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poorly conditioned problem.Considerations such as these motivated Bramble, Pasciak, and Schatz [3] to workwith coarse problems that involve all the nodes of the wirebasket. The wirebasketconsists of all nodes that belong to the closure of more than two subdomains; see Fig.1. It is then possible to design an interpolation procedure that is much less harmful.Other wirebasket-based algorithms have been suggested by Dryja [5] and Mandel [7],[8]. A problem with these algorithms is that they require the solution of the coarsewirebasket problem before the solution of the local problems can commence. With thevertex-based algorithms, all the problems can be solved simultaneously.We propose and analyze a new wirebasket-based method, which has the same su-perior convergence properties as the previous algorithms, but with the added featurethat the local problems and the coarse problem can be solved simultaneously.The new algorithm, like those of Bramble, Pasciak, and Schatz [3] and Mandel [7],[8], is an iterative substructuring algorithm. The preconditioner is constructed in sucha manner that the condition number is independent of the number of substructures and,very important, is also independent of the jumps in the coe�cients of the di�erentialequation between subdomains. We note that the additive Schwarz algorithms consideredby Dryja and Widlund [6], and Smith [9], [10], which use overlapping subdomains,converge very quickly for problems with slowly varying coe�cients. However, theirbehavior for problems with large jumps in the coe�cients is not fully understood.This paper is organized as follows. In the next section, we introduce the ellipticand �nite element problems. Section 3 contains a discussion of a vertex-based methodthat works well in two dimensions. Our new algorithm is introduced in Section 4 andis briey contrasted with those of Bramble, Pasciak, and Schatz [3] and Mandel [7], [8].Finally, in Section 5, we state and prove our theoretical results.2. The Finite Element Problem. We consider a scalar, second-order, self ad-joint, coercive, bilinear form a
(u; v) on 
 � R3 and, for simplicity, impose a homoge-neous Dirichlet condition on �0 � @
 and Neumann boundary conditions on @
 n �0:We assume the underlying elliptic operator has no zero order terms. The variationalproblem is then to �nd u 2 H1�0(
) such that,a(u; v) = (f; v); 8 v 2 H1�0(
):We introduce two levels of triangulations into substructures 
i of diameter O(H) andinto elements of diameterO(h). We assume shape regularity and that the substructuresand elements satisfy the usual rules of �nite element triangulations; see Ciarlet [4].V H(
) and V h(
) are the spaces of continuous, piecewise linear functions, on the twotriangulations, which vanish on �0. Our work can be extended to other �nite elementmodels.The discrete problem is then to �nd uh 2 V h(
) such thata(uh; vh) = (f; vh); 8 vh 2 V h(
):(1) If we expand uh in the standard nodal basis, uh = Pk xk�k; the variational problem2
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JJJJJ for each node on W .zW : vector with a component of oneIt is of the same length as zW :with @F j are one; all others are zero.z@F j : vector whose components associatedzF j : vector whose components associatedwith F j are one; all others are zero.nodes of F j:lies on F j and is of value one on the�F j : �nite element function whose supportlies on F j:uF j : �nite element function whose support

Nodes on the wirebasket: W Nodes on a face: F j
Nodes on the boundary of a face: @F jFig. 1. Nodel subsets associated with a substructure 
(1) can be written as the linear systemKx = f:The elements of the sti�ness matrix K are given byKij = a(�i; �j)and those of the right-hand side f byfi = (f; �i):The local contribution to the sti�ness matrix and right-hand side can be formedone subdomain at a time. The sti�ness matrix is then obtained by subassembly of these3



