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Abstract

We study the long-time behavior of solutions of Burgers’ equation
with nonlocal nonlinearities u; = Uz, + cuuy, + % (a||u(~, H|P-t + b) u,
O<x<l,a,e€ ,b>0,p>1, subject to u(0,t) = u(l,t) = 0. A
stability—instability analysis is given in some detail, and some finite-
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1 Introduction

In this paper we consider the following initial-boundary value problem:

1
Uy = Uge + EUU + 5 (aHu(-,t)Hp_l + b) u, 0<z<l1, t>0,
w(0,) = u(1,1) = 0, t>0, (P)
w(z,0) = ug(x), 0, <z <1.

Here a, b, ¢, and p are given constants, with ¢ > 0 (without loss of
generality), b > 0, and p > 1; and ug(-) is a continuous function with
up(0) = up(1) = 0. Moreover, we take

1 1/q
Jut-, 0l = ( / |u<x,t>|qu) .

In this paper, we require that wg > 0. Then by the maximum principle,
u(-,t) > 0 for all ¢ in the existence interval.

Our interest in (P) is twofold. First, (P) is closely related to a one-
dimensional turbulence model proposed by Burgers ([2], [3]) and studied
by Horgan and Olmstead [8]. (See also Drazin and Reid [5].) The major
difference between (P) and the earlier model is the use of the L? norm
in (P) rather than the L? norm. A number of authors ([1], [6], [8], [12])
have investigated nonlocal problems as models for local problems; they also
restricted their attention to the case ¢ = 2. To the best of our knowledge, no
one has considered problems in which a convective term (euu,) is present.
Yet, convective terms have a remarkable effect on the dynamical behavior
of solutions of equations. For example, consider

1
ut:um—l—guux—l—§bu, 0<e<l, t>0,
u(0,t) = u(l,t) =0, t>0,
uw(z,0) = ug(z) > 0, 0<z<1.

When ¢ = 0 and b > 272, this problem possesses the exponentially grow-

ing solution e(b/2=7% )t iy mx, whereas for ¢ > 0, all solutions are bounded
for any b (since a supersolution of the form M(1 — az) with large M and



a € (0,1) exists). We shall see that this phenomenon persists, although to
a somewhat less pronounced effect, for (P).

The second reason for our interest in (P) is that (with b = 0) it is closely
related to the same initial-boundary value problem for the equation

Uy = Uy + ty + aulP " u, (1.1)

where the nonlocal nonlinearity is replaced by the more standard local term.
This problem was studied extensively in [4] and [11], where the stabilizing
effect of convective terms was noted. The study of (P) was taken up with
the objective of obtaining analogous results for a closely related problem. It

turns out that the results we derived for (P) are more complete than those
for (1.1) obtained in [4] and [11].

In [14], Straughan et al. consider, from a computational point of view,
the same initial-boundary value problem for

Lu = uy + 2uu, — R_lum,

where
u — Ruljul|?,  or
Lu=<% u, or
u+ Rullul .

Here || || denotes the L? norm, and R > 0 can be thought of as the Reynolds
number. Under appropriate scaling, this problem is included in (P) when
g = 2. In particular, we are able to verify theoretically for (P) all except
one of the numerical observations made in [14].

The plan of our paper is as follows. In Section 2, we state the results in
the absence of convection. In Section 3, we characterize the set of stationary
solutions of (P) when ¢ > 0. In Section 4, we discuss the long-time behavior
of solutions of (P), including stability, asymptotic stability, global existence,
and nonexistence. The necessary local existence theorems and comparison
theorems are discussed in Appendix A. These are standard but we could
not find any reference to such results for nonlocal problems of the type
considered here. In Appendix B, we gave the proof of a technical inequality,
namely, that of Lemma 3.2.



2 Discussion for the Case ¢ =0

In this section, we consider the following problem:

1
ut:um—l-§(aHu(-,t)Hp_1—|—b) w, O<z<l1, t>0,
0
w(0,1) = u(1,4) = 0, t>0, P
u(z,0) = ug(x), 0<a<1.

Because (P?) is an explicitly resolvable problem, we can easily examine
the questions of stability, global existence, and nonexistence of nonnegative
solutions.

First, for the stationary solutions of (P?), we need to solve

1 _

v”—|—§ (aHva l-l-b)vzo, 0<z<l, (59)
v(0) =v(1)=0.

The nonnegative solutions of (S°) must be in the form v(z) = c1p1(2) =
¢ sin Tx. Substituting such v in the equation, we find

1/ .
R (act I[P~ +0) = 0. (2.1)

Thus, for a > 0, there is no positive solution when b > 272 and one positive
solution when b < 272. For a < 0, there exists a unique positive solution
when b > 272 but none when b < 272,

Next, for (P?), we seek solutions of the form

uw(z,t) = i_o: an(t)n(2), (2.2)
where ¢, (2) = sinnmz. Let f(t) = |Ju(-,1)||P~! = (/01 i_o: AnPn dx) ' .

Through a straightforward computation, we have

A=) [ £ (n) dn

f(t) = (h(t))" e ; (2.3)

where




From (2.3), after a quadrature, we can rewrite f(¢) as follows:

p-1)

s =eor /-2 Faytan] .
Let
1w = [ Wy (2.5)

If b < 272, it follows that H(t) — H., < oo for some constant H,, which
is proportional to |an(0)| where N is the smallest integer such that a,, # 0.
Thus, if a(p—1)H~ < 2, which will be the case if an(0) is sufficiently small,
then f(t) — 0 as t — oo, and the trivial solution is stable in L?. On the
other hand, if a(p — 1)Hs, > 2, then clearly f(t) — oo in finite time, so
some solutions of (P%) blow up in finite time. Finally, if a(p — 1)H., = 2,
then f(t) can have a finite, nonzero limit as ¢ — co. This situation occurs,
for example, when u is a stationary solution of (P?).

