hess vec(tag,m,n,x,v,u,h)short int tag; // tape identi�cationint m; // number of dependent variablesint n; // number of independent variablesdouble x[n]; // independent vector x0 as in (1)double v[n]; // tangent vector x1double u[m]; // range weight vectordouble h[n]; // result z1 as in (4)These procedures are prototyped in adutilsc.h for compilation in a C program. Thisheader �le is included as extern \C" within the corresponding C++ header �le adutils.h.All drivers have companion Fortran functions which are obtained by adding a trailing un-derscore to the name and replacing all short and integer arguments with integer pointers.For example, the Fortan version of gradient is declared in adutilsc.h asint gradient (int* tag, int* n, double* x, double* g)and de�ned in driversc.c.The scalar-mode drivers gradient and hess vec create a temporary �le by an appropri-ate call to forward with keep=1 and then call reverse with the corresponding argument.The routine vec jac functions in the same way, except that the internal call to forward isomitted if a nonzero value of the parameter repeat indicates that forward has already beencalled at the same argument. Whenm=1 and the original evaluation code contains neitherquadratures nor branches, function, gradient, and hessian can be used to evaluate thescalar function and its derivatives at any argument in its domain.5.6 Drivers for ODEsGiven the basis point x0, we can obtain the matrix X=(xj)j�d of the Taylor coe�cientde�ned by an autonomous right-hand side recorded on the tape by the following call:void forode(tag,n,tau,dol,deg,X)short int tag; // tape identi�cationint n; // number of state variablesdouble tau; // scaling parameterint dol; // degree on previous callint deg; // degree on current calldouble X[n][deg+1]; // Taylor coe�cient vectors25

If dol is positive, it is assumed that forode has been called before at the same point sothat all Taylor coe�cient vectors up to the dol-th are already correct. Subsequently onemay call hov reverse(tag,n,n,deg-1,n,I,Z,nz)to compute the family of square matrices Z[n][n][deg] de�ned in equation (5) of subsection5.1. Here double** I must be the identity matrix of order n. To compute the totalderivatives B=(Bj)0�j<d de�ned in (9), one may �nally call the following:void accode(n,tau,deg,Z,B,nz)int n; // number of state variablesdouble tau; // scaling parameterint deg; // degree on current calldouble Z[n][n][deg]; // partials of coe�cient vectorsdouble B[n][n][deg]; // results as de�ned in (9)short nz[n][n]; // optional sparsity patternNaturally, nz can be used by accode only if it has been set in the call to reverse above.The nonpositive entries of nz are changed by accode so that upon returnB[i][j][k] � 0 if k � �nz[i][j] :In other words, the matrices Bk=B[][][k] have a sparsity pattern that �lls in as k grows.6 Installing and Using ADOL-CThe ADOL-C package consists of the following sixteen modules and eleven header �les.Only two header �les are needed for simple applications of ADOL-C and three more formore advanced uses. The remaining sources are compiled into the library libad.a. Thirteenof the sixteen modules can be compiled with either C++ or ANSI C, and only the �rst fourin the following list are written in C++.adouble.c avector.c drivers.c utils.ctaputil1.c taputil2.c taputil3.c tayutil.chos_forward.c fov_forward.c hov_forward.c fos_reverse.chos_reverse.c fov_reverse.c hov_reverse.c driversc.cadouble.h avector.h adutils.h adutilsc.h usrparms.hdvlparms.h taputil1.h taputil2.h taputil3.h oplate.h tayutil.h26