parts. If we order the nodes interior to the subdomains �rst followed by the nodes onthe subdomain's boundaries, we can write the linear system symbolically asXi 0@ K(i)II K(i)IBK(i)TIB K(i)BB 1A x(i)Ix(i)B ! =Xi  f (i)If (i)B ! :In the �rst step of most iterative substructuring algorithms, the unknowns in the interiorof the subdomains are eliminated. Elimination is done by calculating the Schur comple-ment with respect to the variables associated with the boundaries of the substructures.The resulting linear system isXi  K(i)II K(i)IB0 S(i)BB ! x(i)Ix(i)B ! =Xi 0@ f (i)If (i)B �K(i)TIB K(i)�1II f (i)B 1A ;where S(i) = S(i)BB = K(i)BB �K(i)TIB K(i)�1II K(i)IB:We write the reduced system as Sx = f:(2)The matrix S is obtained, from the S(i); by subassembly.An iterative substructuring algorithm is obtained by solving this reduced, Schurcomplement system using a preconditioned iterative method. Many of these algorithmsdo not require that the Schur complement be formed, since it needs to be availableonly in terms of a matrix-vector product. This product can be calculated, using thede�nition of S(i); at the expense of solving a Dirichlet problem on each subdomain. Thenew algorithm can be formulated in such a way as not to require the explicit calculationof S:3. The Vertex-based Method. The vertex-based method can be understood asa block diagonal preconditioner in a new basis. We give the description for problemsin three dimensions; the same approach also works for two dimensions. We are solvingthe reduced, Schur complement problem, i.e. equation (2), and therefore the interiorvariables xI play no role in the description. Let ~V h be the subspace of functions in V hthat are discrete harmonic in the interiors of the subdomains. Such functions satisfythe relation KIIxI +KIBxB = 0 and are completely de�ned by their values, xB; on theinterfaces between the substructures. We introduce basis functions ~�k of ~V h which takeon the same values as �k on the interfaces between substructures and are extended asdiscrete harmonic in the interiors of the subdomains.We �rst consider the substructures, which have diameters on the order of H; aslarge elements and consider the corresponding nodal functions, f jg; as a basis for thespace V H: These basis functions are discrete harmonic, and hence V H is a subspace of~V h. We decompose the space ~V h into~V h = V H � ( ~V h n V H):4



Any function in ~V h can then be represented in the basis f~�kg but also in the new partialhierarchical basis. We group the nodal basis functions into two groups, those associatedwith a vertex of a substructure, f~�kV g, and all the rest,f~�kEg; and represent uh byuh =Xj yVj j +Xk yEk ~�kE;and uh =Xj xVj ~�jV +Xk xEk ~�kE:For a single substructure the mapping between the two sets of coe�cients is givenby  y(i)Ey(i)V ! =  I �R(i)T0 I ! x(i)Ex(i)V ! ;  x(i)Ex(i)V ! =  I R(i)T0 I ! y(i)Ey(i)V ! :R(i)T simply represents linear interpolation from the space ~V h to V H . The values ofthe interpolant on an edge or face depend only on the values at the subdomain verticesthat belong to the boundary of that edge or face. Therefore, we can express the globalbasis change as yEyV ! =  I �RT0 I ! xExV ! ;  xExV ! =  I RT0 I ! yEyV ! :The elements of RT are not obtained by subassembly, but rather as the common valueof the corresponding elements in the appropriate matrix R(i)T :The preconditioner for the vertex-based methods is obtained by �rst making thischange to a partial hierarchical basis, and then using a simple block diagonal splitting.Let S(i) be the contribution to the Schur complement from the ith subdomain,S(i) = 0@ S(i)EE S(i)EVS(i)TEV S(i)V V 1A :We make a partial change to hierarchical basis, by post-multiplying byQ(i) =  I R(i)T0 I !and by pre-multiplying by Q(i)T : This givesQ(i)TS(i)Q(i) =  S(i)EE Non-zeroNon-zero ~S(i)V V ! :We now replace S(i)EE with its block diagonal part with a block for each edge and eachface, and we also drop the coupling between the vertices and the other nodes. Thisresults in  Ŝ(i)EE 00 ~S(i)V V ! :5



Other iterative substructuring algorithms can be obtained by replacing the diagonalblocks with spectrally equivalent matrices which might be more computationally e�-cient to work with.Finally, we return to the usual nodal basis by post-multiplying by Q(i)�1 and pre-multiplying by Q(i)�T :Ŝ(i) =  I 0�R(i) I ! Ŝ(i)EE 00 ~S(i)V V ! I �R(i)T0 I ! :(3)We construct the global preconditioner by subassembly,Ŝ =  I 0�R I ! ŜEE 00 ~SV V ! I �RT0 I ! :(4)The preconditioner is easily inverted to giveŜ�1 =  RTI ! ~S�1V V � R I �+  I0 ! Ŝ�1FF � I 0 � :Note that there are independent problems associated with each edge, each face, and thecoarse problem.We return briey to the local representation of the preconditioner. We note thatthe local contribution to the preconditioner, Ŝ(i); has the same null space as S(i): Thisleads to the very useful observation that it is possible to bound the condition numberof the preconditioned problem by bounds obtained on individual substructures. Thisimportant idea is used in Bramble, Pasciak, and Schatz [2], [3] and presented very clearlyin Mandel [7], [8]. This also makes it possible to show that the condition number isindependent of the jumps in the coe�cients between subdomains. Thus, ifciŜ(i) � S(i) � CiŜ(i); 8i;then mini ciŜ � S � maxi CiŜ;or equivalently �(Ŝ�1S) � maxi Cimini ci :We note that this analysis will work if and only ifnull(Ŝ(i)) = null(S(i)); 8i:The observation above appears as a theorem in Mandel [7].For scalar, second-order, elliptic problems without zero-order terms, the subdo-mains that have no given Dirichlet boundary data have a null space of the constant6