To show that v(z) is unstable, we look for solutions of (P?) of the form

u(z, 1) = ar(t)ei(z) = a(t)o(z),
where a(t) = a1(t)/c1 and a(0) # 1. Then, using (S°), we see that

o'(1) = ¢ (a771(t) — 1) a(t),

where ¢ = Zal|v|[p~!. If a(0) < 1, then o/(t) < 0 for small ¢ > 0 and
consequently for all ¢ (since p > 1). Therefore a(f) < a(0) and
(1) < =2 (1 —a?7H0)) a(t), so a(t) — 0 as t — oo. If a(0) > 1, it
is easy to see that o/ > 0 for all ¢ for which a(t) exists. It follows that a(t)
blows up in finite time. Thus, for any r > 1,

li%ninf |u(-,t) — v]|, >0,

and consequently v is not stable (in any norm).

If b > 272, then zero is unstable. To see this, we note that if a;(0) # 0,
then, in view of the asymptotic behavior of () near +oo, H(t) grows either
exponentially or linearly so that it passes 2/a(p — 1) in finite time. Conse-
quently, whenever (ug, 1) # 0, solutions of (P%) blow up in finite time.

For the case a < 0, we again have subcases. If b < 272, zero is the only
nonnegative stationary solution. From the form of h(¢) and the fact that
a < 0, we see that h(t) — 0 as t — oo, and consequently ||u(-,?)|| — 0 also.



If b = 272, then h(t) — |a1(0)| [|¢1]]. If |a1(0)| = 0, then from (2.4), since
a < 0, we have f(t) — 0 as t — oo. If |a1(0)| # 0, then H(¢) behaves like
(Jar(0)] |l¢1?~ ¢, so f(t) — 0 in this case too. Therefore zero is globally
asymptotically stable in this case also.

If b > 272, we claim that zero is unstable and that the positive stationary
solution, v(x), is stable. For the first of these, let u(z,t) = e(t)v(z). Then,
as before,

¢(1) = c*e(t) (1 - e"7'(1))

where ¢? = |a|||v]|P~!. Thus, if 0 < £(0) < 1, &’ > 0 for small ¢, and hence
for all ¢ for which £(0) < e(¢) < 1. If follows that if (0,7) is the largest
interval on which ¢’(¢) > 0, then ¢(¢) — 17 ast / T and T = +oo. This
establishes the instability of the null solution.

To show that v(z) is stable for a < 0 and b > 272, we write

) = () + 3 anlen(e) (2.6)
where
a1(0) = (1+4d)ey and 6] <1, & #0.

and where v(z) = c1¢1(2) solves (S°). Then a tedious, but routine, compu-
tation yields

anlt) = ap(0)l TR [1 _ @H(t)]_p_l (2.7)
and -
w(a,t) —v(z) = (ar(t)/er = 1) v(x) + Z_: an(t)pn(x) (2.8)

)=o) = [ o)l 1 2] T ] o)

1 2

# ] 7 S o) e
- (2.9)



1y _r2
Since a1(0) # 0, we see that h(t) ~ (1 + 6)HvHe(2 ) as t — oo. This,
together with (2.1), shows us that

1— %a(p— 1)H(t)]1: ~ (M) " (1+ 6)6(3—”2%

b— 272
N (146l

as t — +00. Using these estimates in (2.9) and the triangle inequality, we
see that

Ju(- 1) =2lly < el

1ot (1 —e2(t)) [/01

o0

3 aa(0)e DT ()

n=2

q 1/q
dx]

where ¢1(t),e2(t) — 0 as t — oo. Consequently ||u(-,t) — v||, — 0 as
t — +o0.




3 The Stationary Solutions When = > 0

If we write u = ov with o > 0 such that 6?7 !]a| = 1, and if we replace ¢ by
oe, we can reduce (P) to an equivalent problem for v with ¢ =1 or a = —1.
For this reason, we seek all positive solutions of

1
{ wm-l-ewwx—l—§(6Hpr_1—|—b)w:0, 0<az<1, (9)

w(0) =w(l)=0,

where § =1 or § = —1. We let
1 1/q
Jull = Nl = ( | wds )

yz/oxw(n)dm YI/O1 w(n) dn. (3.1)

Under this change of variable, we have

and set

d d

Thus, in lieu of (S), with v(y) = w? (z(y)), we find

Vyy + vy + 6qu_1 +b=0, (3.2a)
v(0) =0(Y) =0, (3.2b)
where Y, = ||w||; and Y; = Y. The positive solutions of (3.2a,b) are given
b
' o(y,Y) = 7Y (8YF7 ) J(ey,eY), (3.3a)
where ~
Iy, 7) = 1:2_‘:’ =3 (3.3h)

It follows that 6qu_1 +b >0, since v = w2,

The values of Y, Y, are then determined by solving the nonlinear system

1:/01d$:/oy¢%’ (3.4a)




! Y 31
Y/ :/ wi(z)dz :/ v (y)dy. (3.4b)
0 0

We define, for s > 0, z > 0,

A routine calculation shows that with

Zy =Yy, (3.5)
Zy =7 = €Y, '
we have from (3.4a,b), for 1 < ¢ < o0,
- 1/q
Z,= 2,2) = 2 |[H(Z) B (2)] (%> 0), (3.6)
while
b= ZH3(Z) - e~ P~V 2071 (Z) = b(Z). (3.7)
When ¢ = +00,
_7 _z\11/2
1 e -(1=-2) 1—e
Z(2)=727Y [ﬁ +1In ~ Ho(Z).

Useful asymptotic formulas are, for 1 < g < oo,

2/(14 ¢)Y/14, 7 — o0,

o=

o ]1/q

(L4 ) /ra+o] Lz =0t

and, for ¢ = oo,

Zoo(7) 2, Z — 00,
Z /2, 7 —0t.
We have plotted Z,(Z) and Z,(Z)/Z against Z for various ¢ in Figure 1 and

Figure 2, respectively.