The sixteen modules contain the following functions. The module adouble.c controlsthe nominal allocation and elementary operations for variables of the class adouble asde�ned in adouble.h. The module avector.c contains the routines for the elementaryoperations for the classes doublev and adoublev as de�ned in avector.h. The moduletayutil.c controls the storage and retrieval of Taylor series coe�cients during forwardand reverse sweeps, respectively. The modules taputil1.c, taputil2.c, and taputil3.ccontain all the functions and variables needed for the taping of arithmetic operations andfunction evaluations in an active section. The modules hos forward.c, fov forward.c,hov forward.c, fos reverse.c, fov reverse.c, hos reverse.c, and hov reverse.c consistof the core procedures for evaluating derivatives from a given tape. They are called fromvarious driver routines contained in the �les drivers.c and driversc.c; these modules arenatural places for additional user-de�ned drivers and utilities. The module utils.c containsthe routines trace on and trace o�.The user may modify the header �le usrparms.h in order to tailor the package toone's needs in the particular system environment as discussed in Section 4.2. To generatethe library libad.a one should use one of the executables <operating system>install (e.g.aixinstall) according to the given operating system. They call make with the appropriatemake�les; the source contains make�les for IBM RS/6000 and various other environments.Notice that the only �les that need to be compiled with a C++ compiler are adouble.c,avector.c, drivers.c, and utils.c. The user has to ensure that the suitable compilers andtheir corresponding libraries are in the path.6.1 Compiling and Linking C++ Programs with Active SectionsTo compile a C++ program that involves variables of type adouble or adoublev, one mustadd the directive #include \adouble.h" at the beginning of the program �le. Programsthat call on the various derivative evaluation routines must include the header adutils.h.For linking the resulting object codes, the options pointing to the header �les and the librarylibad.a must be used.6.2 Adding Quadratures as Special FunctionsLet us suppose an integral f(x) = Z x0 g(t)dtis evaluated numerically by a user-supplied functiondouble integral(double& x)Similarly, let us suppose that the integrand itself is evaluated by a user-supplied block ofC code integrand, which computes a variable with the �xed name val from a variable with27

the �xed name arg. In many cases of interest, integrand will simply be of the formf val = expression(arg) gIn general, the �nal assignment to val may be preceded by several intermediate calculations,possibly involving local automatic variables of type adouble, but no external or staticvariables of that type. However, integrand may involve local or global variables of typedouble or int, provided they do not depend on the value of arg. The variables arg andval are declared automatically; and as integrand is a block rather than a function, integrandshould have no header line.Now the function integral can be overloaded for adouble arguments and thus includedin the library of elementary functions by the following modi�cations.1. At the end of the �le adouble.c, include the full code de�ningdouble integral(double& x), and add the lineextend quad(integral, integrand);this is a macro that is extended to the full de�nition ofadouble integral(adouble& arg). Then remake the library libad.a.2. In the de�nition of the class adouble in adouble.h, add the statementfriend adouble integral(adouble&).In the �rst modi�cation, integral represents the name of the double function, whereasintegrand represents the actual block of C code.For example, in case of the arcos of the hyperbolic cosine, we have integral=acosh.Integrand can be written as f val = sqrt(arg*arg-1) gso that the line extend quad(acosh,val = sqrt(arg*arg-1))can be added to the �le adouble.c. A mathematically equivalent but longer representationof integrand is fadouble temp = arg;temp = temp � temp;val = sqrt(temp); g28

The integrands may call on any elementary function that has already been de�ned in adou-ble.c, so that one may also introduce iterated integrals.7 Example CodesThe following listings are all simpli�ed versions of codes that are contained in the examplessubdirectory */SRC/DEX of ADOL-C. In particular, we have left out timings and correctnesschecks, which are included in the full codes.7.1 Product ExampleThe �rst example evaluates the gradient and a Hessian-vector product for the functiony = f(x) = n�1Yi=0 xiusing the appropriate drivers gradient and hessian.#include "adouble.h"#include "adutils.h"#include <stream.h>main() {int n,i,j,counts[12];cout << "number of independent variables = ? \n";cin >> n;double* xp = new double[n]; // or: doublev xp(n);adouble* x = new adouble[n]; // or: adoublev x(n);for(i=0;i<n;i++)xp[i] = (i+1.0)/(2.0+i); // some initializationstrace_on(1); // tag =1, keep=0 by defaultadouble y = 1;for(i=0;i<n;i++){x[i] <<= xp[i]; // or x<<= xp outside the loopy *= x[i]; }double yp=0.0;y >>= yp;delete[] x; // Not needed if x adoublevtrace_off();tapestats(1,counts); // Reading of tape statisticscout<<"maxlive "<<counts[2]<<"\n"; 29