functions. Those with any given Dirichlet boundary data do not have a null space. Us-ing the above argument, we can conclude that the vertex-based method has a conditionnumber that is bounded independently of the number of subdomains.Dryja and Widlund [6] have shown that, in two dimensions, the vertex-basedmethod satis�es � � C(1 + log(H=h))2:In three dimensions the bound is given by� � C(H=h)(1 + log(H=h)):Throughout this paper, c and C are constants, independent of h and H: These boundsare sharp. The result for two dimensions is quite satisfactory, while that for threedimensions is disappointing. In the next section we discuss why there is so muchdi�erence and show how this understanding can lead to better algorithms in threedimensions.4. The Wirebasket-based Algorithms. The following Sobolev type inequality(see Bramble [1]) holds for �nite element functions in two dimensions:jjuh � �jj2L1(
i) � C(1 + log(H=h))juhj2H1(
i):Here � is any convex combination of the values of uh in 
i: Using this inequality, wecan show that the energy of the coarse mesh interpolant of uh can exceed that of uh byat most a factor of C(1 + log(H=h)):However, in three dimensions we have a much weaker boundjjuh � �jj2L1(
i) � C(H=h)juhj2H1(
i):Therefore, in this case, interpolating the value of uh from a vertex can result in aO(H=h) change in the energy. See Smith [10] for a detailed discussion of this point.Bramble, Pasciak, and Schatz [3] observed that, for three dimensions, there existsan alternative bound. Let � be any convex combination of values of uh on substructure
i. Then hjjuh � �jj2l2(Wi) � C(1 + log(H=h))juhj2H1(
i):(5)Here Wi represents the wirebasket on substructure 
i: The wirebasket-based schemesof Bramble, Pasciak, and Schatz [3] and Dryja [5] are based on calculating the averagevalue of uh on 
i and then interpolating these values onto the faces of the individualsubstructures.The use of the average value of uh over the substructure makes it impossible tosolve the coarse problem in parallel with the local problems. We can see this di�cultyby noting that the local contribution to the preconditioner can be written in the formof (3). However, the action of the two transformation matrices R(i)T generally providesdi�erent values on the face, since eachR(i)T also depends on values that do not belong toboth substructures. We therefore cannot express the global form of the preconditioneras in (4), and the coarse problem and face problems cannot be solved in parallel.7



4.1. The New Method. To introduce the new algorithm, we observe that theestimate (5) remains valid if we replace the entire wirebasket by a line segment of lengthcH: In the new algorithm we will interpolate averages for the parts of the wirebasketadjacent to each face; see Fig. 1.We construct the preconditioner locally, using a method similar to that of Section3, one substructure at a time, and obtain the preconditioner by subassembly. We �rstorder the nodes on the faces and then those on the wirebasket. The local contributionof substructure 
i to the Schur complement is given byS(i) = 0@ S(i)FF S(i)FWS(i)TFW S(i)WW 1A :Let T (i)T map the weighted average of the values of the boundary nodes of each face(the adjacent vertices and edges) to the nodes on the corresponding face; see Fig. 1. LetŜ(i)FF be the block diagonal part of S(i)FF with a block for each face. The local contributionto the preconditioner is thenŜ(i) =  I 0�T (i) I ! Ŝ(i)FF 00 Ĝ(i) ! I �T (i)T0 I ! :Note that the structure is similar to that of the preconditioner introduced in Section 3.We de�ne Ĝ(i) byx(i)TW Ĝ(i)x(i)W = min�w(i) (x(i)W � �w(i)z(i)W )TG(i)(x(i)W � �w(i)z(i)W ):(6)G(i) is given by �(H=h)I or �(H=h) times a constant (block) diagonal matrix and z(i)Wis a vector of all ones of the same dimension as x(i)W ; see Fig. 1. The optimizing �w(i)corresponds to the weighted average of the values of x on the wirebasket of substructure
i: The Ĝ(i) is constructed in this manner to force Ĝ(i), and hence Ŝ(i); to have a nullspace consisting of the constants. Since, for interior subdomains, this is also the nullspace for S(i); we immediately obtain that the condition number is independent of thenumber of subdomains (see Section 3). For subdomains with any prescribed Dirichletboundary data, the construction of the preconditioner is identical, except that the valueof uh at all the Dirichlet boundary nodes is constrained to be zero. In this case, theS(i) and Ŝ(i) do not have null spaces.The �(H=h); a scalar function of (H=h); is chosen to optimize the scaling betweenthe `coarse' problem and the `face' problems. Our results show that when �(H=h) =(1 + log(H=h)); the condition number of the preconditioned problem is bounded byC(1 + log(H=h))2 in three dimensions. If �(H=h) is chosen to be a constant, then thebound is C(1 + log(H=h))3.The global preconditioner is obtained by subassembly:Ŝ =  I 0�T I ! ŜFF 00 Ĝ ! I �T T0 I ! :8