For fixed b, the cardinality of the set of stationary solutions turns out to
be the same as the cardinality of the set of solutions of (3.7). To see this,
we need some lemmas.



Lemma 3.1. For any ¢ > 1, p > 1, all the positive solutions of (S) are
concave.

Proof. The proof follows immediately from (3.3a,b). We have
d dw 1
Wy = wd_y (wd_y) =3 v(Y)vyy(y).

Clearly, from (3.3a,b) vy, < 0.

This establishes the concavity of the steady states found in [14] numeri-
cally. 1

Lemma 3.2. The function h(Z):= ZHZ(Z)(Z > 0) is strictly increasing.

The proof of this lemma is long and is therefore included in Appendix B.

Lemma 3.3. The function hy(Z):= Z4H,(Z)HI (%) is strictly increas-
ing for g > 1.

Proof. We can write

[T

hy(Z) = 23D H,(2) (h(2))707Y |

Therefore, by Lemma 3.2, it suffices to show that H,(Z) is strictly increasing.
This in turn will hold if

diZJ(UZ,Z) =loe (1 —e ) —e*(1—e )] /(1 —e*)* > 0.

If we write # = ™%, then z € (0, 1], and

d s a(l—29)
Glo,z) = EJ(UZ,Z)_ or’ — —— /(1 —2)
In view of the convexity of 1 — z7, we find
ox’ ! 1-e .
~1-z

Hence G(o,2) > 0, and the lemma is true. I

10



Lemma 3.4. Let wy, wy be two nonnegative stationary solutions of (P)
with ||wi|}1 < ||wel|l1. Then either wy < wy on (0,1) or wy = wy.

Proof. Any such solution can be written in the form

A
2 (z, ;) = 7 (6= "0 221 (Z) +b) J (2, 7)
— NI, 7),
where z = ey, Z = ¢||w|j; and v(y) = w?*(x), in view of (3.7).

A straightforward computation shows that

a8 (2] (1)
07z \7 ¢ I

= W(Z2)2J(2, 2) + WZ)— (ZJ(z, 7))

)
a7
WZ)(1—e) (1-e? = ze77)

=W(Z2)ZJ(z,Z)+ =7y

> 0.
Thus, if ¥; = [Jw;|1, we have Y; < Y3 and
U(y,Yl) S U(@/,Yg)-

We need to show that if wy # wsy, then wy < wy on (0,1). Note that

w?(z) = v(y;, Y;), and Léyz = w;(z) for ¢ = 1,2. Thus, for any z € (0, 1),
T

K3

1(z) 2(x)
v = /y (0(0, Y1) V2 do = /y (v(0,Y2))" V2 do,
0 0

where

We see that if Y7 = Y3, then y1(2) = ya(2), so that wi(z) = wa(z). Hence,
we may assume Y; < Y.

Since v(0, Y1) < v(o,Ys), if 0 > 0, we must have y;(z) < ya(2) on (0, 1].
Let Z denote the unique z in (0,1) where w%(z) = 0 (Lemma 3.1). Then for

11



x €(0,2), ya(2) < y2(7). Now
v (y2(2), Y2) — v (y1(2), Y1)
=v(y2(2),Y2) — v ((2), Y2) + v (yi(2),Y2) —v(y1(2), Y1).

Since v(-,Y3) is increasing on (0,y2(Z)) and vy > 0, the differences on the
right are positive on (0, z]. Thus wy < wy on (0, Z].

A similar argument using the change of variable

1
y= [ windy
yields (3.2a) with ¢ replaced by —e and, in place of (3.3a),

o(y.Y) = eI 6V 4 ) [y _ % ~ ).

Again, one finds that v, > 0 and ultimately that wy <wyif 1 -2 <1-2
orz>z. 1

These lemmas allow us to conclude the following theorem.

Theorem 3.5. Let w(z) be a nonnegative solution of (S). Then, if Z =
ellw|li, Z solves (3.7). Conversely, if Z > 0 is a solution of (3.7), then
w(z) = (v(y))1/2 solves (S) with dz/dy = (v(y,Y))_l/Q, Y =Z/¢, and v is
given by (3.3a,b).

We next count the solutions of (3.7) for fixed ¢ > 0. Let Z(b) be a branch
of solutions of (2.7). By the implicit function theorem, as long as

Q(7) = 2

= 27 (Z13(2) - 6~ 2271 (2)] £ 0

on this branch, Z will be a C' function of b and

Z(6)Q (2(b)) = 1.

For fixed b, the number of solutions of (3.7) is then the same as the
number of sign changes of Q(Z) on (0, 00). However, the sign analysis of @ is

12



complicated when é > 0, since, in principle, a function of bounded variation
(the difference of two increasing functions) can have infinitely many zeros.

The case § < 0 is easy to treat. The function b(Z) given by (3.7) is
strictly increasing for Z > 0 and has the range [27% 00). Therefore, for
each b > 272, there is exactly one positive solution of (S), and there is no
nontrivial solution for b < 272,

We observe that b(Z) has the following asymptotic properties:

2 47 — be=r=Vegp=lzr=1 7 0, 1< ¢q< oo,
b(7Z)=
or2 — e~ (P Nhlzr=1 7 0t 1< ¢ < o,
where
o204 1< <o,
<] 2 ¢ = 00,
and
1/q
272 (L +g)) [T+ 9] 7 1< g< o,
o = -
5 g = oo.

These asymptotic formulas, together with the numerical results of Figures
4-11, allow us to assert the following for é > 0:

(N-1) If 1 < p < 2, there is b(p, q,¢) < 272 such that

(a) if b < b(p,q,¢e), there are no positive stationary solutions;
(b) if b = b(p,q,¢) or b > 272, there is exactly one solution; and
(c) if b(p,q,¢) < b < 272, there are exactly two solutions.