// print other tape statsdouble* g = new double[n]; // or: doublev g(n);gradient(1,n,xp,g); // gradient evaluation.doublem h(n,n);hessian(1,n,xp,h); // h equals (n-1)g since g isdouble errg =0; // homogeneous of degree n-1.double errh =0;for(i=0;i<n;i++)errg += abs(g[i]-yp/xp[i]); // vanishes analytically.for(i=0;i<n;i++) {for(j=0;j<n;j++) {if (i>j) // lower half of hessianerrh += abs(h[i][j]-g[i]/xp[j]); } }cout << yp-1/(1.0+n) << " error in function \n";cout << errg <<" error in gradient \n";cout << errh <<" consistency check \n";}7.2 Scalar ExampleThe second example function evaluates the n-th power of a real variable x in log2 n multipli-cations by recursive halving of the exponent. Since there is only one independent variable,the scalar derivative can be computed by using both forward and reverse, and the resultsare subsequently compared.#include "adouble.h"#include "adutils.h"#include <stream.h>adouble power(adouble x, int n) {adouble z=1;if (n>0) { // Recursion and branchesint nh =n/2; // that do not depend onz = power(x,nh); // adoubles are fine !!!!z *= z;if (2*nh != n) z *= x;return z; }else {if (n==0) return z; // The local adouble z dieselse return 1/power(x,-n); } // as it goes out of scope.} 30

The function power(...) above was obtained from the original undi�erentiated version bysimply changing the type of all doubles including the return variable to adoubles. The newversion can now be called from within any active section, as in the following main program.#include as abovemain() {int i,tag=1;cout<<"monomial degree=? \n"; // Input the desired degree.int n; cin >> n;/*Allocations and Initializations*/double* Y[1];*Y = new double[n+2];double* X[1]; // Allocate passive variables with*X = new double[n+4]; // extra dimension for derivativesX[0][0] = 0.5; // function value = 0. coefficientX[0][1] = 1.0; // first derivative = 1. coefficientfor(i=0; i < n+2; i++)X[0][i+2]=0; // further coefficients.double* Z[1]; // used for checking consistency*Z = new double[n+2]; // between forward and reverseadouble y,x; // Declare active variables/*Beginning of Active Section*/trace_on(1); // tag = 1 and keep = 0x <<= X[0][0]; // Only one independent vary = power(x,n); // Actual function cally >>= Y[0][0]; // Only one dependent adoubletrace_off(); // No global adouble has died/*End of Active Section */double u[1]; // weighting vectoru[0]=1; // for reverse callfor(i=0; i < n+2; i++) { // Note that keep = i+1 in callforward(tag,1,1,i,i+1,X,Y); // Evaluate the i-the derivativeif (i==0)cout << Y[0][i] << "=?" << value(y) << " should be the same \n";elsecout << Y[0][i] << "=?" << Z[0][i] << " should be the same \n";reverse(tag,1,1,i,u,Z); // Evaluate the (i+1)-st deriv.Z[0][i+1]=Z[0][i]/(i+1); } // Scale derivative to Taylorcoeff.}Since this example has only one independent and one dependent variable, forward andreverse have the same complexity and calculate the same scalar derivatives, albeit with aslightly di�erent scaling. By replacing the function power with any other univariate test31

function, one can check that forward and reverse are at least consistent. In the followingexample the number of independents is much larger than the number of dependents, whichmakes the reverse mode preferable.7.3 Determinant ExampleNow let us consider an exponentially expensive calculation, namely, the evaluation of adeterminant by recursive expansion along rows. The gradient of the determinant withrespect to the matrix elements is simply the adjoint (i.e., the matrix of cofactors). Hencethe correctness of the numerical result is easily checked by matrix-vector multiplication.The example illustrates the use of adouble arrays and pointers.#include as aboveadouble** A; // A is an n x n matrixint n; // k <= n is the orderadouble det(int k, int m) { // of the submatrixif(m == 0) return 1.0 ; // its column indiceselse { // are encoded in m.adouble* pt = A[k-1];adouble t =0 ;int s, p =1;if (k%2) s = 1; else s = -1;for(int i=0;i<n;i++) {int p1 = 2*p;if (m%p1 >= p) {t += *pt*s*det(k-1, m-p); // Recursive call to det.s = -s; }++pt;p = p1; }return t; }}As one can see, the overloading mechanism has no problem with pointers and looks exactlythe same as the original undi�erentiated function except for the change of type from doubleto adouble. If the type of the temporary t or the pointer pt had not been changed, acompile time error would have resulted. Now consider a corresponding calling program.#include as abovemain() {int i, m=1,tag=1,keep=1;cout << "order of matrix = ? \n"; // Select matrix size32

