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Summary. Most domain decomposition algorithms have been developed for prob-
lems in two dimensions. One reason for this is the difficulty in devising a satisfactory,
easy-to-implement, robust method of providing global communication of information
for problems in three dimensions. Several methods that work well in two dimensions
do not perform satisfactorily in three dimensions.

A new iterative substructuring algorithm for three dimensions is proposed. It is
shown that the condition number of the resulting preconditioned problem is bounded
independently of the number of subdomains and that the growth is quadratic in the
logarithm of the number of degrees of freedom associated with a subdomain. The
condition number is also bounded independently of the jumps in the coefficients of the
differential equation between subdomains. The new algorithm also has more potential
parallelism than the iterative substructuring methods previously proposed for problems
in three dimensions.

Subject classifications: AMS(MOS): 65F10, 65N30

1. Introduction. In all domain decomposition algorithms with more than just a
few subdomains, there is a crucial need for a mechanism to provide for global commu-
nication of information in each iteration. The convergence rate will decay rapidly with
an increasing number of subdomains if communication is purely local, e.g. between
neighboring subdomains only.

In two dimensions, global communication can be provided for by solving a problem
that is essentially the discretization of the operator on the coarse grid defined by the
subdomains. Such a method will be called a vertez-based algorithm. The coarse grid
solution provides values at the vertices of the subdomains; values at all other nodes, for
the coarse problem contribution to the solution, are obtained by interpolation. In three
dimensions, this interpolation can produce a component of large energy, resulting in a
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poorly conditioned problem.

Considerations such as these motivated Bramble, Pasciak, and Schatz [3] to work
with coarse problems that involve all the nodes of the wirebasket. The wirebasket
consists of all nodes that belong to the closure of more than two subdomains; see Fig.
1. Tt is then possible to design an interpolation procedure that is much less harmful.
Other wirebasket-based algorithms have been suggested by Dryja [5] and Mandel [7],
[8]. A problem with these algorithms is that they require the solution of the coarse
wirebasket problem before the solution of the local problems can commence. With the
vertex-based algorithms, all the problems can be solved simultaneously.

We propose and analyze a new wirebasket-based method, which has the same su-
perior convergence properties as the previous algorithms, but with the added feature
that the local problems and the coarse problem can be solved simultaneously.

The new algorithm, like those of Bramble, Pasciak, and Schatz [3] and Mandel [7],
[8], is an iterative substructuring algorithm. The preconditioner is constructed in such
a manner that the condition number is independent of the number of substructures and,
very important, is also independent of the jumps in the coefficients of the differential
equation between subdomains. We note that the additive Schwarz algorithms considered
by Dryja and Widlund [6], and Smith [9], [10], which use overlapping subdomains,
converge very quickly for problems with slowly varying coefficients. However, their
behavior for problems with large jumps in the coefficients is not fully understood.

This paper is organized as follows. In the next section, we introduce the elliptic
and finite element problems. Section 3 contains a discussion of a vertex-based method
that works well in two dimensions. Our new algorithm is introduced in Section 4 and
is briefly contrasted with those of Bramble, Pasciak, and Schatz [3] and Mandel [7], [8].

Finally, in Section 5, we state and prove our theoretical results.

2. The Finite Element Problem. We consider a scalar, second-order, self ad-
joint, coercive, bilinear form ag(u,v) on @ C R and, for simplicity, impose a homoge-
neous Dirichlet condition on I'y C 99 and Neumann boundary conditions on 9\ T'.
We assume the underlying elliptic operator has no zero order terms. The variational
problem is then to find u € H%O(Q) such that,

a(u,v) = (f,v), Vvée H%O(Q).

We introduce two levels of triangulations into substructures €2; of diameter O(H) and
into elements of diameter O(h). We assume shape regularity and that the substructures
and elements satisfy the usual rules of finite element triangulations; see Ciarlet [4].
VH(Q) and V() are the spaces of continuous, piecewise linear functions, on the two
triangulations, which vanish on I'y. Our work can be extended to other finite element
models.

The discrete problem is then to find u" € V*(Q2) such that

(1) a(uh,vh) = (f,vh), Vol e Vh(ﬂ).

If we expand u” in the standard nodal basis, u" = 3, x4 ér, the variational problem
2



Nodes on the wirebasket: W Nodes on a face: FY

zw: vector with a component of one
for each node on W.