(N-2) If p = 2, we have the following;:
(a) If e < %500, there is exactly one positive stationary solution for
each b < 272, none for b > 272,
(b) If ¢ = Leo, there is b(en) < 272 such that

(i) if b < b(es) or b > 272, there are no positive stationary
solutions; and

(i) if b(es) < b < 272, there is exactly one solution.

13



(c) If &€ > e, there is b(es) < 27% such that
(i) if b < b(es0), there are no positive stationary solutions;
(i) if b = b(eoo) or b > 272, there is exactly one solution; and

(iii) if b(cao) < b < 272, there are exactly two solutions.
(N-3) If p > 2, there is a critical number £1(p, q) such that

(a) if € < ey, we have the following:

(i) If b > 272, there are no positive stationary solutions.

(ii) If b < 272, there is exactly one solution.
(b) if &€ > ¢1, there is b(p, q,¢) > 272 such that

(i) if b > b(p, q,¢€), there are no positive stationary solutions;
(ii) if b = b(p,q,¢) or b < 272, there is exactly one solution; and
(iii) if 272 < b < b(p, q,¢), there are exactly two solutions.

A word of explanation about the figures is in order. In Figures 4-6,
we have set ¢ = 2 and chosen p = 1.5, 2, and 3, respectively, plotting the
solution set of (2.7) for various e. The assertions above are based on these
figures, the asymptotic formulas following (3.7), and (H). In Figures 7-11,
we have fixed ¢ and p and plotted the solution sets as functions of ).

14



4 Stability and Global Nonexistence When = > 0

We next consider the following problem equivalent to (P):

U = Upy + Euly + 5 (Sllu(OIP T +0)u, 0<z<l, 0<t<T,

u(0,t) = u(1,t) =0, 0<t<T,
w(z,0) = ug(x), 0<z<1.

(P")

For simplicity, we let Dy = (0,1) x (0,7) and Dy U I'r = [0,1] x [0,T).
Our primary interest is in the stability properties of the steady states and
in the asymptotic behavior of solutions of (P’) for a given initial datum ug.
To pursue this interest, we first establish a relationship between solutions of

(P) and those of (5).

Lemma 4.1. If u is a bounded monotone (in time) solution of (P"), then u

tends to a solution of (S) as t — oo.

Proof. First, we note that such a solution must be global in time, by
the continuation statement in Appendix A. Suppose that tlim u(z,t) = p(z),
— 00

and let )
ety = [ Gt dy.
where
G(x,y):{ r(l-y), 0<e<y<l,
y(l—=z), 0<y<az<1,

2

is the Green’s function for T with Dirichlet boundary conditions.

y2

15
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Under the assumptions for u, F' is bounded in [0, 1] X [0, 00) and
1
Fi(, 1) =A<%%@m@ﬁﬂy
e [r e [ty
= —ae,0) =5 [T ndy+ Se [0y
2 Jo 2 Jo
1 - 1
+3 (wu(-,t)u +0) [ Gy (42)

£ xT
—>—@(w)—§ Sy + 5o [ o

+5 (allell” 1+b) [ e vretiy

as t — oo. This limit has a constant sign that depends on whether u; > 0
or uy < 0. In actual fact, the limit is zero for a € [0, 1]; otherwise F' would
not have a finite limit as t — oo. Therefore

xr

o(x) 2—2 y)dy + w/
(M!@Hp L) [ G

and hence ¢ is a solution of (S). 11

By means of this lemma, we can obtain a complete result for stability
and instability of stationary solutions of (P’) with § = 1. This time, we
treat the solution of (S) as a function depending on the parameter b and
denote it by w(z,b).

Theorem 4.2. Let w(x,b) be a continuously differentiable positive solution
of (S) with 6 = 1 on some b interval [o, 3], and let Z(b) be the corresponding
solution of (3.7). Then if Z'(b) > 0 on [e, 3], the solutions are stable, whereas
they are unstable if Z'(b) < 0.

Proof. For the case Z'(b) > 0 we first show that w(z,b) < w(z,bs) on
(0,1) for a < by < by < 3.

From Z'(b) > 0, it follows that Z(b1) < Z(bg) if @ < by < by < 5. In
view of (3.7), Z(b) = ¢||w(-,b)||1 and v(ey, Z/e, b) = w*(x,b). Using the

16



form of v(ey, Z/e, b) in Lemma 3.3, we see that

ey (53/, @,bl) = (g—<p—1>zg—1 (Z(b1)) + bl) Z(b1)J (ey, Z(b1))
< (7= 271 (Z(b2)) + b1) Z(b2)J (29, Z(b2)

< (70221 (Z(b2)) + b2) Z(b2)] (2y. Z(bs))

Z(b
=2y (ey, —(52),132) ,

. Jdv
since 97 > 0 and by < bs.
Thus, letting Y (b) = ||w(-,b)||1, we have
v(y,Y(01),01) < v(y,Y(b2),b2) for a<by <by <pB.
Then following the same reasoning as in Lemma 3.3, we find that

w(z,by) <w(x,by) on (0,1) for o <b <by <P,

Let u(x,t,by) be a solution of (P’) with ug(x,b1) = w(x,bz). Then, on
(0,1), we have
ug + euoug + 3 (|uol|P~" + b1) uo

= wl’l’(x7 b2) + 5w($7 bZ)wx(xv b2) + %

< wap (2, b2) + ew(w, ba)we(@,by) + 5 (Jw(-, b)[P7H + ) w(z, ba)

=0.
Hence, recalling the Corollary in Appendix A, we have u; < 0 in Dy. From
the comparison theorem in Appendix A and the monotonicity of u, we also

have, on (0,1)
w(val) < U($,t,b1) < w(vaQ)‘

By Lemma 4.1, ¢(z,b1) = tlim u(z,t,b1) exists, and w(z,by) < @(x,b;) <

w(z,by). Letting by — b yields (z,b1) = w(x,by), which shows that
w(zx,by) is stable from above. We can also prove similarly that w(z,bq) is
stable from below.