cin >> n;A = new adouble*[n];trace_on(tag,keep); // tag=1=keepdouble detout=0.0 , diag = 1.0; // here keep the intermediates forfor (i=0; i<n; i++) { // the subsequent call to reversem *=2;A[i] = new adouble[n];adouble* pt = A[i];for (int j=0;j<n; j++)A[i][j] <<= j/(1.0+i); //make all elements of A independentdiag += value(A[i][i]); //value(adouble) converts to doubleA[i][i] += 1.0; }det(n,m-1) >>= detout; // Actual function call.printf("\n %f =? %f should be the same \n",detout,diag);trace_off();double u[1];u[0] = 1.0;double* B = new double[n*n];reverse(tag,1,n*n,1,u,B);cout <<" \n first base? : ";for (i=0;i<n;i++) {adouble sum = 0;for (int j=0;j<n;j++) // The matrix A times the first nsum += A[i][j]*B[j]; // components of the gradient Bcout<<value(sum)<<" "; } // must be a Cartesian basis vectorcout<<"\n";}The variable diag should be equal to the determinant, because the matrix A is de�ned asa rank 1 perturbation of the identity.7.4 ODE ExampleFinally, we use the right-hand side of a nonlinear ordinary di�erential equation.#include as abovevoid tracerhs(short int tag, double* py, double* pyprime){adoublev y(3); //This time we left the parametersadoublev yprime(3); // passive and use the vector types.trace_on(tag);y <<= py; //Initialize and mark independents33

yprime[0] = -sin(y[2]) + 1e8*y[2]*(1-1/y[0]);yprime[1] = -10*y[0] + 3e7*y[2]*(1-y[1]);yprime[2] = -yprime[0] - yprime[1];yprime >>= pyprime; //Mark and pass dependentstrace_off(tag);}This function is a slight modi�cation of Robertson test problem given in Hairer and Wan-ner's book on the numerical solution of ODEs [10]. The Jacobian of the right-hand side haslarge negative eigenvalues, which make the ODE quite sti�. We have added some numer-ically benign transcendentals to make the di�erentiation more interesting. The followingprogram uses forode to calculate the Taylor series de�ned by the ODE at the given pointy0 and reverse as well as accode to compute the Jacobians of the coe�cient vectors withrespect to x0.#include as abovemain() {int i,j,deg;int n=3;doublev py(3);doublev pyp(3);cout << "degree of Taylor series =?\n";cin >> deg;doublem X(n,deg+1);double*** Z=new double**[n];double*** B=new double**[n];short** nz = new short*[n];for(i=0;i<n;i++) {py[i] = (i == 0) ? 1.0 : 0.0; // Initialize the base pointX[i][0] = py[i]; // and the Taylor coefficientnz[i] = new short[n]; // set up sparsity arrayZ[i]=*(new doublem(n,deg));B[i]=*(new doublem(n,deg));}tracerhs(1,py,pyp); // trace RHS with tag = 1forode(1,n,deg,X); // compute deg coefficientsreverse(1,n,n,deg-1,Z,nz); // U defaults to the identityaccode(n,deg-1,Z,B,nz);cout << "nonzero pattern:\n";for(i=0;i<n;i++) {for(j=0;j<n;j++)cout << nz[i][j]<<"\t";cout <<"\n"; }} 34

The pattern nz returned by accode is3 -1 41 2 23 2 4The original pattern nz returned by reverse is the same except that the negative entry �1was zero.A Extended FeaturesA.1 Conditional AssignmentsIn some situations it may be desirable to calculate the value and derivatives of a functionat arbitrary arguments by using a tape of the function evaluation at one argument andreevaluating the function and its derivatives using the given routines. This approach cansigni�cantly reduce run times, and it also allows one to port problem functions, in the formof the corresponding tape �les, into a computing environment that does not support C++but does support C or Fortran.Unfortunately, the evaluation utilities function, gradient, etc., may appear to workcorrectly but quite likely produce incorrect results if the program contains quadraturesand/or branches conditioned on the arguments or their descendents in the data
ow sense.The crux of the problem lies in the fact that the tape records only the operations that areexecuted during one evaluation of the function. It also has no way to evaluate integralssince the corresponding quadratures are never recorded on the tape.It appears unsatisfactory that, for example a simple table lookup of some physicalproperty forces the rerecording of a possibly much larger calculation. However, the basicphilosophy of ADOL-C is to overload arithmetic, rather than to generate a new programwith jumps between 'instructions', which would destroy the strictly sequential tape accessand require the infusion of substantial compiler technology. Therefore, we introduced thetwo constructs of conditional assignments and active integers as partial remedies to thebranching problem.In many cases, the functionality of branches can be replaced by conditional assignments.For this purpose, we provide a special function called condassign(a,b,c,d). Its callingsequence corresponds to the syntax of the conditional assignment a = b ? c : d, whichC++ inherited from C. However, here the arguments are restricted to be active or passivescalar arguments, and all expression arguments are evaluated before the test on b, which isdi�erent from the usual conditional assignment or the code segment.Suppose the original program contains the code segment35

