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1 IntroductionIn this paper we consider the following initial-boundary value problem:8>>>><>>>>: ut = uxx + "uux + 12 �aku(�; t)kp�1+ b�u; 0 < x < 1; t > 0;u(0; t) = u(1; t) = 0; t > 0;u(x; 0) = u0(x); 0;� x � 1: (P)Here a, b, ", and p are given constants, with " � 0 (without loss ofgenerality), b > 0, and p > 1; and u0(�) is a continuous function withu0(0) = u0(1) = 0. Moreover, we takeku(�; t)k = 0@ 1Z0 ju(x; t)jqdx1A1=q :In this paper, we require that u0 � 0. Then by the maximum principle,u(�; t) � 0 for all t in the existence interval.Our interest in (P) is twofold. First, (P) is closely related to a one-dimensional turbulence model proposed by Burgers ([2], [3]) and studiedby Horgan and Olmstead [8]. (See also Drazin and Reid [5].) The majordi�erence between (P) and the earlier model is the use of the Lq normin (P) rather than the L2 norm. A number of authors ([1], [6], [8], [12])have investigated nonlocal problems as models for local problems; they alsorestricted their attention to the case q = 2. To the best of our knowledge, noone has considered problems in which a convective term ("uux) is present.Yet, convective terms have a remarkable e�ect on the dynamical behaviorof solutions of equations. For example, consider8>>><>>>: ut = uxx + "uux + 12bu; 0 < x < 1; t > 0;u(0; t) = u(1; t) = 0; t > 0;u(x; 0) = u0(x) � 0; 0 � x � 1:When " = 0 and b > 2�2, this problem possesses the exponentially grow-ing solution e(b=2��2)t sin �x, whereas for " > 0, all solutions are boundedfor any b (since a supersolution of the form M(1 � �x) with large M and2



� 2 (0; 1) exists). We shall see that this phenomenon persists, although toa somewhat less pronounced e�ect, for (P).The second reason for our interest in (P) is that (with b = 0) it is closelyrelated to the same initial-boundary value problem for the equationut = uxx + "uux + ajujp�1u; (1:1)where the nonlocal nonlinearity is replaced by the more standard local term.This problem was studied extensively in [4] and [11], where the stabilizinge�ect of convective terms was noted. The study of (P) was taken up withthe objective of obtaining analogous results for a closely related problem. Itturns out that the results we derived for (P) are more complete than thosefor (1.1) obtained in [4] and [11].In [14], Straughan et al. consider, from a computational point of view,the same initial-boundary value problem forLu = ut + 2uux �R�1uxx;where Lu = 8><>: u� Rukuk2; oru; oru+ Rukuk :Here k�k denotes the L2 norm, and R > 0 can be thought of as the Reynoldsnumber. Under appropriate scaling, this problem is included in (P) whenq = 2. In particular, we are able to verify theoretically for (P) all exceptone of the numerical observations made in [14].The plan of our paper is as follows. In Section 2, we state the results inthe absence of convection. In Section 3, we characterize the set of stationarysolutions of (P) when " > 0. In Section 4, we discuss the long-time behaviorof solutions of (P), including stability, asymptotic stability, global existence,and nonexistence. The necessary local existence theorems and comparisontheorems are discussed in Appendix A. These are standard but we couldnot �nd any reference to such results for nonlocal problems of the typeconsidered here. In Appendix B, we gave the proof of a technical inequality,namely, that of Lemma 3.2. 3



2 Discussion for the Case " = 0In this section, we consider the following problem:8>><>>: ut = uxx + 12 �aku(�; t)kp�1+ b�u; 0 < x < 1; t > 0;u(0; t) = u(1; t) = 0; t > 0;u(x; 0) = u0(x); 0 � x � 1: (P0)Because (P0) is an explicitly resolvable problem, we can easily examinethe questions of stability, global existence, and nonexistence of nonnegativesolutions.First, for the stationary solutions of (P0), we need to solve8<: v00 + 12 �akvkp�1 + b� v = 0; 0 < x < 1;v(0) = v(1) = 0: (S0)The nonnegative solutions of (S0) must be in the form v(x) = c1'1(x) =c1 sin �x. Substituting such v in the equation, we �nd��2 + 12 �acp�11 k'1kp�1 + b� = 0: (2:1)Thus, for a > 0, there is no positive solution when b � 2�2 and one positivesolution when b < 2�2. For a < 0, there exists a unique positive solutionwhen b > 2�2 but none when b � 2�2.Next, for (P0), we seek solutions of the formu(x; t) = 1Xn=1 an(t)'n(x); (2:2)where 'n(x) = sinn�x. Let f(t) = ku(�; t)kp�1 =  Z 10 ����� 1Xn=1 an'n�����q dx! p�1q .Through a straightforward computation, we havef(t) = (h(t))p�1 ea(p�1)2 R t0 f(�)d�; (2:3)where h(t) = e b2 t Z 10 ����� 1Xn=1 an(0)e�n2�2t'n(x)�����q dx! 1q :4