Here ŜFF and Ĝ are obtained by subassembly from Ŝ(i)FF and Ĝ(i); respectively. As inSection 3, we have used the fact that the actions of the T (i)T for two adjacent subdomainsalong a shared face are identical. The preconditioner is easily inverted to giveŜ�1 =  T TI ! Ĝ�1 � T I �+  I0 ! Ŝ�1FF � I 0 � :Note that the resulting operator has independent parts associated with each face andthe coarse problem. This is not true of the methods considered by Bramble, Pasciak,and Schatz [3] and Mandel [7], [8].To derive an explicit formula for T (i), we need to introduce some more notation.Let z(i)F j be a vector of the same length as x(i)F with zeros at all nodes except thoseassociated with the face F j where the coe�cients are one. Let z(i)@F j be a vector of thesame length as x(i)W ; which is zero at all nodes except those on the boundary of the faceF j where the coe�cients are one (see Fig. 1). ThenT (i)T =Xj z(i)F j (z(i)T@F jG(i)z(i)@F j)�1z(i)T@F jG(i):4.2. The Previous Wirebasket Method. The original iterative substructuringwirebasket-based algorithm was proposed by Bramble, Pasciak, and Schatz [3]. Dryja[5] adapted the same type of wirebasket-based coarse problem to a Neumann-Dirichletalgorithm. In [7] and [8] Mandel introduced a more general presentation and inter-pretation of the Bramble, Pasciak, and Schatz algorithm, and we adopt this approachhere. Motivated by the desire to obtain condition numbers independent of the numberof substructures, Mandel proposed the following preconditioner. Let z(i) be the vectorof all ones of the same length as x(i): The local contribution to the preconditioner iswritten as x(i)T Ŝ(i)x(i) = min�w(i) (x(i) � �w(i)z(i))T  Ŝ(i)FF 00 G(i) ! (x(i) � �w(i)z(i)):Here G(i) is given by I or diag(S(i)WW )or a block diagonal part of S(i)WW : We no longer use a scale factor �(H=h):Remark: In Bramble, Pasciak, and Schatz [3] the problems associated with thefaces are solved using a fast, approximate technique, which does not require the explicitcalculation of S(i)FF : If we restrict our substructures, as in [3], to be brick-shaped, a similarapproach can be applied for this new algorithm as well. We would, in the preconditioner,replace each block associated with a face with the l1=20 operator considered in Bramble,Pasciak, and Schatz [3]. 9



4.3. Solving the Coarse Problem. For all of these methods based on averaging,we need to solve a quadratic problem of the formminx Xi 12(x(i) � �w(i)z(i))TB(i)(x(i) � �w(i)z(i))� xTf;with �w(i) de�ned by argmin�v (x(i) � �vz(i))TB(i)(x(i) � �vz(i)):For the new method this is the system associated with the matrix Ĝ. For the otherwirebasket-based methods, all the variables associated with the preconditioner are in-volved.We use the solution technique developed by Mandel [7],[8]. Bramble, Pasciak, andSchatz [3] used di�erent tools and provided a technique that appears less generallyapplicable.We write the problem asminx Xi min�w(i) 12(x(i) � �w(i)z(i))TB(i)(x(i) � �w(i)z(i))� xTf:We then take derivatives with respect to �w(i) and x. We obtain the linear systemz(i)TB(i)(x(i) � z(i) �w(i)) = 0; 8i;Bx�Xi B(i)z(i) �w(i) = f:(7)We then eliminate x and get the following system for the �w(i) :(z(i)TB(i)z(i)) �w(i) � z(i)TB(i)B�1Xj B(j)z(j) �w(j) = z(i)TB(i)B�1f:Once the �w(i) are known, x can be found by solving (7).5. Proofs of the Near Optimality of the Methods. In this section we provethe convergence properties of the new method and Mandel's method. We �rst givea series of lemmas needed, then state and prove our results. Many of the techniquesare similar to those of Bramble, Pasciak, and Schatz [3] and Dryja [5]. However, ouralgorithm is quite di�erent, as is some of the analysis.We �rst use the approach of Section 3 to reduce the calculation of the conditionnumber to that of a single subdomain.Lemma 5.1. The vertex-based method, the new method and the other wirebasket-based method satisfy �(Ŝ�1S) � maxi �max(Ŝ(i)+S(i))mini �min(Ŝ(i)+S(i)) :10