if (condition)res = arg1;elseres = arg2;Here, only one of the expressions (or, more generally, program block) arg1 and arg2 isevaluated, which exactly constitutes the problem for ADOL-C. To obtain the correct valueres with ADOL-C, one may �rst execute both branches and then pick either arg1 or arg2using condassign(a,b,c,d). To maintain consistency with the original code, one has tomake sure that the two branches do not have any side e�ects that can interfere with eachother or may be important for subsequent calculations. The header �le adouble.h containsa de�nition of condassign(a,b,c,d) and condassign(a,b,c) for four/three passive argu-ments so that the modi�ed code without any di�erentiation can be tested for correctness.If there is no else part in a conditional assignment, one may call the three argument versioncondassign(a,b,c), which is logically equivalent to condassign(a,b,c,a) in that nothinghappens if b is nonpositive.A.2 Active SubscriptsIn many important procedures such as table lookup or numerical pivoting, the result of aconditional assignment is not a real variable but an integer that is subsequently used as anindex into an array of active reals. For that purpose we have introduced the class alongof active integers, which are implemented as a derived class of active doubles, so that allarithmetic operations involving them are recorded on the tape. The key functionality isthat of subscripting; that is for an along j the expressionsa[j] with a an adoublevA[j] with A an adoublemare considered and recorded as a binary operation between a or A and j. The resulting a[j]and A[j] behave like variables of type adouble and adoublev except that they may notoccur as arguments of the operators <<= and >>=.Using the conditional assignment of active integers, one can, for example, fully recorda function that involves Gaussian elimination with pivoting on a tape. In that case therecoding e�ort is minimal, and there is not much overhead at run time, either.A.3 Example Gaussian EliminationThe following example uses conditional assignments as well as active subscripts to illustratethe correct usage of these extended features of ADOL-C. In this example the elimination is36

performed with column pivots.void gausselim(int n, adoublem& A, adoublev& bv){ along i;adoublev temp(n);adouble r,rj,temps;int j,k,ik;for (k=0; k < n; k++) /* elimination loop */{ i = k;r = fabs(A[k][k]); /* initial pivot size */for (j=k+1; j<n; j++){ rj = fabs(A[j][k]); /* look for a larger element */condassign(i,(rj >r),j); /* in the same column */condassign(r,(rj >r),rj);} // endfortemp = A[i]; /* switch rows */A[i] = A[k];A[k] = temp;temps = bv[i];bv[i]=bv[k];bv[k]=temps;if (!value(A[k][k]))exit(1); /* Matrix singular! */temps= A[k][k];A[k] = A[k]/temps;bv[k] = bv[k]/temps;for (j=k+1; j<n; j++){ temps= A[j][k];A[j] -= temps*A[k];bv[j] -= temps*bv[k];} // endfor} // endfor elimination looptemp=0.0;for(k=n-1; k >= 0; k--)temp[k] = (bv[k]-(A[k]*temp))/A[k][k];bv=temp;return;} // end gausselim 37