17



If Z'(b) < 0, then Z(by) < Z(by), and consequently, ||w(-,b2)|1 <
||w(-,b1)]|1 for @ < by < by < B. Thus there is a subinterval [z¢, 21] con-
tained in [0, 1] such that w(z,bs) < w(z,by) on [z, z1]. Let u(z,t,b2) be a
solution of (P’) with wug(z,bg) = w(z,by). Then, on (0, 1), we find that

uf + cugufh + 3 (|Juol[P~1 + ba) uo
(w( b0)[IP~" + b2) w(z, by)

)
= wey(2,b1) + ew(z, by)wy(2,
( (feoC, b0~ 4+ b1) w(, by)

by) +
b

41
2
> wyp(,b1) + cw(x, by)wy(2,b1) + %

=0.
Therefore, u; > 0 in Dy. Hence, u(z,t,bs) is increasing in ¢, and it follows

that w(x,by) is unstable from above. Similarly, w(z,by) is unstable from
below when b7 > bs.

Using this theorem combined with the characterization of the stationary
solutions in Section 3, we obtain the following stability and instability results
for the case 6 = 1.

(C-1) For 1 < p < 2, if b(p,q,e) < b < 272, there are two branches of
solutions of (S) — one stable, the other unstable; if b > 272, the
unique solution is stable.

(C-2) Forp=2:

(a) If e < e and b < 272, w(z,b) is unstable.
(b) If ¢ = e and bes) < b < 272, w(w,b) is unstable.
(c) If e > te, and

(i) if b(eso) < b < 272, there are two branches — one stable, the
other unstable; and

(i) if b > 272, w(w,b) is stable.
(C-3) Forp> 2
(a) If ¢ < ey and b < 272, w(w,b) is unstable.
(b) If e > &1 and
(i) if b < 272, w(x,b) is unstable; and

(i) if 272 < b < b(p, q,¢), there are two branches — one stable,
the other unstable.
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In particular, we see from Figures 4-6 that, as ¢ increases, the portion
of the bifurcation curve along which Z’'(b) > 0 becomes more pronounced.
This illustrates the stabilizing effect of the convection term in the dynamical
equation.

From Figures 7-11, we see that, for fixed ¢, the choice ¢ = 1 leads to the
“most stability” while the choice ¢ = +00 leads to the “least stability” in the
sense of the preceding paragraph. Increasing ¢ has the effect of decreasing

the set {b| Z'(b) > 0}.

The case 6 = —1, because of the lack of a comparison principle, is not
so amenable to analysis. However, bearing in mind numerical evidence (see
[14]), we may conjecture that: the positive stationary solution branch (where
it exists) is stable.

Next we discuss the asymptotic stabililty of the trivial stationary solution
of (P’). Henry [7] used a linearization method based on semigroup theory
to analyze the asymptotic stability. His principle has wide application, but
it does not readily extend to the current nonlocal problem. Therefore, we
adopt another approach.

1
Let Fy(t) = / u?dz to find
0

1 1
Fi(t) = 2/0 quxd$+2€/0 uul,dx—|—bF2_|_5Hqu—1F2

1
- _2/ a2de + (b4 6|l P
0

IN

(—27r2 + b+ 6Hqu_1) Iy,

1 1
since 7r2/ uwdr < / uldz.
0 0

For § = 1, for any b < 272 and sufficiently small initial value wug, we
have Fy(t) < F5(0)e™*, which means that v = 0 is an asymptotically stable
solution of (S) in L3(0,1). Similarly, v = 0 is a globally asymptotically
stable solution of (S) in L3(0,1) when b < 272 for 6 = —1. 11

Finally, we investigate the global existence and nonexistence of solutions
of (P’). We first give the following theorem for the case 6 = 1.
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Theorem 4.3. Forl < p<?2andanye >0,orp=2ande > %(1—|—q)_1/q,
the solutions of (P’) are uniformly bounded on [0,1] X [0, c0).

Proof. We look for a supersolution v in the form v(z) = M(1—o2) with
M >0 and 0 < ¢ < 1 to be chosen. We shall succeed if M and o satisfy

p—1

—eaM?*(1 — az) + % [b + M a1+ q) ¢ ] M(l-—02)<0 (4.3)

and

M(l—-0)> 01%1;2(1 up(). (4.4)

The inequality (4.3) is equivalent to

_p=1

Mrt [50M2_p - %(a(l +q)) | > b (4.5)

1
2

For 1 < p < 2, (4.4) and (4.5) will hold if M is sufficiently large; while
1+gq
if p= 2, letting ¢ = %(1 + (1 +q)" Y (v > 0) Z}c, we have that o ¢ <
9

(1+7) ' ie o <(14+7) ™ < 1. For such o, we can choose M so large
that (4.4) holds.

For the case § = —1, since the solution of (P’) is a subsolution of (P’)
with § = 1 and 1 < p < 2, all solutions are bounded on [0, 1] X [0,00). }

Next for p > 2 or p = 2 with small ¢, we prove that with sufficiently
large initial data, problem (P’) with 6 = 1 does not have global solutions.
To show this, we employ two different arguments.

Theorem 4.4A. Let p > 2. Then there exists co = co(g,p,b) < oo such
that if ug > cosin Ta, the solution of (P') blows up in finite time. The same
is true for p = 2 if ¢ is small enough.