Zsps: vector whose components associated
with 0I7 are one; all others are zero.
It is of the same length as zyy.

Zps: vector whose components associated
with £ are one; all others are zero.

Uy finite element function whose support
lies on F7.

Or;: finite element function whose support
lies on F7 and is of value one on the

nodes of 9.

Nodes on the boundary of a face: 9F7
Fra. 1. Nodel subsets associated with a substructure {2

(1) can be written as the linear system
Kz =f.
The elements of the stiffness matrix K are given by
Kij = a(¢i, ;)
and those of the right-hand side f by
fi= ([ 9i)

The local contribution to the stiffness matrix and right-hand side can be formed
one subdomain at a time. The stiffness matrix is then obtained by subassembly of these



parts. If we order the nodes interior to the subdomains first followed by the nodes on
the subdomain’s boundaries, we can write the linear system symbolically as

3 Kip Ko ( oy ) _y ( i ) .
AR Kis )\l ) TS
In the first step of most iterative substructuring algorithms, the unknowns in the interior
of the subdomains are eliminated. Elimination is done by calculating the Schur comple-

ment with respect to the variables associated with the boundaries of the substructures.
The resulting linear system is

s (MR () A
N AN e WL 0 ¥

where

We write the reduced system as
(2) Sx = [.

The matrix S is obtained, from the S, by subassembly.

An iterative substructuring algorithm is obtained by solving this reduced, Schur
complement system using a preconditioned iterative method. Many of these algorithms
do not require that the Schur complement be formed, since it needs to be available
only in terms of a matrix-vector product. This product can be calculated, using the
definition of S, at the expense of solving a Dirichlet problem on each subdomain. The
new algorithm can be formulated in such a way as not to require the explicit calculation

of S.

3. The Vertex-based Method. The vertex-based method can be understood as
a block diagonal preconditioner in a new basis. We give the description for problems
in three dimensions; the same approach also works for two dimensions. We are solving
the reduced, Schur complement problem, i.e. equation (2), and therefore the interior
variables z; play no role in the description. Let V" be the subspace of functions in V"
that are discrete harmonic in the interiors of the subdomains. Such functions satisty
the relation Kjjx;+ Kjpxp = 0 and are completely defined by their values, xg, on the
interfaces between the substructures. We introduce basis functions ¢F of V" which take
on the same values as ¢* on the interfaces between substructures and are extended as
discrete harmonic in the interiors of the subdomains.

We first consider the substructures, which have diameters on the order of H, as
large elements and consider the corresponding nodal functions, {1/’}, as a basis for the
space V. These basis functions are discrete harmonic, and hence V¥ is a subspace of
V. We decompose the space V" into

VE=vH e W\ v,
4



Any function in V" can then be represented in the basis {qzk} but also in the new partial
hierarchical basis. We group the nodal basis functions into two groups, those associated
with a vertex of a substructure, {#} }, and all the rest,{¢%}, and represent u” by

u' = ZyVﬂZ)j + ZyEkq;kEv
7 k
and
ul = Z:L'qu;{/ + Z:L'Equ%
7 k

For a single substructure the mapping between the two sets of coefficients is given

by
(?Jg)):(f—“)T)(wg)) (xg)):(] “)T)(?Jg))‘
gt 0 I 2 ) Y 0 I gt

RW” simply represents linear interpolation from the space V" to V#. The values of
the interpolant on an edge or face depend only on the values at the subdomain vertices
that belong to the boundary of that edge or face. Therefore, we can express the global
basis change as

) =0 7)) ()= ) ()

The elements of RT are not obtained by subassembly, but rather as the common value
of the corresponding elements in the appropriate matrix ROT.

The preconditioner for the vertex-based methods is obtained by first making this
change to a partial hierarchical basis, and then using a simple block diagonal splitting.
Let S be the contribution to the Schur complement from the 7th subdomain,

g0 _ ( S kv ) |
Sgv Svv

We make a partial change to hierarchical basis, by post-multiplying by

: I RO
(i) _
=0

and by pre-multiplying by Q(i)T. This gives
Sgg Non-zero )

O g — o
v v ( Non-zero S‘(}%/

We now replace S}(EZ}E with its block diagonal part with a block for each edge and each
face, and we also drop the coupling between the vertices and the other nodes. This

results in



Other iterative substructuring algorithms can be obtained by replacing the diagonal
blocks with spectrally equivalent matrices which might be more computationally effi-
cient to work with.