From (2.3), after a quadrature, we can rewrite f(t) as follows:f(t) = (h(t))p�1��1� a(p� 1)2 Z t0 (h(�))p�1 d�� : (2:4)Let H(t) = Z t0 hp�1(�) d�: (2:5)If b < 2�2, it follows that H(t) ! H1 < 1 for some constant H1 whichis proportional to jaN (0)j where N is the smallest integer such that an 6� 0.Thus, if a(p�1)H1 < 2, which will be the case if aN (0) is su�ciently small,then f(t) ! 0 as t ! 1, and the trivial solution is stable in Lq. On theother hand, if a(p � 1)H1 > 2, then clearly f(t) ! 1 in �nite time, sosome solutions of (P0) blow up in �nite time. Finally, if a(p � 1)H1 = 2,then f(t) can have a �nite, nonzero limit as t ! 1. This situation occurs,for example, when u is a stationary solution of (P0).To show that v(x) is unstable, we look for solutions of (P0) of the formu(x; t) = a1(t)'1(x) = �(t)v(x);where �(t) = a1(t)=c1 and �(0) 6= 1. Then, using (S0), we see that�0(t) = c2 ��p�1(t)� 1��(t);where c2 = 12akvkp�1q . If �(0) < 1, then �0(t) < 0 for small t > 0 andconsequently for all t (since p > 1). Therefore �(t) < �(0) and�0(t) < �c2 �1� �p�1(0)��(t), so �(t) ! 0 as t ! 1. If �(0) > 1, itis easy to see that �0 > 0 for all t for which �(t) exists. It follows that �(t)blows up in �nite time. Thus, for any r > 1,lim inft!1 ku(�; t)� vkr > 0;and consequently v is not stable (in any norm).If b � 2�2, then zero is unstable. To see this, we note that if a1(0) 6= 0,then, in view of the asymptotic behavior of h(t) near +1, H(t) grows eitherexponentially or linearly so that it passes 2=a(p� 1) in �nite time. Conse-quently, whenever (u0; '1) 6= 0, solutions of (P0) blow up in �nite time.For the case a < 0, we again have subcases. If b < 2�2, zero is the onlynonnegative stationary solution. From the form of h(t) and the fact thata < 0, we see that h(t)! 0 as t!1, and consequently ku(�; t)k ! 0 also.5



If b = 2�2, then h(t)! ja1(0)j k'1k. If ja1(0)j = 0, then from (2.4), sincea < 0, we have f(t) ! 0 as t ! 1. If ja1(0)j 6= 0, then H(t) behaves like(ja1(0)j k'1k)p�1 t, so f(t) ! 0 in this case too. Therefore zero is globallyasymptotically stable in this case also.If b > 2�2, we claim that zero is unstable and that the positive stationarysolution, v(x), is stable. For the �rst of these, let u(x; t) = "(t)v(x). Then,as before, "0(t) = c2"(t) �1� "p�1(t)� ;where c2 = jajkvkp�1. Thus, if 0 < "(0) < 1, "0 > 0 for small t, and hencefor all t for which "(0) � "(t) � 1. If follows that if (0; T ) is the largestinterval on which "0(t) > 0, then "(t) ! 1� as t % T and T = +1. Thisestablishes the instability of the null solution.To show that v(x) is stable for a < 0 and b > 2�2, we writeu(x; t) = a1(t)'1(x) + 1Xn=2 an(t)'n(x); (2:6)where a1(0) = (1 + �)c1 and j�j � 1; � 6= 0:and where v(x) = c1'1(x) solves (S0). Then a tedious, but routine, compu-tation yieldsan(t) = an(0)e(�n2�2+ 12 b)t �1� a(p� 1)2 H(t)�� 1p�1 (2:7)and u(x; t)� v(x) = (a1(t)=c1 � 1) v(x) + 1Xn=2 an(t)'n(x) (2:8)oru(x; t)� v(x) = �(1 + �)e( 12 b��2)t h1� a(p�1)2 H(t)i� 1p�1 � 1� v(x)+ e( 12 b��)t h1� a(p�1)2 H(t)i� 1p�1 1Pn=2 an(0)e�(n2�1)�2t'n(x):(2:9)6



Since a1(0) 6= 0, we see that h(t) � (1 + �)kvke(12 b��2)t as t ! 1. This,together with (2.1), shows us that�1� 12a(p� 1)H(t)� 1p�1 �  �akvkp�1b� 2�2 ! 1p�1 (1 + �)e( b2��2)t� (1 + �)e( b2��2)tas t ! +1. Using these estimates in (2.9) and the triangle inequality, wesee thatku(�; t)� vkq � "1(t)kvkq+ e��2t (1� "2(t))"Z 10 ����� 1Xn=2 an(0)e�(n2�2)�2t'n(x)�����q dx#1=qwhere "1(t); "2(t) ! 0 as t ! 1. Consequently ku(�; t) � vkq ! 0 ast! +1.
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3 The Stationary Solutions When " > 0If we write u = �v with � > 0 such that �p�1jaj = 1, and if we replace " by�", we can reduce (P) to an equivalent problem for v with a = 1 or a = �1.For this reason, we seek all positive solutions of8<: wxx + "wwx + 12 ��kwkp�1 + b�w = 0; 0 < x < 1;w(0) = w(1) = 0; (S)where � = 1 or � = �1. We letkwk = kwkq = �Z 10 wqdx�1=qand set y = Z x0 w(�) d�; Y = Z 10 w(�) d�: (3:1)Under this change of variable, we haveddx = w ddy :Thus, in lieu of (S), with v(y) = w2 (x(y)), we �ndvyy + "vy + �Y p�1q + b = 0; (3.2a)v(0) = v(Y ) = 0; (3.2b)where Yq = kwkq and Y1 = Y . The positive solutions of (3.2a,b) are givenby v(y; Y ) = "�1Y ��Y p�1q + b�J("y; "Y ); (3.3a)where J(y; z) = 1� e�y1� e�z � yz : (3.3b)It follows that �Y p�1q + b > 0, since v = w2.The values of Y , Yq are then determined by solving the nonlinear system1 = Z 10 dx = Z Y0 dypv(y) ; (3.4a)8



Y qq = Z 10 wq(x)dx = Z Y0 v 12 (q�1)(y)dy: (3.4b)We de�ne, for s � 0, z > 0,Hs(z) = Z 10 [J(�z; z)]12 (s�1) d�:A routine calculation shows that withZq = "Yq;Z1 = Z = "Y; (3:5)we have from (3.4a,b), for 1 � q <1,Zq � Zq(Z) = Z hHq(Z)Hq�10 (Z)i1=q (Z � 0); (3:6)while b = ZH20(Z)� �"�(p�1)Zp�1q (Z) = b(Z): (3:7)When q = +1,Zq(Z) = Z�1=2 "e�Z � (1� Z)1� e�Z + ln 1� e�ZZ !#1=2H0(Z):Useful asymptotic formulas are, for 1 � q <1,Zq(Z)Z = 8><>: 2=(1 + q)1=q; Z !1;h�q�1�2 �12(1 + q)� =�(1 + q)i1=q ; Z ! 0+;and, for q =1, Z1(Z)Z = ( 2; Z !1;�=2; Z ! 0+:We have plotted Zq(Z) and Zq(Z)=Z against Z for various q in Figure 1 andFigure 2, respectively.For �xed b, the cardinality of the set of stationary solutions turns out tobe the same as the cardinality of the set of solutions of (3.7). To see this,we need some lemmas. 9