The starting point for the analysis of a large body of domain decomposition algo-rithms is the lemma.Lemma 5.2. In two dimensionsjjuhjj2L1(�
) � C(1 + log(H=h))jjuhjj2H1(
):Proof. See, e.g., Bramble, Pasciak, and Schatz [2] or Dryja [5]. 2In the rest of this section 
 � R3 is a substructure of diameter H; and � is itsboundary. We use the weighted H1 normjjujj2H1(
) = juj2H1(
) + 1H2 jjujj2L2(
);and the weighted H1=2 normjjujj2H1=2(�) = juj2H1=2(�) + 1H jjujj2L2(�):The discrete l2 norm along an interval I is de�ned simply byjjuhjj2l2 =Xj uh(xj)2;where the xj are the nodes along the interval I:The following lemma is a consequence of Lemma 5.2 and is obtained by applying itto two-dimensional slices one at a time. Proofs of the �rst and second parts are givenin Bramble, Pasciak, and Schatz [3] and Dryja [5], respectively.Lemma 5.3. Let I be a line segment in 
; of length cH: Thenhjjuhjj2l2(I) � C(1 + log(H=h))jjuhjj2H1(
):If, in addition, �uh is the average of uh on I; thenhjjuh � �uhjj2l2(I) � C(1 + log(H=h))juhj2H1(
):Lemma 5.4. Let �uh be the average of uh over an interval I; of length cH. Then(�uh)2 � C (1 + log(H=h))H jjuhjj2H1(
):In addition, (�uh)2 � C hH jjuhjj2l2(I):11



Proof. (�uh)2 � C h2H2 (Xi2I uh(xi))2� C h2H2h�1HXi2I uh(xi)2= C hH jjuhjj2l2(I)� C (1 + log(H=h))H jjuhjj2H1(
): 2Let � be the boundary of 
, and let F i � � be a face. Let �F i be the �nite elementfunction that is one at the interior nodes of F i and vanishes at all of the other nodeson �:Lemma 5.5. For �F i as de�ned above,j�F ij2H1=200 (F i) � C(1 + log(H=h))H:Proof. This is an intermediate result in the proof of Lemma 5.6. 2Lemma 5.6. Let uhF i be that �nite element function that is equal to uh on theinterior nodes of F i but zero on @F i: ThenjuhF ij2H1=200 (F i) � C(1 + log(H=h))2jjuhjj2H1=2(�):Proof. This is Lemma 4.3 in Bramble, Pasciak, and Schatz [3]. 2Lemma 5.7. Let I be a line segment in 
, of length cH; and let uhW be the �niteelement function that equals uh on I but that vanishes at all nodes not on I: ThenjuhW j2H1=2(�) � Chjjuhjj2l2(I):Proof. This is Lemma 4.1 in Bramble, Pasciak, and Schatz [3]. 2The following extension theorem is given in Bramble, Pasciak, and Schatz [3].Lemma 5.8. Let uh be a discrete harmonic, piecewise linear, �nite element func-tion in 
. Then there exists a C independent of uh,h and H such thatjuhjH1(
) � CjuhjH1=2(�):Lemma 5.9. Let �uh be the average of uh on an interval I, of length cH. ThenjuhF i � �uh�F ij2H1=200 (F i) � C(1 + log(H=h))2juhj2H1=2(�):12