Finally, we return to the usual nodal basis by post-multiplying by QO™ and pre-
multiplying by Q™"

40 OT
) s 1 0 vp 0 I —RY"
RO 0o S0 Jlo 1

We construct the global preconditioner by subassembly,

) IS | F i

The preconditioner is easily inverted to give

5’—1:(3;)5*;;(3 1)+(é)5“;;(1 0).

Note that there are independent problems associated with each edge, each face, and the
coarse problem.

We return briefly to the local representation of the preconditioner. We note that
the local contribution to the preconditioner, g(i), has the same null space as S, This
leads to the very useful observation that it is possible to bound the condition number
of the preconditioned problem by bounds obtained on individual substructures. This
important idea is used in Bramble, Pasciak, and Schatz [2], [3] and presented very clearly
in Mandel [7], [8]. This also makes it possible to show that the condition number is
independent of the jumps in the coefficients between subdomains. Thus, if

;S0 < g0 < ¢, 50 Vi,
then
miincig <5< max CZS,
or equivalently

A max; C;

k(STLS) <

min; ¢;
We note that this analysis will work if and only if
null(5@) = null(5©), Vi,

The observation above appears as a theorem in Mandel [7].
For scalar, second-order, elliptic problems without zero-order terms, the subdo-
mains that have no given Dirichlet boundary data have a null space of the constant
6



functions. Those with any given Dirichlet boundary data do not have a null space. Us-
ing the above argument, we can conclude that the vertex-based method has a condition
number that is bounded independently of the number of subdomains.

Dryja and Widlund [6] have shown that, in two dimensions, the vertex-based
method satisfies

k< C(l1+ log(H/h))z.
In three dimensions the bound is given by
< CUH/M)(1 +log(H/R)).

Throughout this paper, ¢ and C'" are constants, independent of A and H. These bounds
are sharp. The result for two dimensions is quite satisfactory, while that for three
dimensions is disappointing. In the next section we discuss why there is so much
difference and show how this understanding can lead to better algorithms in three
dimensions.

4. The Wirebasket-based Algorithms. The following Sobolev type inequality
(see Bramble [1]) holds for finite element functions in two dimensions:

[lu" = al[f oy < C(1 + log(H /)" [31q,)-

Here « is any convex combination of the values of u” in ;. Using this inequality, we
can show that the energy of the coarse mesh interpolant of u” can exceed that of u* by
at most a factor of C(1 +log(H/h)).

However, in three dimensions we have a much weaker bound
[u" — e[l iy < COH/B) " g,

Therefore, in this case, interpolating the value of u" from a vertex can result in a

O(H/h) change in the energy. See Smith [10] for a detailed discussion of this point.
Bramble, Pasciak, and Schatz [3] observed that, for three dimensions, there exists

an alternative bound. Let a be any convex combination of values of u” on substructure

;. Then
(5) hl|u" = allfgry < C(1+log(H/h)) "3 g,

Here W; represents the wirebasket on substructure ;. The wirebasket-based schemes
of Bramble, Pasciak, and Schatz [3] and Dryja [5] are based on calculating the average
value of u" on €; and then interpolating these values onto the faces of the individual
substructures.

The use of the average value of u” over the substructure makes it impossible to
solve the coarse problem in parallel with the local problems. We can see this difficulty
by noting that the local contribution to the preconditioner can be written in the form
of (3). However, the action of the two transformation matrices RW” generally provides
different values on the face, since each RO also depends on values that do not belong to
both substructures. We therefore cannot express the global form of the preconditioner
as in (4), and the coarse problem and face problems cannot be solved in parallel.
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4.1. The New Method. To introduce the new algorithm, we observe that the
estimate (5) remains valid if we replace the entire wirebasket by a line segment of length
cH. In the new algorithm we will interpolate averages for the parts of the wirebasket
adjacent to each face; see Fig. 1.