Lemma 3.1. For any q � 1, p > 1, all the positive solutions of (S) areconcave.Proof. The proof follows immediately from (3.3a,b). We havewxx = w ddy �wdwdy � = 12qv(y)vyy(y):Clearly, from (3.3a,b) vyy < 0.This establishes the concavity of the steady states found in [14] numeri-cally.Lemma 3.2. The function h(Z) := ZH20(Z) (Z > 0) is strictly increasing.The proof of this lemma is long and is therefore included in Appendix B.Lemma 3.3. The function hq(Z) := ZqHq(Z)Hq�10 (Z) is strictly increas-ing for q � 1.Proof. We can writehq(Z) = Z 12 (q+1)Hq(Z) (h(Z)) 12 (q�1) :Therefore, by Lemma 3.2, it su�ces to show thatHq(Z) is strictly increasing.This in turn will hold ifddzJ(�z; z) = ��e��z(1� e�z)� e�z(1� e��z)� =(1� e�z)2 � 0:If we write x = e�z , then x 2 (0; 1], andG(�; x) � ddzJ(�z; z) = ��x� � x(1� x�)1� x � =(1� x):In view of the convexity of 1� x�, we �nd�x��1 � 1� x�1� x :Hence G(�; x) � 0, and the lemma is true.10



Lemma 3.4. Let w1, w2 be two nonnegative stationary solutions of (P)with kw1k1 � kw2k1. Then either w1 < w2 on (0; 1) or w1 � w2.Proof. Any such solution can be written in the form"2v�z; Z" � = Z ��"�(p�1)Zp�1q (Z) + b�J(z; Z)= Zh(Z)J(z; Z);where z = "y, Z = "kwk1 and v(y) = w2(x), in view of (3.7).A straightforward computation shows that"2 @v@Z �z; Z" � = "v;2�z; Z" �= h0(Z)ZJ(z; Z) + h(Z) @@Z (ZJ(z; Z))= h0(Z)ZJ(z; Z) + h(Z)(1� e�z) �1� e�Z � Ze�Z�(1� e�Z)2> 0:Thus, if Yi = kwik1, we have Y1 � Y2 andv(y; Y1) � v(y; Y2):We need to show that if w1 6� w2, then w1 < w2 on (0; 1). Note thatw2i (x) = v(yi; Yi), and dyidx = wi(x) for i = 1; 2. Thus, for any x 2 (0; 1),x = Z y1(x)0 (v(�; Y1))�1=2 d� = Z y2(x)0 (v(�; Y2))�1=2 d�;where yi(x) = Z x0 wi(�)d�:We see that if Y1 = Y2, then y1(x) � y2(x), so that w1(x) � w2(x). Hence,we may assume Y1 < Y2.Since v(�; Y1) < v(�; Y2), if � > 0, we must have y1(x) < y2(x) on (0; 1].Let �x denote the unique x in (0; 1) where w02(�x) = 0 (Lemma 3.1). Then for11



x 2 (0; �x), y2(x) < y2(�x). Nowv (y2(x); Y2)� v (y1(x); Y1)= v (y2(x); Y2)� v (y1(x); Y2) + v (y1(x); Y2)� v (y1(x); Y1) :Since v(�; Y2) is increasing on (0; y2(�x)) and v;2 > 0, the di�erences on theright are positive on (0; �x]. Thus w1 < w2 on (0; �x].A similar argument using the change of variabley = Z 1x w(�)d�yields (3.2a) with " replaced by �" and, in place of (3.3a),v(y; Y ) = "�1(�Y p�1q + b) �y � Y (e"y � 1)(e"Y � 1)� :Again, one �nds that v;2 > 0 and ultimately that w1 < w2 if 1� x < 1� �xor x > �x.These lemmas allow us to conclude the following theorem.Theorem 3.5. Let w(x) be a nonnegative solution of (S). Then, if Z ="kwk1, Z solves (3.7). Conversely, if Z > 0 is a solution of (3.7), thenw(x) = (v(y))1=2 solves (S) with dx=dy = (v(y; Y ))�1=2, Y = Z=", and v isgiven by (3.3a,b).We next count the solutions of (3.7) for �xed " > 0. Let Z(b) be a branchof solutions of (2.7). By the implicit function theorem, as long asQ(Z) := @@Z hZH20 (Z)� �"�(p�1)Zp�1q (Z)i 6= 0on this branch, Z will be a C1 function of b andZ0(b)Q (Z(b)) = 1:For �xed b, the number of solutions of (3.7) is then the same as thenumber of sign changes of Q(Z) on (0;1). However, the sign analysis of Q is12



complicated when � > 0, since, in principle, a function of bounded variation(the di�erence of two increasing functions) can have in�nitely many zeros.The case � < 0 is easy to treat. The function b(Z) given by (3.7) isstrictly increasing for Z � 0 and has the range [2�2;1). Therefore, foreach b > 2�2, there is exactly one positive solution of (S), and there is nonontrivial solution for b � 2�2.We observe that b(Z) has the following asymptotic properties:b(Z) = 8<: 4Z � �"�(p�1)"p�11 Zp�1 Z !1; 1 � q � 1;2�2 � �"�(p�1)"p�10 Zp�1 Z ! 0+; 1 � q � 1;where "1 = ( 2(1 + q)�1=q 1 � q <1;2 q =1;and "0 = 8>><>>: h�q�1�2 �12(1 + q)�.�(1 + q)i1=q 1 � q <1;�2 q =1:These asymptotic formulas, together with the numerical results of Figures4{11, allow us to assert the following for � > 0:(N{1) If 1 < p < 2, there is b(p; q; ")< 2�2 such that(a) if b < b(p; q; "), there are no positive stationary solutions;(b) if b = b(p; q; ") or b > 2�2, there is exactly one solution; and(c) if b(p; q; ")< b < 2�2, there are exactly two solutions.(N{2) If p = 2, we have the following:(a) If " < 14"1, there is exactly one positive stationary solution foreach b < 2�2, none for b � 2�2.(b) If " = 14"1, there is b("1) < 2�2 such that(i) if b � b("1) or b > 2�2, there are no positive stationarysolutions; and(ii) if b("1) < b < 2�2, there is exactly one solution.13