Proof. We seek a subsolution w(z,t) in the form w(z,t) = h(¢)sin Tz
with h(t) becoming unbounded in finite time. To obtain this, we need

R(t) < —7?h(t) + meh?(t) cos ma + % (AghP(t) + bh(t)), (4.6)
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Set

A
Q(s) = 70517_2 —me (4.7a)
for b > 272, or set
A b
Qs) = 70577_2 — e — <7T2 — 5) st (4.7D)

for b > 272,

For p > 2, if sy is the largest positive root of @), then Q(s), Q'(s) > 0 for
s > Sg.

Choosing c¢o = s and letting h(t) be the solution of the following problem
R(t) = Q(h)hA(t), t>0
(1) = Q(h)h=(1) (4.8)
h(O) = Cp,
one easily sees that (3.6) is satisfied and h(¢) blows up in finite time.

For p = 2 and sufficiently small ¢ > 0, the above discussion also holds.

Remark. The result for p = 2 is in contrast to that in [4], where it is
shown that for any £ > 0, the solution of a local problem with our nonlocal
term replaced by |u|P~1u remains bounded on [0, 1] x [0, 00) when p = 2.

For any large initial value, with more restriction on p and ¢, we also have
the following theorem.

Theorem 4.4B. Let p > 3 and q > 2. Then there exists ¢; = c¢1(g,p,b)
1

such that if/ ug(z)dxz > ¢q, the solution of (P') blows up in finite time.
0

Proof. Now we use a variation of the eigenfunction method [9].

Set



where (z) = gsin T,

A routine calculation shows that

It > —H/Ol u(x,t)¢(x)dx—g/1 2 (x, 1) (2)da

0

1 1
—I—%[/uqxtdx] /uwt

0
—I—/ xt

Using Hélder’s inequality, we see that

1 1 2/q
5/ u?(x, ) [/ uwl(z,t dx]
0 0

1 1 1/q
/ uw(z, )p(z)de < Ay [/ uqactdac]
0 0
with Ay = el[¢|| oo (0,1) and Az = 7/2.

bet (v-1)/ 2/
R(s) = Ass U 4y

for b > 272, or let

R(s) = A3s(p_1)/q - A152/q - <7T2 - é) sl/q,

1 /1
for b < 272, where A3 = 5/ ug(2)P(z)dz.
0

(4.10)

(4.11)

(4.12)

(4.13a)

(4.13b)

If s is the largest positive root of R, we find that R(s), R'(s) > 0 for
1

1
s> s1. Letting ¢y = s¢ and/ up(x)dx > ¢1 implies that/ wl(z,t)de > s
0

0
for all t. Hence,

J(1) > R (/01 uq(x,t)dx) > R (%Jq(t)) .

Since ¢ > 1, J(t) must blow up in finite time. §
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Appendix A

Here we establish the comparison principle and local existence of solutions
for the following general problem:

U = Upe + (f(u)), + g(u,[|ul]), O0<z<l, 0<t<T,
t

u(0,7) = u(1,1) = 0, o<t<T, (G
u(z,0) = up(z), 0<z<1,

1 1/a
where |[Ju|| = [/ |u|qu] .
0

First, we define the subsolution and supersolution of (G). As in Section
4, we let Dy =(0,1) X (0,7) and Dy Ul'r =[0,1] x [0,T).

Definition. A function u(z,t) is called a subsolution of (G) on Dy if
u e C*YDyp)n C(Dy N Ty), satisfying

wr < Upe + (f(u), +g(u,||ul]) O0<z<l, 0<t<T,

u(0,4) <0, u(1,£)<0 o<t<T, (&)
w(z,0) < ug(z) 0<z<1.

A supersolution is defined by (G') with each “<” replaced by “>”.

Comparison Theorem. Suppose that f and g are continuously differen-
tiable and that g > 0. Let w and v be a nonnegative supersolution and
a nonnegative subsolution, respectively, of (G), with u(x,0) > v(z,0) for
x € (0,1). Then uw > v in Dy UT'r.

Proof. For every t € (0,7) and every nonnegative ¢(z,t) € C*!(Dr)
with ©(0,¢) = ¢(1,¢) = 0, the subsolution v satisfies the following integral
inequality:

1

/Olv(x,t)cp(x,t)dx §/ vo(z)p(z,0)dx

0

+ /Ot /01 [ver = (ve + f(u)) oz + g (v, [[0]]) @] du dr.
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The supersolution u satisfies the above with reversed inequality.

We integrate by parts in both the above inequality and that satisfied by
u and subtract the two resultant expressions. Then we have

/01 (o, 1) — u(e, 1)) la, 1) da
g/ol (v(z,0) — u(z,0)) @(x,0) de
+ /Ot /Ol(v —u)(pr + Yoz — Az, T)pr + B2, 7)p) de dr

_|_/Ot/0199(x,7-)/010(5,7')(v—u)dsdacdr,

(AD)

where

A(z,t) = f'(01(2,1)),
Bl 1) = g (6o, 1), o),
Clast) = g (0, 0a(1) 67 (060 (2,1,

with 61, 6;, 05 between u and v, and 63,04 between ||u|| and ||v||. 1

Note that by the hypotheses for f and g, A, B, and C' are bounded on
D7 in the uniform norm. We denote the bound by M.

Now we define two sequence {A,} and {B,} in such a way that

(i) A,, B, € C>(Dr),

(iii) A, — A, B, — B in (D7) as n — o0,

and we set up a backward problem on D;:

S‘QTLT—I_SOTLJJJJ_ATLSOTLJJ—I_BTLSO:O7 0<$<1, 0<T<t,

@n(oaT):QOn(l,T):O, 0< T <t7 (G*)
en(z,t) = x(2), 0<z<1.

Here, y(v) € C§°(0,1),0 < y < L.
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Recalling standard theory (in [10] for example), we find that ¢ = lim ¢,

is a solution of (G*) with A,,, B, replaced by A, B, and ¢ € C*'(Dr). The
initial and boundary values for ¢, imply that ¢ > 0 in Dyp.