We construct the preconditioner locally, using a method similar to that of Section
3, one substructure at a time, and obtain the preconditioner by subassembly. We first
order the nodes on the faces and then those on the wirebasket. The local contribution
of substructure €; to the Schur complement is given by

G0 _ ( Skk S ) |

T i
Sty SWw

Let 70" map the weighted average of the values of the boundary nodes of each face
(the adjacent vertices and edges) to the nodes on the corresponding face; see Fig. 1. Let
S’g} be the block diagonal part of Sf(;}? with a block for each face. The local contribution
to the preconditioner is then

o 10 SORENY I —T®"
R ACEY 0 GO 0o I ‘

Note that the structure is similar to that of the preconditioner introduced in Section 3.

We define G by

G is given by 6(H/h)I or 6(H/h) times a constant (block) diagonal matrix and ZI(/;/)
is a vector of all ones of the same dimension as :1;%,); see Fig. 1. The optimizing w(®
corresponds to the weighted average of the values of x on the wirebasket of substructure
Q;. The G is constructed in this manner to force G(i), and hence S(i), to have a null
space consisting of the constants. Since, for interior subdomains, this is also the null
space for S we immediately obtain that the condition number is independent of the
number of subdomains (see Section 3). For subdomains with any prescribed Dirichlet
boundary data, the construction of the preconditioner is identical, except that the value
of u" at all the Dirichlet boundary nodes is constrained to be zero. In this case, the
S@ and S do not have null spaces.

The 6(H/h), a scalar function of (H/h), is chosen to optimize the scaling between
the ‘coarse’ problem and the ‘face’ problems. Our results show that when 6(H/h) =
(1 4+ log(H/h)), the condition number of the preconditioned problem is bounded by
C(1 4+ log(H/h))* in three dimensions. If §( H/h) is chosen to be a constant, then the
bound is C'(1 + log(H/R))>.

The global preconditioner is obtained by subassembly:

g 10 Spr 0 I =17
A\ =T I 0 G o I /
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Here Spp and G are obtained by subassembly from Sf(;}? and G(i), respectively. As in
Section 3, we have used the fact that the actions of the 79" for two adjacent subdomains
along a shared face are identical. The preconditioner is easily inverted to give

s (e ) () g (1 0).

Note that the resulting operator has independent parts associated with each face and
the coarse problem. This is not true of the methods considered by Bramble, Pasciak,

and Schatz [3] and Mandel [7], [8].

To derive an explicit formula for 7', we need to introduce some more notation.

Let Zgj) be a vector of the same length as :1;%) with zeros at all nodes except those
associated with the face IV where the coefficients are one. Let Zg}] be a vector of the
(i)

same length as ay;, which is zero at all nodes except those on the boundary of the face

Y

F7 where the coefficients are one (see Fig. 1). Then

T &) O ~G) 6 =1 6T ~G
O = 3 ) (i G 5i) 2 GO
J

4.2. The Previous Wirebasket Method. The original iterative substructuring
wirebasket-based algorithm was proposed by Bramble, Pasciak, and Schatz [3]. Dryja
[5] adapted the same type of wirebasket-based coarse problem to a Neumann-Dirichlet
algorithm. In [7] and [8] Mandel introduced a more general presentation and inter-
pretation of the Bramble, Pasciak, and Schatz algorithm, and we adopt this approach
here. Motivated by the desire to obtain condition numbers independent of the number
of substructures, Mandel proposed the following preconditioner. Let () be the vector
of all ones of the same length as (9. The local contribution to the preconditioner is
written as

&(%)
DT &) (i () ()G 0 D ().
00 S()x():mm(x()—w()z())T( v G<i>)($()_w()z())'

()
Here G is given by
1 or diag(SI(/Ii,)W)

or a block diagonal part of SI(/QW. We no longer use a scale factor 6( H/h).

Remark: In Bramble, Pasciak, and Schatz [3] the problems associated with the
faces are solved using a fast, approximate technique, which does not require the explicit
calculation of Sf(;}? If we restrict our substructures, as in [3], to be brick-shaped, a similar
approach can be applied for this new algorithm as well. We would, in the preconditioner,
replace each block associated with a face with the l(l)/2 operator considered in Bramble,

Pasciak, and Schatz [3].



4.3. Solving the Coarse Problem. For all of these methods based on averaging,
we need to solve a quadratic problem of the form

with w® defined by
arg min(z — 52NTBEO (L) — 520,

For the new method this is the system associated with the matrix . For the other
wirebasket-based methods, all the variables associated with the preconditioner are in-
volved.