(c) If " > 14"1, there is b("1) < 2�2 such that(i) if b < b("1), there are no positive stationary solutions;(ii) if b = b("1) or b > 2�2, there is exactly one solution; and(iii) if b("1) < b < 2�2, there are exactly two solutions.(N{3) If p > 2, there is a critical number "1(p; q) such that(a) if " � "1, we have the following:(i) If b � 2�2, there are no positive stationary solutions.(ii) If b < 2�2, there is exactly one solution.(b) if " > "1, there is b(p; q; ")> 2�2 such that(i) if b > b(p; q; "), there are no positive stationary solutions;(ii) if b = b(p; q; ") or b < 2�2, there is exactly one solution; and(iii) if 2�2 < b < b(p; q; "), there are exactly two solutions.A word of explanation about the �gures is in order. In Figures 4{6,we have set q = 2 and chosen p = 1:5, 2, and 3, respectively, plotting thesolution set of (2.7) for various ". The assertions above are based on these�gures, the asymptotic formulas following (3.7), and (H). In Figures 7{11,we have �xed " and p and plotted the solution sets as functions of Q.
14



4 Stability and Global Nonexistence When " > 0We next consider the following problem equivalent to (P):8>><>>: ut = uxx + "uux + 12 ��ku(�; t)kp�1+ b�u; 0 < x < 1; 0 < t < T;u(0; t) = u(1; t) = 0; 0 < t < T;u(x; 0) = u0(x); 0 � x � 1: (P0)For simplicity, we let DT = (0; 1) � (0; T ) and DT [ �T = [0; 1] � [0; T ).Our primary interest is in the stability properties of the steady states andin the asymptotic behavior of solutions of (P0) for a given initial datum u0.To pursue this interest, we �rst establish a relationship between solutions of(P0) and those of (S).Lemma 4.1. If u is a bounded monotone (in time) solution of (P0), then utends to a solution of (S) as t!1.Proof. First, we note that such a solution must be global in time, bythe continuation statement in Appendix A. Suppose that limt!1 u(x; t) = '(x),and let F (x; t) = Z 10 G(x; y)u(y; t) dy; (4:1)where G(x; y) = ( x(1� y); 0 � x � y � 1;y(1� x); 0 � y � x � 1;is the Green's function for � d2dy2 with Dirichlet boundary conditions.
15



Under the assumptions for u, F is bounded in [0; 1]� [0;1) andFt(x; t) = Z 10 G(x; y)ut(y; t)dy= �u(x; t)� "2 Z x0 u2(y; t)dy+ "2x Z 10 u2(y; t)dy+12 ��ku(�; t)kp�1+ b�Z 10 G(x; y)u(y; t)dy! �'(x)� "2 Z x0 '2(y)dy + "2x Z 10 '2(y)dy+12 ��k'kp�1 + b�Z 10 G(x; y)'(y)dy (4:2)as t ! 1. This limit has a constant sign that depends on whether ut � 0or ut � 0. In actual fact, the limit is zero for x 2 [0; 1]; otherwise F wouldnot have a �nite limit as t!1. Therefore'(x) = �"2 Z x0 '2(y)dy + "2x Z 10 '2(y)dy+ 12 ��k'kp�1 + b�Z 10 G(x; y)'(y)dy;and hence ' is a solution of (S).By means of this lemma, we can obtain a complete result for stabilityand instability of stationary solutions of (P0) with � = 1. This time, wetreat the solution of (S) as a function depending on the parameter b anddenote it by w(x; b).Theorem 4.2. Let w(x; b) be a continuously di�erentiable positive solutionof (S) with � = 1 on some b interval [�; �], and let Z(b) be the correspondingsolution of (3.7). Then if Z0(b) > 0 on [�; �], the solutions are stable, whereasthey are unstable if Z0(b) < 0.Proof. For the case Z 0(b) > 0 we �rst show that w(x; b1) < w(x; b2) on(0; 1) for � � b1 < b2 � �.From Z 0(b) > 0, it follows that Z(b1) < Z(b2) if � � b1 < b2 � �. Inview of (3.7), Z(b) = "kw(�; b)k1 and v ("y; Z="; b) = w2(x; b). Using the16



form of v("y; Z="; b) in Lemma 3.3, we see that"2v �"y; Z(b1)" ; b1� = �"�(p�1)Zp�1q (Z(b1)) + b1�Z(b1)J ("y; Z(b1))< �"�(p�1)Zp�1q (Z(b2)) + b1�Z(b2)J ("y; Z(b2))< �"�(p�1)Zp�1q (Z(b2)) + b2�Z(b2)J ("y; Z(b2))= "2v�"y; Z(b2)" ; b2� ;since @v@Z > 0 and b1 < b2.Thus, letting Y (b) = kw(�; b)k1, we havev (y; Y (b1); b1) < v (y; Y (b2); b2) for � � b1 < b2 � �:Then following the same reasoning as in Lemma 3.3, we �nd thatw(x; b1) < w(x; b2) on (0; 1) for � � b1 < b2 � �:Let u(x; t; b1) be a solution of (P0) with u0(x; b1) = w(x; b2). Then, on(0; 1), we haveu000 + "u0u00 + 12 �ku0kp�1 + b1� u0= wxx(x; b2) + "w(x; b2)wx(x; b2) + 12 �kw(�; b2)kp�1 + b1�w(x; b2)< wxx(x; b2) + "w(x; b2)wx(x; b2) + 12 �kw(�; b2)kp�1 + b2�w(x; b2)= 0:Hence, recalling the Corollary in Appendix A, we have ut < 0 in DT . Fromthe comparison theorem in Appendix A and the monotonicity of u, we alsohave, on (0; 1) w(x; b1) < u(x; t; b1) � w(x; b2):By Lemma 4.1, '(x; b1) = limt!1 u(x; t; b1) exists, and w(x; b1) � '(x; b1) �w(x; b2). Letting b2 ! b+1 yields '(x; b1) � w(x; b1), which shows thatw(x; b1) is stable from above. We can also prove similarly that w(x; b1) isstable from below. 17