Proof. We use Lemma 5.6, Lemma 5.4, and Lemma 5.5 to obtainjuhF i � �uh�F ij2H1=200 (F i) � 2juhF ij2H1=200 (F i) + 2j�uh�F ij2H1=200 (F i)� C(1 + log(H=h))2jjuhjj2H1(
):To conclude the argument, we note that the left-hand side is unchanged if a constantis added to uh. We therefore shift uh by a constant so that its average is zero. Wecan then replace the norm on the right-hand side with a semi-norm using a Poincar�einequality. We return to the H1=2 semi-norm using Lemma 5.8. 2The main result for the new algorithm is given in the following theorem.Theorem 5.1. For the new wirebasket method using G(i) = (1 + log(H=h))I; thecondition number is bounded by�(Ŝ�1S) � C(1 + log(H=h))2:Moreover, if G(i) = I; then �(Ŝ�1S) � C(1 + log(H=h))3:Proof. We prove the �rst result; the second result follows easily. We will establishx(i)T Ŝ(i)x(i)c(1 + log(H=h))2 � x(i)TS(i)x(i) � Cx(i)T Ŝ(i)x(i):(8)The proofs for interior subdomains and boundary subdomains are nearly identical. Theonly di�erence is that, for the boundary subdomains, the uh are constrained to be zeroon all nodes with prescribed Dirichlet data and hence lie in a subspace of ~V h:We provethe result for all uh 2 ~V h:We need the following de�nitions. Let �w be the average value of uh on the nodesof the wirebasket and �w@F i be the average value of uh on @F i: Recall that uhF i is the�nite element function that is equal to uh at the interior nodes of face F i, but is zeroon @F i: W = [@F i is the union of the line segments that make up the wirebasket, anduhW is the �nite element function that is equal to uh at the nodes of W , but is zero atall other nodes of �: Using this notation the lower bound of (8) is equivalent to�(H=h)hjjuh � �wjj2l2(W ) +Xi juhF i � �w@F i�F ij2H1=200 (F i) � c(1 + log(H=h))2juhj2H1=2(�):We bound each of the left-hand terms separately. We �rst note that�(H=h)hjjuh � �wjj2l2(W ) � c�(H=h)(1 + log(H=h))juhj2H1(
)� c(1 + log(H=h))2juhj2H1(
)� c(1 + log(H=h))2juhj2H1=2(�):13



This follows from Lemma 5.3 and Lemma 5.8. We bound the other terms using Lemma5.9, juhF � �w@F i�F ij2H1=200 (F i) � c(1 + log(H=h))2juhj2H1=2(�):We must now prove the upper bound,x(i)TS(i)x(i) � Cx(i)T Ŝ(i)x(i):We shift uh, by a constant, so that the average of uh on the wirebasket is zero, i.e.,�w = 0: The upper bound is then equivalent tojuhj2H1=2(�) � C(�(H=h)hjjuhjj2l2(W ) +Xi juhF i � �w@F i�F ij2H1=200 (F i)):We establish this bound byjuhj2H1=2(�) = jXi (uhF i � �w@F i�F i) + uhW +Xi �w@F i�F i j2H1=2(�)� C(Xi juhF i � �w@F i�F ij2H1=2(�) + juhW j2H1=2(�) +Xi j �w@F i�F i j2H1=2(�))� C(Xi juhF i � �w@F i�F ij2H1=200 (F i) + hjjuhjj2l2(W ) + (1 + log(H=h))hjjuhjj2l2(W ))� C(Xi juhF i � �w@F i�F ij2H1=200 (F i) + �(H=h)hjjuhjj2l2(W )):The bound follows from Lemma 5.7, Lemma 5.4, and Lemma 5.5. 2This trick of scaling a portion of the preconditioner with �(H=h) has been previouslyused by Dryja [5] for a version of the Neumann-Dirichlet algorithm.We conclude by proving the result for the previous wirebasket method. Note thatthis is essentially the result in Bramble, Pasciak, and Schatz [3].Theorem 5.2. For Mandel's version of the wirebasket algorithm, using G(i) = I;the condition number is bounded by�(Ŝ�1S) � C(1 + log(H=h))2:Proof. We will prove thatx(i)T Ŝ(i)x(i)c(1 + log(H=h))2 � x(i)TS(i)x(i) � Cx(i)T Ŝ(i)x(i):We shift uh by a constant so that its weighted average is zero. If we use the de�nitionsgiven in the previous theorem, the lower bound follows fromhjjuhjj2l2(W ) +Xi juhF ij2H1=200 (F i) � c(1 + log(H=h))2juhj2H1=2(�):This inequality follows from Lemma 5.3, Lemma 5.6, Lemma 5.8, and a quotient spaceargument. 14
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