We use the solution technique developed by Mandel [7],[8]. Bramble, Pasciak, and
Schatz [3] used different tools and provided a technique that appears less generally
applicable.

We write the problem as

min m(in ~(2' — @O NTBO () _ 500y _ T,

We then take derivatives with respect to @Y and x. We obtain the linear system

Z(i)TB(i)(x(i) — 209y = 0, Ve,
- Br—" BO:0gl) — .

We then eliminate = and get the following system for the w(" :

T

(007 BOL0)® _ 07 BOB-15 g0 W5l = 0T OB,
J

Once the @) are known, x can be found by solving (7).

5. Proofs of the Near Optimality of the Methods. In this section we prove
the convergence properties of the new method and Mandel’s method. We first give
a series of lemmas needed, then state and prove our results. Many of the techniques
are similar to those of Bramble, Pasciak, and Schatz [3] and Dryja [5]. However, our
algorithm is quite different, as is some of the analysis.

We first use the approach of Section 3 to reduce the calculation of the condition
number to that of a single subdomain.

Lemma 5.1. The vertez-based method, the new method and the other wirebasket-
based method satisfy

max; )\max(é’(iﬁ S(i))
min; Ain (SO S0
10
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The starting point for the analysis of a large body of domain decomposition algo-
rithms is the lemma.
Lemma 5.2. In two dimensions

0|y < C L+ log(H/h))|[u" (710

Proof. See, e.g., Bramble, Pasciak, and Schatz [2] or Dryja [5]. O
In the rest of this section @ C R? is a substructure of diameter H, and T is its

boundary. We use the weighted H' norm

1
||U||12111(Q) = |U|12111(Q) + ﬁ||u||%2(n)a

and the weighted H'/? norm

||U||12111/2(r) = |u|%11/2(r) + EHUH%Q(F)‘

The discrete [* norm along an interval I is defined simply by
12 = 3 e )2,
J

where the z; are the nodes along the interval 1.

The following lemma is a consequence of Lemma 5.2 and is obtained by applying it
to two-dimensional slices one at a time. Proofs of the first and second parts are given
in Bramble, Pasciak, and Schatz [3] and Dryja [5], respectively.

Lemma 5.3. Let I be a line segment in ), of length ¢cH. Then

hl[u® |y < C L+ log(H/h)|[u"|[1(0)-
If, in addition, u" is the average of u" on I, then

Rl — |7y < C(1 4 log(H/h))|[u"|F (g

Lemma 5.4. Let u" be the average of u" over an interval I, of length cH. Then

1+ log(H/h))

_ (
(a")}? <C 1 ™11 (@)

In addition,

B h
(a")? < CEHU}LH%?(I)-
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Proof.
52

M2 o« o By V2
W< ()
< Ch—zh_IHZuh(xi)z
e i€l
h
= CE||Uh||122(1)
1+ log(H/h
SR LD :

Let I' be the boundary of Q, and let F'* C I' be a face. Let 0z be the finite element
function that is one at the interior nodes of F* and vanishes at all of the other nodes
on I'.

Lemma 5.5. For 0p: as defined above,

sy < C(L+ log(H/R))H.

Hyl* (7

Proof. This is an intermediate result in the proof of Lemma 5.6. O
Lemma 5.6. Lel u, be that finite element function that is equal to u" on the
interior nodes of F'* but zero on OF". Then

|ul 21/2 oy S CO(1+ log(H/h))*[[u"|31/2r-
00 () o)

Proof. This is Lemma 4.3 in Bramble, Pasciak, and Schatz [3]. O
Lemma 5.7. Let I be a line segment in Q, of length cH, and let ufy be the finite
element function that equals u" on I but that vanishes at all nodes not on I. Then

ly Broragey < CHllu [y
Proof. This is Lemma 4.1 in Bramble, Pasciak, and Schatz [3]. O
The following extension theorem is given in Bramble, Pasciak, and Schatz [3].

Lemma 5.8. Let u" be a discrete harmonic, piecewise linear, finite element func-
tion in Q. Then there exists a C independent of u",h and H such that

|uh|H1(Q) S C|uh|H1/2(F).