If Z0(b) < 0, then Z(b2) < Z(b1), and consequently, kw(�; b2)k1 <kw(�; b1)k1 for � � b1 < b2 � �. Thus there is a subinterval [x0; x1] con-tained in [0; 1] such that w(x; b2) < w(x; b1) on [x0; x1]. Let u(x; t; b2) be asolution of (P0) with u0(x; b2) = w(x; b1). Then, on (0; 1), we �nd thatu000 + "u0u00 + 12 �ku0kp�1 + b2� u0= wxx(x; b1) + "w(x; b1)wx(x; b1) + 12 �kw(�; b1)kp�1 + b2�w(x; b1)> wxx(x; b1) + "w(x; b1)wx(x; b1) + 12 �kw(�; b1)kp�1 + b1�w(x; b1)= 0:Therefore, ut > 0 in DT . Hence, u(x; t; b2) is increasing in t, and it followsthat w(x; b2) is unstable from above. Similarly, w(x; b2) is unstable frombelow when b1 > b2.Using this theorem combined with the characterization of the stationarysolutions in Section 3, we obtain the following stability and instability resultsfor the case � = 1.(C{1) For 1 < p < 2, if b(p; q; ") < b < 2�2, there are two branches ofsolutions of (S) | one stable, the other unstable; if b > 2�2, theunique solution is stable.(C{2) For p = 2:(a) If " < 14"1 and b < 2�2, w(x; b) is unstable.(b) If " = 14"1 and b("1) < b < 2�2, w(x; b) is unstable.(c) If " > 14"1, and(i) if b("1) < b < 2�2, there are two branches | one stable, theother unstable; and(ii) if b > 2�2, w(x; b) is stable.(C{3) For p > 2:(a) If " � "1 and b < 2�2, w(x; b) is unstable.(b) If " > "1 and(i) if b < 2�2, w(x; b) is unstable; and(ii) if 2�2 < b < b(p; q; "), there are two branches | one stable,the other unstable. 18



In particular, we see from Figures 4{6 that, as " increases, the portionof the bifurcation curve along which Z 0(b) > 0 becomes more pronounced.This illustrates the stabilizing e�ect of the convection term in the dynamicalequation.From Figures 7{11, we see that, for �xed ", the choice q = 1 leads to the\most stability" while the choice q = +1 leads to the \least stability" in thesense of the preceding paragraph. Increasing q has the e�ect of decreasingthe set fb jZ 0(b) > 0g.The case � = �1, because of the lack of a comparison principle, is notso amenable to analysis. However, bearing in mind numerical evidence (see[14]), we may conjecture that: the positive stationary solution branch (whereit exists) is stable.Next we discuss the asymptotic stabililty of the trivial stationary solutionof (P0). Henry [7] used a linearization method based on semigroup theoryto analyze the asymptotic stability. His principle has wide application, butit does not readily extend to the current nonlocal problem. Therefore, weadopt another approach.Let F2(t) = Z 10 u2dx to �ndF 02(t) = 2 Z 10 uuxxdx+ 2" Z 10 uuxdx+ bF2 + �kukp�1F2= �2 Z 10 u2xdx+ �b+ �kukp�1�F2� ��2�2 + b+ �kukp�1�F2;since �2 Z 10 u2dx � Z 10 u2xdx.For � = 1, for any b < 2�2 and su�ciently small initial value u0, wehave F2(t) � F2(0)e�kt, which means that v � 0 is an asymptotically stablesolution of (S) in L2(0; 1). Similarly, v � 0 is a globally asymptoticallystable solution of (S) in L2(0; 1) when b � 2�2 for � = �1.Finally, we investigate the global existence and nonexistence of solutionsof (P0). We �rst give the following theorem for the case � = 1.19



Theorem 4.3. For 1 < p < 2 and any " > 0, or p = 2 and " > 12(1+q)�1=q,the solutions of (P0) are uniformly bounded on [0; 1]� [0;1).Proof. We look for a supersolution v in the form v(x) =M(1��x) withM > 0 and 0 < � < 1 to be chosen. We shall succeed if M and � satisfy�"�M2(1� �x) + 12 "b+Mp�1 (�(1 + q))� p�1q #M(1� �x) � 0 (4:3)and M(1� �) � max0�x�1 u0(x): (4:4)The inequality (4.3) is equivalent toMp�1 ""�M2�p � 12 (�(1 + q))� p�1q # � 12b: (4:5)For 1 < p < 2, (4.4) and (4.5) will hold if M is su�ciently large; whileif p = 2, letting " = 12(1 + 
)(1 + q)�1=q (
 > 0)Pff , we have that � 1+qq �(1 + 
)�1, i.e. � � (1 + 
)� q1+q < 1. For such �, we can choose M so largethat (4.4) holds.For the case � = �1, since the solution of (P0) is a subsolution of (P0)with � = 1 and 1 < p < 2, all solutions are bounded on [0; 1]� [0;1).Next for p > 2 or p = 2 with small ", we prove that with su�cientlylarge initial data, problem (P0) with � = 1 does not have global solutions.To show this, we employ two di�erent arguments.Theorem 4.4A. Let p > 2. Then there exists c0 = c0("; p; b) < 1 suchthat if u0 � c0 sin �x, the solution of (P0) blows up in �nite time. The sameis true for p = 2 if " is small enough.Proof. We seek a subsolution w(x; t) in the form w(x; t) = h(t) sin �xwith h(t) becoming unbounded in �nite time. To obtain this, we needh0(t) � ��2h(t) + �"h2(t) cos�x+ 12 (A0hp(t) + bh(t)) ; (4:6)20