Substituting ¢ in (A1) yields
1

/01 (o2, ) — u(z, 1)) y(z) de < Ml/ (0(2,0) — u(z,0))* da

_|_/0t/0199(x,7-)/010(5,7')(v—u)dsdacdr,

where My = sup |¢|.
Dr

Since this inequality holds for every y, we can choose a sequence {x,}
on (0,1) converging to

{ 1, if v(a,t) — u(x,t) >0,
X =

0, otherwise.

Noting that C' > 0, v —u = (v —u)t — (v —u)~, we find that

1

/01 (v(z,t) —u(z, )t de < M1/0 (v(z,0) — u(x,0))t da
+ Mo M, /Ot /01 (v(z,7)—u(z, 7)) d dr,

which leads, by Gronwall’s inequality, to

/01 (ol 1) = ule, )" do < My (14 M) /1 (v(,0) — u(z,0))* d.

0

Thus, the conclusion follows from the condition on initial data.

Corollary. If uj + f'(uo)uy + ¢ (uo,||uol]) > 0 (< 0) on (0,1), then
u(z,1) > 0(<0) in Dr.

Proof. The condition on ug implies that ug is a subsolution (superso-

lution) of (G). Thus u(z,t) > up(2) (< we(z)) in D7 UT'r. Let v(z,t) =
u(z,t 4+ h) (h > 0). Then v is a supersolution (subsolution) of (G), and
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therefore u(z,t 4+ h) > u(z,t) (< u(z,t)). Since h is arbitrary, u is increas-
ing (decreasing) in ¢ for fixed z, and hence u; > 0 (< 0).

Next we establish the existence of solutions of (G) on D7 U I'r for suffi-
ciently small 7" and certain initial values. This time we assume only that f

and g are continuously differentiable. We shall also define fay = sup |f(u)]
lul<M

and gy = sup g (u, [|u])].
M

ul<

Let G/(z,y;t) denote the Green’s function for
Lu = uy — Uy, O<ae<l, t>0,
with boundary conditions
u(0,t) = u(1,t) =0, t>0,
that is,
—n2r2t

Gz, y;t) =2 Z sin(nmz)sin(nmy)e

n=1
Then
G(z,0;t) = G(z,1;t) = 0.

Also, u is a solution of (G) on Dy U I'r if and only if for (2,t) € Dy U 'y
1
ue,t) = [ Gl gty dy

w [ Gt et )y,
— Gyl g5t =) f (u(y,m))| dydn
= u(z,t).

To show that (A2) is solvable for sufficiently small 7', we use a contraction
mapping argument. To this end, we define

u(z,1) =0 (A3a)

and

Upt1(@,t) = up(z,t). (A3b)
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Local Existence Theorem. Let the initial datum for problem (G) be
continuous on [0, 1] and satisfy

0<m< /01 /01 G(z,y; uo(y) dy da (A4)

for 0 <t <1, say. Then for sufficiently small T, (G) has a unique solution
that satisfies
m
ufl > 2 (A5)

on [0, T]. The solution is C* in t and C? in z on Dy and continuous on Dr.

Proof. First, we define

My = sup |ug(z)|,
0<z<1

T 1
u(t) = sup //G(w,y;T—n)dm
o<z<1 70 70
0<r<t
T 1
v(t) = sup /(J/(JGy($73/§T_77)d777
0<z<1
0<r<t

Clearly, u(t) and v(t) tend to zero as t — 0T. For fixed M > My, choose T
so small that 7" < 1 and

v(T)far + (T)gm < max (M — Mo, %m) , (A6)
a =u(T) sup [J1E)]
1 4 _
iy | s el + s ol (5T an)
lel< M lel<n
Inl<M [nl<M

< 1.

It then follows from (A3a), (A3b), and (A6) and induction that on Dy

HunHLoo(ﬁT) <M
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for all n =1,2,---. Moreover, we have from (A3b) and (A6) that

m

lall > 2 5y > 5 (A8)

forall n =2,3,--- Using (A7) and letting 8, = ||upt1 — unHLoo(ﬁT)v we can
see that

ﬁn—l—l S aﬁn S ttt S anﬁl-

Therefore, {u,} is uniformly convergent on D7, and

w(z,t) = lm wu,(z,1) (A9)

solves (A2) with [Jul] > m/2.
The asserted interior regularity follows from the properties of G and the

continuity of v in Dy. We omit the standard arguments. 1

The above result also allows us to make the following continuation state-
ment: If u is a classical solution on D7, bounded on D7, then v may be
extended to Drys for some 6 > 0.
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Appendix B

Here we establish Lemma 3.2.

Lemma 3.2. The integral

1 1/2
/0 (1_e—i 3 0)1/2 do

1—e™%

is increasing in z for z > 0.

We see that the statement is equivalent to showing that

1/2 1/2

4

1/2
—O0Z
/ (=)

1—e

z
1/2 —|_ -0z /2| do
(1—6 (1-0) _(1_0_))

1—e *

- // [(f(»:,a))l/z * (géa))ml o

is increasing in z for z > 0.

To establish this assertion, we shall show that

2\ 1/2 2\ 1/2
R
(f ) g
is increasing in z, for o € [0,1/2].
Reduction 1. The presence of square roots in the integrand causes

difficulties. By taking the square, we see that the lemma is a consequence
of showing that

z . z 4z
[y fg
are increasing.
Reduction 2. Let us assume that we already know that a?/fg is

increasing. We have

i ()7 (9)1). )

29



The first factor is increasing by assumption. We therefore have (B1) once
we can show that the second factor is also increasing. We claim that this is
equivalent to showing that f/g is increasing in z, for o € [0,1/2]. Let

F2(z2) = Uy (B2)

F0) = 1im L = 1. (B3)

The derivative of the second factor in (B1) is

P [P - 1]

F2(2) (B4)

If we can show that F(z) is increasing in z, then, in view of (B3), both
factors in the numerator are nonnegative (and hence the second factor in
(B1) is increasing).