This function can be called from any program that suitably initializes the components ofA and bv as independents. The resulting tape can be used to solve any nonsingular linearsystem of the same size and to get the sensitivities of the solution with respect to the systemmatrix and the right hand side.AcknowledgmentsParts of the ADOL-C source were developed by Jay Srinivasan, Chuck Tyner, and DuaneYoder. We are also indebted to Joe Chou (CADSI), George Corliss, Tom Epperly, BradKarp, Koichi Kubota, Bob Olson, Marcela Rosemblun, Jeng Yen (CADSI), and the TOMSreferees for helping in various ways with the development and documentation of ADOL-C.References[1] C. H. Bischof, A. Carle, G. F. Corliss, A. Griewank, and P. Hovland. ADIFOR: Gen-erating derivative codes from Fortran programs. Scienti�c Programming, 1(1):1{29,1992.[2] Brett Averick, Jorge Mor�e, Christian Bischof, Alan Carle, and Andreas Griewank.Computing large sparse Jacobian matrices using automatic di�erentiation. PreprintMCS{P348{0193, Argonne National Laboratory, 1993.[3] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial ValueProblems in Di�erential-Algebraic Equations. Elsevier (North Holland), 1989.[4] D. G. Cacuci. Sensitivity theory for nonlinear systems. I. Nonlinear functional analysisapproach. J. Math. Phys., 22(12):2794{2802, 1981.[5] D. G. Cacuci. Sensitivity theory for nonlinear systems. II. Extension to additionalclasses of responses. J. Math. Phys., 22(12):2803{2812, 1981.[6] Bruce Christianson. Reverse accumulation and accurate rounding error estimates fortaylor series. Optimization Methods and Software, pages 81-94, 1(92).[7] Andreas Griewank. Direct calculation of Newton steps without accumulating Jaco-bians. In T. F. Coleman and Yuying Li, editors, Large-Scale Numerical Optimization,pages 115 { 137. SIAM, Philadelphia, Penna., 1990.[8] Andreas Griewank. Achieving logarithmic growth of temporal and spatial complexity inreverse automatic di�erentiation. Optimization Methods and Software, 1:35{54, 1992.38

[9] Andreas Griewank and Shawn Reese. On the calculation of Jacobian matrices by theMarkowitz rule. In Andreas Griewank and George F. Corliss, editors, Automatic Dif-ferentiation of Algorithms: Theory, Implementation, and Application. SIAM, Philadel-phia, Penna., 1991.[10] E. Hairer and G. Wanner, Solving Ordinary Di�erential Equations II, Springer-Verlag,Berlin, 1991.[11] Jim E. Horwedel, Brian A. Worley, E. M. Oblow, and F. G. Pin. GRESS version1.0 users manual. Technical Memorandum ORNL/TM 10835, Oak Ridge NationalLaboratory, Oak Ridge, Tenn., 1988.[12] G. Kedem. Automatic di�erentiation of computer programs. ACM Trans. Math. Soft-ware, 6(2):150{165, June 1980.[13] Koichi Kubota. PADRE2, a FORTRAN precompiler yielding error estimates and sec-ond derivatives. In Andreas Griewank and George F. Corliss, editors, Automatic Dif-ferentiation of Algorithms: Theory, Implementation, and Application. SIAM, Philadel-phia, Penna., 251-262, 1991.[14] S. Linnainmaa. Taylor expansion of the accumulated rounding error. BIT (NordiskTidskrift for Informationsbehandling), 16(1):146{160, 1976.[15] G. M. Ostrovskii, Yu. M. Volin, and W. W. Borisov. �Uber die Berechnung vonAbleitungen. Wissenschaftliche Zeitschrift der Technischen Hochschule f�ur Chemie,Leuna-Merseburg, 13(4):382{384, 1971.[16] Louis B. Rall. Automatic Di�erentiation: Techniques and Applications, volume 120 ofLecture Notes in Computer Science. Springer Verlag, Berlin, 1981.[17] Louis B. Rall. Di�erentiation and generation of Taylor coe�cients in Pascal-SC. InUlrich W. Kulisch and Willard L. Miranker, editors, A New Approach to Scienti�cComputation, pages 291{309. Academic Press, New York, 1983.[18] B. Speelpenning. Compiling Fast Partial Derivatives of Functions Given by Algo-rithms. Ph.D. thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana-Champaign, Ill., January 1980.[19] Olivier Talagrand and P. Courtier. Variational assimilation of meteorological observa-tions with the adjoint vorticity equation { Part I. Theory. Q. J. R. Meteorol. Soc.,113:1311{1328, 1987.[20] R. E. Wengert. A simple automatic derivative evaluation program. Comm. ACM,7(8):463{464, 1964.[21] Paul Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behav-ioral Sciences. Ph.D/ thesis, Committee on Applied Mathematics, Harvard University,Cambridge, Mass., November 1974. 39