where A0 = �Z 10 (sin �x)qdx� p�1q .Set Q(s) = A02 sp�2 � �" (4:7a)for b > 2�2, or set Q(s) = A02 sp�2 � �"� ��2 � b2� s�1 (4:7b)for b � 2�2.For p > 2, if s0 is the largest positive root of Q, then Q(s), Q0(s) > 0 fors > s0.Choosing c0 = s0 and letting h(t) be the solution of the following problemh0(t) = Q(h)h2(t); t > 0h(0) = c0; (4:8)one easily sees that (3.6) is satis�ed and h(t) blows up in �nite time.For p = 2 and su�ciently small " > 0, the above discussion also holds.Remark. The result for p = 2 is in contrast to that in [4], where it isshown that for any " > 0, the solution of a local problem with our nonlocalterm replaced by jujp�1u remains bounded on [0; 1]� [0;1) when p = 2.For any large initial value, with more restriction on p and q, we also havethe following theorem.Theorem 4.4B. Let p � 3 and q � 2. Then there exists c1 = c1("; p; b)such that if Z 10 u0(x)dx > c1, the solution of (P0) blows up in �nite time.Proof. Now we use a variation of the eigenfunction method [9].Set J(t) = Z 10 u(x; t) (x)dx; (4:9)21



where  (x) = �2 sin �x.A routine calculation shows thatJ 0(t) � ��2 Z 10 u(x; t) (x)dx� " Z 10 u2(x; t) 0(x)dx+12 �Z 10 uq(x; t)dx�p�1q Z 10 u(x; t) (x)dx+ b2 Z 10 u(x; t) (x)dx: (4:10)Using H�older's inequality, we see that" Z 10 u2(x; t) 0(x)dx � A1 �Z 10 uq(x; t)dx�2=q (4:11)Z 10 u(x; t) (x)dx� A2 �Z 10 uq(x; t)dx�1=q (4:12)with A1 = "k 0kL1(0;1) and A2 = �=2.Let R(s) = A3s(p�1)=q � A1s2=q (4.13a)for b > 2�2, or letR(s) = A3s(p�1)=q � A1s2=q � ��2 � b2� s1=q; (4.13b)for b � 2�2, where A3 = 12 Z 10 u0(x) (x)dx.If s1 is the largest positive root of R, we �nd that R(s), R0(s) > 0 fors > s1. Letting c1 = s1 and Z 10 u0(x)dx > c1 implies that Z 10 uq(x; t)dx > s1for all t. Hence, J 0(t) � R�Z 10 uq(x; t)dx� � R� 2�Jq(t)� : (4:14)Since q > 1, J(t) must blow up in �nite time.22



Appendix AHere we establish the comparison principle and local existence of solutionsfor the following general problem:8>><>>: ut = uxx + (f(u))x + g (u; kuk) ; 0 < x < 1; 0 < t < T;u(0; t) = u(1; t) = 0; 0 < t < T;u(x; 0) = u0(x); 0 � x � 1; (G)where kuk = �Z 10 jujqdx�1=q.First, we de�ne the subsolution and supersolution of (G). As in Section4, we let DT = (0; 1)� (0; T ) and DT [ �T = [0; 1]� [0; T ).De�nition. A function u(x; t) is called a subsolution of (G) on DT ifu 2 C2;1(DT) \ C(DT \ �T ), satisfyingut � uxx + (f(u))x + g (u; kuk) 0 < x < 1; 0 < t < T;u(0; t) � 0; u(1; t) � 0 0 < t < T;u(x; 0) � u0(x) 0 � x � 1: (G0)A supersolution is de�ned by (G0) with each \�" replaced by \�".Comparison Theorem. Suppose that f and g are continuously di�eren-tiable and that g;2 � 0. Let u and v be a nonnegative supersolution anda nonnegative subsolution, respectively, of (G), with u(x; 0) � v(x; 0) forx 2 (0; 1). Then u � v in DT [ �T .Proof. For every t 2 (0; T ) and every nonnegative '(x; t) 2 C2;1(DT )with '(0; t) = '(1; t) = 0, the subsolution v satis�es the following integralinequality:Z 10 v(x; t)'(x; t) dx � Z 10 v0(x)'(x; 0) dx+ Z t0 Z 10 [v'� � (vx + f(u))'x + g (v; kvk)'] dx d�:23



The supersolution u satis�es the above with reversed inequality.We integrate by parts in both the above inequality and that satis�ed byu and subtract the two resultant expressions. Then we haveZ 10 (v(x; t)� u(x; t))'(x; t) dx� Z 10 (v(x; 0)� u(x; 0))'(x; 0) dx+ Z t0 Z 10 (v � u) ('� + 'xx � A(x; �)'x+B(x; �)') dx d�+ Z t0 Z 10 '(x; �) Z 10 C(s; �)(v� u) ds dx d�; (A1)where A(x; t) = f 0 (�1(x; t)) ;B(x; t) = g;1 (�2(x; t); kvk) ;C(x; t) = g;2 (u; �3(t)) � 1q�14 (t)�q�15 (x; t);with �1; �2; �5 between u and v, and �3; �4 between kuk and kvk.Note that by the hypotheses for f and g, A, B, and C are bounded onDT in the uniform norm. We denote the bound by M0.Now we de�ne two sequence fAng and fBng in such a way that(i) An; Bn 2 C1(DT ),(ii) jAnj �M0, jBnj �M0,(iii) An ! A, Bn ! B in (DT) as n!1,and we set up a backward problem on Dt:8>><>>: 'n� + 'nxx �An'nx +Bn' = 0; 0 < x < 1; 0 < � < t;'n(0; �) = 'n(1; �) = 0; 0 < � < t;'n(x; t) = �(x); 0 � x � 1: (G*)Here, �(x) 2 C10 (0; 1), 0 � � � 1. 24