We have thus reduced the problem to proving that f/g is increasing and
2%/ fg is increasing in z for all o € [0,1/2].
Proof that f/g is increasing

z

After simplification and the substitution y = e™%, we have

o 1-y-o(l-y)
g l1-y=7—-(1-0)(l-y)’

y € [0,1],0 € [0,1/2]. Note that y decreases as z increases. Hence, we have
to show that f/g is decreasing in y. The numerator of its derivative, namely,

flg—fg',is

X(y)=4o-2)+ (0> =20+ 1)y" —o?y" L+ (0* =20+ 1)y™7 — o*y' ™.

We need to show that it is nonpositive. Note that X (1) = 0; hence, it
suffices to show that X'(y) > 0 in [0, 1], or equivalently that

yX'

- _ 1-0 1— —0 1— o cr—1> .
ol—o) = (I-o)y "+l —0)y” +oy” >0

Y(y) =
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Again we see that Y(1) = 0; hence, it remains to show that Y'(y) < 0 in
[0,1] . But

o(l—o)(l—y 1—@/1_2“
Vi) = =T X

as desired (recall that 0 < o < 1/2). 1

)<0

= b

Now it remains to prove that 22/ fg is increasing, or rather its reciprocal

(1= —o(1—e)) (1= 7072 — (1= g)(1 - 7))

K(z,0)= ETEp—
(B5)
is decreasing in z > 0 for o € [0,1/2].
Reduction 3. Note that
K(z,0)=0.
Hence, trivially,
K.(z,0)=0.
If we can show that
K..(z,0)<0, (B6)

for z > 0, 0 € [0,1/2], then we know that for a fixed z, K, is a decreasing
function in . Since K. starts out at 0 when ¢ = 0, K, must be nonpositive
for all ¢ > 0 up to ¢ = 1/2, and (B5) is then proved. The inequality (B6) is
equivalent to showing that K, is decreasing in z > 0 for o € [0,1/2]. After
differentiating K with respect to o, we can separate out those terms in the
numerator that have the extra factor z:

K,=H+1L,
where
(1—-20)(1—e?)2+ e=(1=0)z | o=(1+0)z _ =0z _ —=(2-0)=
= 22(1— e7)2 , (B7)
and
;07— 4 (1 g)en () — (1 — g)er (o) (BS)

Z(1—e7)?
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We have thus made the final reduction to proving that // and L are decreas-
ing in z for z > 0 and all o € [0,1/2].

Proof that H is decreasing.  The crucial observation is that the

numerator of H has the factor (1 — e™%). After cancellation, we have

(1=20)(1 —e %)+ e (170)2 _ gm0z
22(1 —e™7)

H =

B (1 B 20')(62/2 B 6—z/2) —I— 6—(1—0’)2/2 B e(l—o’)z/2 (Bg)
- 22(62/2 . 6—z/2) .
The next step involves an obvious change of variables
t=1-0, y=2z/2,
and the use of hyperbolic functions. We have
tsinh(y) — sinh(¢
1 - Lsinh(y) = sinh(ty) B10)
4y? sinh*(y)
y > 0,1t €0,1]. Note that
H(y,0)=H(y,1)=0.
Hence,
H,(y,0)=H,(y,1)=0. (B11)

Let us fix a y and see how R(t) = H,(-,t) changes with {. We need to show
that R(¢) < 0in order to establish that H is decreasing. By (B11),

R(0) = R(1) = 0. (B12)

By differentiating (B10) twice with respect to ¢ and once with respect to y,
we see that

v sinh(ty)\  cosh(y)sinh(ty) — tsinh(y) cosh(ty)
Bt = <_ 4 sinh(y))y B 4sinh?(y) ’

(B13)

where the subscript y outside the parentheses denotes partial differentiation
in y. If we can show that R"(t) > 0, then R(¢)is a convex function of ¢ and
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then by virtue of (B12), R(t) < 0 as required. The nonnegativity of R” is
implied by
cosh(y) sinh(ty) > tsinh(y) cosh(ty),

or equivalently

(ty) cosh(ty)
sinh(ty)

y cosh(y)
sinh(y)

> t€0,1]. (B14)
This is a consequence of the elementary fact that ycosh(y)/sinh(y) is an
increasing function in y. 1

Proofthat L is decreasing in z.  We follow the same line of attack.
Denote S(o) = L.(z,0) for a fixed z. Note that

L(2,0) = L(z,1/2) = 0, (B15)

implies that
S(0)=5(1/2)=0. (B16)

Unlike the function R(%), the second derivative of S(o) does not have a
simple form from which we can deduce 5”(¢) > 0. We first rewrite L in the
following form:

osinh(l — o)z — (1 — o) sinh(oz)

Lz0) = zsinh?(z/2) ' (B17)

Taking the derivative twice with respect to o, we have

I - _2cosh(1 - 0)22 —coshoz ey (B1S)
sinh? (%)

Using the sum and product formula on the first term, we obtain the simpli-
fied equation:

sinh ((% - O') z) )
Loy = —4 > L. B19
sinh (%) e (B19)
The first term on the righthand side is an increasing function of z, since

it is really the same function occurring in R” in (B13) (take y = /2, and
t=(1-20)<1). Now take the z derivative of (B19) to obtain

§"(0) = [(—Smh (o) Z)) + 22L] 4 225(0).  (B20)

sinh (%)
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The terms inside the square brackets are positive. Now suppose that L is not
decreasing. Then for some z, S(¢) must have a strictly positive maximum
in [0,1/2]. At this maximum, the lefthand side of (B20) is nonpositive while
the righthand side is strictly positive, giving a contradiction. 1
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