Lemma 5.9. Let u" be the average of v on an interval I, of length cH. Then

2oy S OO+ og(HIR) I By oy

Hd® (F
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Proof. We use Lemma 5.6, Lemma 5.4, and Lemma 5.5 to obtain

2
Hol? (Fi)

2|ul

lulti — a0 2 ot 20a"0pi |

Hol*(F Hol? (Fi)

< O+ log(H/h))P[[u" I 0)-

To conclude the argument, we note that the left-hand side is unchanged if a constant
is added to u*. We therefore shift u" by a constant so that its average is zero. We
can then replace the norm on the right-hand side with a semi-norm using a Poincaré
inequality. We return to the H'/? semi-norm using Lemma 5.8. O
The main result for the new algorithm is given in the following theorem.
Theorem 5.1. For the new wirebasket method using G = (1 4 log(H/h))I, the

condition number is bounded by
k(S71S) < C(1 + log(H/h))?.
Moreover, if G =1, then

k(5718) < C(1 + log(H/R))?.

Proof. We prove the first result; the second result follows easily. We will establish

)T &(8) (4
) 207 §(0) 4 (0) < 207 GO0 <
c(1 4 log(H/h))?

The proofs for interior subdomains and boundary subdomains are nearly identical. The
only difference is that, for the boundary subdomains, the u” are constrained to be zero
on all nodes with prescribed Dirichlet data and hence lie in a subspace of V. We prove
the result for all u" € V7.

We need the following definitions. Let w be the average value of u” on the nodes
of the wirebasket and w?" be the average value of u” on OF°. Recall that u%z is the
finite element function that is equal to u” at the interior nodes of face F, but is zero
on OF". W = UJF" is the union of the line segments that make up the wirebasket, and
ult, is the finite element function that is equal to u” at the nodes of W, but is zero at

all other nodes of I'. Using this notation the lower bound of (8) is equivalent to

; < e(1 + log(H/h))*[u" [Faye(r).

OCH )Ml = iz + D = 0™ O o

We bound each of the left-hand terms separately. We first note that

S(H/R)h||u" — wol[gyy < cd(H/R)(1 4 1og(H/h))u" 31 q)
< (1 +log(H/h))?[u" | q
<

o1+ log(H/h))* " [ -

13



This follows from Lemma 5.3 and Lemma 5.8. We bound the other terms using Lemma

5.9,

’L
july — O ?

We must now prove the upper bound,
M7 5020 < 0T S04,

We shift u*, by a constant, so that the average of u”" on the wirebasket is zero, i.e.,
w = 0. The upper bound is then equivalent to

" s 2y < COHB R By + D [ — @™ O3

1/2(Fz))
We establish this bound by

W ey = 1 =0 ) 4 gy + 30" O]

H1/2(T)

< O b — & 0

ey e lhee + Z @ O B )

S C(Z |qu - H)aFler

2oy I oy + (U Yog(H /1))l )

Y2 (R 5(H/h)h||uh||122(vv))-

The bound follows from Lemma 5.7, Lemma 5.4, and Lemma 5.5. O

This trick of scaling a portion of the preconditioner with 6( H/h) has been previously
used by Dryja [5] for a version of the Neumann-Dirichlet algorithm.

We conclude by proving the result for the previous wirebasket method. Note that
this is essentially the result in Bramble, Pasciak, and Schatz [3].

Theorem 5.2. For Mandel’s version of the wirebasket algorithm, using G =
the condition number is bounded by

K(S7LS) < C(1 + log(H/h))?.

Proof. We will prove that

x(i)TS’(i)x(i) ( )
<z
(1 +log(H[h)? ~ -

We shift u” by a constant so that its weighted average is zero. If we use the definitions
given in the previous theorem, the lower bound follows from

h||uh||122(W) + Z |u?7" 3’{30/2(}71)

< (1 + log(H /M) Pl By oqry

This inequality follows from Lemma 5.3, Lemma 5.6, Lemma 5.8, and a quotient space
argument.
14



Lemma 5.7 implies the upper bound:

|uh|12111/2(r) = |Zu%i—|—u{ﬁv|ip/2(r)
K3

< O |
K3

%1/2@) + |U}VLV|12111/2(F))

?’{(}0/2(}71‘) +h||uh||122(W)) O

Remark: The bound on the condition number for both wirebasket-based algorithms

is essentially the same. However, the analysis gives no indication how the condition
numbers for the two methods compare. This can only be decided by numerical compu-

tations.
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