Recalling standard theory (in [10] for example), we �nd that ' = limn!1'nis a solution of (G*) with An, Bn replaced by A, B, and ' 2 C2;1(DT ). Theinitial and boundary values for 'n imply that ' � 0 in DT .Substituting ' in (A1) yieldsZ 10 (v(x; t)� u(x; t))�(x) dx �M1 Z 10 (v(x; 0)� u(x; 0))+ dx+ Z t0 Z 10 '(x; �) Z 10 C(s; �)(v� u) ds dx d�;where M1 = supDT j'j.Since this inequality holds for every �, we can choose a sequence f�ngon (0; 1) converging to� = ( 1; if v(x; t)� u(x; t) > 0;0; otherwise.Noting that C � 0, v � u = (v � u)+ � (v � u)�, we �nd thatZ 10 (v(x; t)� u(x; t))+ dx �M1 Z 10 (v(x; 0)� u(x; 0))+ dx+M0M1 Z t0 Z 10 (v(x; �)� u(x; �))+ dx d�;which leads, by Gronwall's inequality, toZ 10 (v(x; t)� u(x; t))+ dx �M1 �1 + eMt�Z 10 (v(x; 0)� u(x; 0))+ dx:Thus, the conclusion follows from the condition on initial data.Corollary. If u000 + f 0(u0)u00 + g (u0; ku0k) � 0 (� 0) on (0; 1), thenut(x; t) � 0 (� 0) in DT .Proof. The condition on u0 implies that u0 is a subsolution (superso-lution) of (G). Thus u(x; t) � u0(x) (� u0(x)) in DT [ �T . Let v(x; t) =u(x; t + h) (h > 0). Then v is a supersolution (subsolution) of (G), and25



therefore u(x; t+ h) � u(x; t) (� u(x; t)). Since h is arbitrary, u is increas-ing (decreasing) in t for �xed x, and hence ut � 0 (� 0).Next we establish the existence of solutions of (G) on DT [ �T for su�-ciently small T and certain initial values. This time we assume only that fand g are continuously di�erentiable. We shall also de�ne fM � supjuj�M jf(u)jand gM � supjuj�M jg (u; kuk) j.Let G(x; y; t) denote the Green's function forLu = ut � uxx; 0 < x < 1; t > 0;with boundary conditionsu(0; t) = u(1; t) = 0; t > 0;that is, G(x; y; t) = 2 1Xn=1 sin(n�x) sin(n�y)e�n2�2t:Then G(x; 0; t) = G(x; 1; t) = 0:Also, u is a solution of (G) on DT [ �T if and only if for (x; t) 2 DT [ �Tu(x; t) = Z 10 G(x; y; t)u0(y) dy+ Z t0 Z 10 hG(x; y; t� �)g (u(y; �); ku(�; �)k)� Gy(x; y; t� �)f (u(y; �))idy d�� u(x; t): (A2)To show that (A2) is solvable for su�ciently small T , we use a contractionmapping argument. To this end, we de�neu1(x; t) = 0 (A3a)and un+1(x; t) = un(x; t): (A3b)26



Local Existence Theorem. Let the initial datum for problem (G) becontinuous on [0; 1] and satisfy0 < m < Z 10 Z 10 G(x; y; t)u0(y) dy dx (A4)for 0 � t � 1, say. Then for su�ciently small T , (G) has a unique solutionthat satis�es kuk � m2 (A5)on [0; T ]. The solution is C1 in t and C2 in x on DT and continuous on DT .Proof. First, we de�neM0 = sup0�x�1 ju0(x)j;�(t) = sup0�x�10���t Z �0 Z 10 G(x; y; � � �) d�;�(t) = sup0�x�10���t Z �0 Z 10 Gy(x; y; � � �) d�;Clearly, �(t) and �(t) tend to zero as t! 0+. For �xed M > M0, choose Tso small that T � 1 and�(T )fM + �(T )gM < max�M �M0; 12m� ; (A6)� � �(T ) supj�j�M jf 0(�)j+ �(T )0BB@ supj�j�Mj�j�M jg�(�; �)j + supj�j�Mj�j�M jg�(�; �)j�m2 �1q�1M q�11CCA< 1: (A7)It then follows from (A3a), (A3b), and (A6) and induction that on DTkunkL1(DT ) �M27



for all n = 1; 2; � � �. Moreover, we have from (A3b) and (A6) thatkunk � kunkL1(DT ) > m2 (A8)for all n = 2; 3; � � �. Using (A7) and letting �n � kun+1�unkL1(DT ), we cansee that �n+1 � ��n � � � � � �n�1:Therefore, fung is uniformly convergent on DT , andu(x; t) = limn!1 un(x; t) (A9)solves (A2) with kuk � m=2.The asserted interior regularity follows from the properties of G and thecontinuity of u in DT . We omit the standard arguments.The above result also allows us to make the following continuation state-ment: If u is a classical solution on DT , bounded on DT , then u may beextended to DT+� for some � > 0.
28



Appendix BHere we establish Lemma 3.2.Lemma 3.2. The integralZ 10 z1=2�1�e��z1�e�z � ��1=2 d�is increasing in z for z � 0.We see that the statement is equivalent to showing thatZ 1=20 2664 z1=2�1�e��z1�e�z ���1=2 + z1=2 1�e�(1��)z1�e�z �(1��)!1=23775 d�= Z 1=20 "� zf(z; �)�1=2 + � zg(z; �)�1=2# d�is increasing in z for z � 0.To establish this assertion, we shall show that�zf �1=2 + �zg�1=2is increasing in z, for � 2 [0; 1=2].Reduction 1. The presence of square roots in the integrand causesdi�culties. By taking the square, we see that the lemma is a consequenceof showing that zf + zg and z2fgare increasing.Reduction 2. Let us assume that we already know that a2=fg isincreasing. We havezf + zg = z(fg)1=2 � �fg�1=2 + � gf �1=2! : (B1)29



The �rst factor is increasing by assumption. We therefore have (B1) oncewe can show that the second factor is also increasing. We claim that this isequivalent to showing that f=g is increasing in z, for � 2 [0; 1=2]. LetF 2(z) = fg : (B2)Using L'Hopital's rule, we obtainF (0) = limz!0 fg = 1: (B3)The derivative of the second factor in (B1) isF 0(z) �F 2(z)� 1�F 2(z) : (B4)If we can show that F (z) is increasing in z, then, in view of (B3), bothfactors in the numerator are nonnegative (and hence the second factor in(B1) is increasing).We have thus reduced the problem to proving that f=g is increasing andz2=fg is increasing in z for all � 2 [0; 1=2].Proof that f=g is increasingAfter simpli�cation and the substitution y = e�z , we havefg = 1� y� � �(1� y)1� y1�� � (1� �)(1� y) ;y 2 [0; 1]; � 2 [0; 1=2]. Note that y decreases as z increases. Hence, we haveto show that f=g is decreasing in y. The numerator of its derivative, namely,f 0g � fg0, isX(y) = (4� � 2) + (�2 � 2� + 1)y� � �2y��1 + (�2 � 2� + 1)y�� � �2y1�� :We need to show that it is nonpositive. Note that X(1) = 0; hence, itsu�ces to show that X 0(y) � 0 in [0; 1], or equivalently thatY (y) = yX 0�(1� �) = ��y1�� � (1� �)y�� + (1� �)y� + �y��1 � 0:30



Again we see that Y (1) = 0; hence, it remains to show that Y 0(y) � 0 in[0,1] . But Y 0(y) = ��(1� �)(1� y)(1� y1�2�)y2�� � 0;as desired (recall that 0 < � < 1=2).Now it remains to prove that z2=fg is increasing, or rather its reciprocalK(z; �) = (1� e��z � �(1� e�z)) �1� e�(1��)z � (1� �)(1� e�z)�z2(1� e�z)2 (B5)is decreasing in z � 0 for � 2 [0; 1=2].Reduction 3. Note thatK(z; 0) � 0:Hence, trivially, Kz(z; 0) = 0:If we can show that Kz�(z; �) � 0; (B6)for z � 0, � 2 [0; 1=2], then we know that for a �xed z, Kz is a decreasingfunction in �. Since Kz starts out at 0 when � = 0, Kz must be nonpositivefor all � > 0 up to � = 1=2, and (B5) is then proved. The inequality (B6) isequivalent to showing that K� is decreasing in z � 0 for � 2 [0; 1=2]. Afterdi�erentiating K with respect to �, we can separate out those terms in thenumerator that have the extra factor z:K� = H + L;whereH = (1� 2�)(1� e�z)2 + e�(1��)z + e�(1+�)z � e��z � e�(2��)zz2(1� e�z)2 ; (B7)and L = �e�z � �e�(2��)z + (1� �)e�(1+�)z � (1� �)e�(1��)zz(1� e�z)2 : (B8)31



We have thus made the �nal reduction to proving thatH and L are decreas-ing in z for z � 0 and all � 2 [0; 1=2].Proof that H is decreasing. The crucial observation is that thenumerator of H has the factor (1� e�z). After cancellation, we haveH = (1� 2�)(1� e�z) + e�(1��)z � e��zz2(1� e�z)= (1� 2�)(ez=2 � e�z=2) + e�(1��)z=2 � e(1��)z=2z2(ez=2 � e�z=2) : (B9)The next step involves an obvious change of variablest = 1� �; y = z=2;and the use of hyperbolic functions. We haveH = t sinh(y)� sinh(ty)4y2 sinh2(y) ; (B10)y � 0, t 2 [0; 1]. Note thatH(y; 0) = H(y; 1) = 0:Hence, Hy(y; 0) = Hy(y; 1) = 0: (B11)Let us �x a y and see how R(t) = Hy(�; t) changes with t. We need to showthat R(t) � 0 in order to establish that H is decreasing. By (B11),R(0) = R(1) = 0: (B12)By di�erentiating (B10) twice with respect to t and once with respect to y,we see thatR00(t) = �� sinh(ty)4 sinh(y)�y = cosh(y) sinh(ty)� t sinh(y) cosh(ty)4 sinh2(y) ; (B13)where the subscript y outside the parentheses denotes partial di�erentiationin y. If we can show that R00(t) � 0, then R(t) is a convex function of t and32



then by virtue of (B12), R(t) � 0 as required. The nonnegativity of R00 isimplied by cosh(y) sinh(ty) � t sinh(y) cosh(ty);or equivalently y cosh(y)sinh(y) � (ty) cosh(ty)sinh(ty) ; t 2 [0; 1]: (B14)This is a consequence of the elementary fact that y cosh(y)= sinh(y) is anincreasing function in y.Proof that L is decreasing in z. We follow the same line of attack.Denote S(�) = Lz(z; �) for a �xed z. Note thatL(z; 0) = L(z; 1=2)� 0; (B15)implies that S(0) = S(1=2) = 0: (B16)Unlike the function R(t), the second derivative of S(�) does not have asimple form from which we can deduce S00(�) � 0. We �rst rewrite L in thefollowing form: L(z; �) = � sinh(1� �)z � (1� �) sinh(�z)z sinh2(z=2) : (B17)Taking the derivative twice with respect to �, we haveL�� = �2cosh(1� �)z � cosh �zsinh2 � z2� + z2L: (B18)Using the sum and product formula on the �rst term, we obtain the simpli-�ed equation: L�� = �4 sinh ��12 � �� z�sinh � z2� + z2L: (B19)The �rst term on the righthand side is an increasing function of z, sinceit is really the same function occurring in R00 in (B13) (take y = z=2, andt = (1� 2�) < 1). Now take the z derivative of (B19) to obtainS00(�) = 240@�sinh ��12 � �� z�sinh � z2� 1Az + 2zL35+ z2S(�): (B20)33



The terms inside the square brackets are positive. Now suppose that L is notdecreasing. Then for some z, S(�) must have a strictly positive maximumin [0; 1=2]. At this maximum, the lefthand side of (B20) is nonpositive whilethe righthand side is strictly positive, giving a contradiction.References[1] N. W. Bazley and J. Weyer, Explicitly resolvable equations with func-tional non-linearities, Math. Meth. Appl. Sci. 10 (1988), 477{485.[2] J. M. Burgers, Mathematical examples illustrating relations occurringin the theory of turbulent 
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