
PARALLEL ITERATIVE SOLUTION OF SPARSE LINEAR SYSTEMSUSING ORDERINGS FROM GRAPH COLORING HEURISTICSMark T. Jones and Paul E. PlassmannMathematics and Computer Science DivisionArgonne National Laboratory9700 South Cass AvenueArgonne, IL 60439-4801MCS-P198-1290December 1990Abstract. The e�ciency of a parallel implementation of the conjugate gradient method precon-ditioned by an incomplete Cholesky factorization can vary dramatically depending on the columnordering chosen. One method to minimize the number of major parallel steps is to choose an orderingbased on a coloring of the symmetric graph representing the nonzero adjacency structure of the matrix.In this paper, we compare the performance of the preconditioned conjugate gradient method usingthese coloring orderings with a number of standard orderings on matrices arising from applicationsin structural engineering. Because optimal colorings for these systems may not be a priori known,we employ several graph coloring heuristics to obtain consistent colorings. Based on lower boundsobtained from the local structure of these systems, we �nd that the colorings determined by theseheuristics are nearly optimal. For these problems, we �nd that the increase in parallelism a�orded bythe coloring-based orderings more than o�sets any increase in the number of iterations required forthe convergence of the conjugate gradient algorithm.1. Introduction. The preconditioned conjugate gradient method [10] is one ofthe most successful iterative methods for solving large, sparse, symmetric, positive-de�nite linear systems. A preconditioner that has been shown to be very e�ectiveover a wide variety of problems is the incomplete Cholesky factorization [12]. Re-cently, several authors [4, 5, 15, 17] have examined the e�ect of matrix orderings basedon multicolorings on the convergence properties of iterative methods. However, thiswork has considered only problems generated from regular grids, for which an optimalcoloring is a priori known. These problems generate M-matrices [14] that are not rep-resentative of general systems of equations for which the straightforward incompleteCholesky factorization may not exist.In this paper, we consider sparse linear systems that arise from applications instructural engineering as well as the standard grid problems. For many of these prob-lems, optimal multicolorings are not known. In general, the determination of an op-timal coloring is an NP-hard problem [6]. Thus, we have explored the use of graphcoloring heuristics to obtain the desired orderings. Our experimental results show thatthe combination of incomplete factorization and coloring heuristics results in a par-allel preconditioner that is applicable to symmetric, positive-de�nite matrices arisingin practical applications. We also compare the e�ectiveness of the coloring heuris-tics to some standard orderings: minimum degree, reverse Cuthill-McKee, and nesteddissection.The parallelism inherent in computing and applying the preconditioner is limited1



by the solution of the triangular systems generated by the incomplete Cholesky factors[17]. It was �rst noted by Schreiber and Tang [16] that if the nonzero structure ofthe triangular factors is identical to that of the original matrix, then the minimumnumber of major parallel steps possible in the solution of the triangular system isgiven by the chromatic number of the symmetric adjacency graph representing thosenonzeros. Thus, given the nonzero structure of a matrix A, an approach to generatinggreater parallelism is to compute a permutation matrix, P , based on a coloring of thesymmetric graph G(A). The incomplete Cholesky factor ~L of the permuted matrixPAP T is computed, instead of the factor based on the original matrix A.In this permutation, vertices of the same color are grouped and ordered sequen-tially. As a consequence, during the triangular system solves, the unknowns corre-sponding to these vertices can be solved for in parallel, after the updates from previouscolor groups have been performed. The result of Schreiber and Tang states that theminimum number of inherently sequential computational steps required to solve one ofthe triangular systems, ~Lu = v or ~LTw = u, is given by the minimum possible numberof colors, or chromatic number, of the graph.This reordering of the matrix is reminiscent of the reorderings done to minimizethe �ll in a direct factorization. However, in the incomplete factorization, �ll that cor-responds to initial zeros of the matrix is ignored. Instead, the permutation is chosen tominimize the number of communication steps inherent in the solution of the triangularsystems generated by the incomplete factorization.The organization of this paper is as follows. In Section 2 we briey present someimportant issues in computing graph coloring and review two coloring heuristics thatwe have employed in our experiments. Here we also introduce the concept of an r-element, which can be used to generate an e�ective lower bound for the chromaticnumber of the graphs arising from our testbed applications. In Section 3 we introducea suite of test problems and present experimental results. Finally, in Section 4 wesummarize our research and suggest areas for future investigation.2. Coloring Heuristics. Given the nonzero structure of an n � n symmetricmatrix A, one can associate the symmetric graph G(A) = (V;E) with the matrix,where the vertex set is given by V = f1; : : : ; ng and the edge set is given by E =f (i; j) j Aij 6= 0; and i 6= jg. We say that the function � : V ! f1; : : : ; sg is ans-coloring of G(A), if �(i) 6= �(j) for all edges (i; j) in E. The minimum possible valuefor s is known as the chromatic number of G(A), which we denote as �(G).The question as to whether a general graph G(A) is s-colorable is NP-complete[6]. It is known that unless P = NP , there does not exist a polynomial approximationscheme for solving the graph coloring problem [6]. In fact, the best polynomial timeheuristic known [11] can theoretically guarantee a coloring of only size c (n= log n)�(G),where c is some constant.It is therefore rather surprising that a coloring heuristic should perform well atall in practice. However, for the problems considered in this paper, we �nd that theheuristics obtain colorings only slightly worse than a lower bound determined fromthe local structure of the graphs considered. To obtain a lower bound, we employ thefollowing well-known result which bounds the chromatic number by the size of any2



complete subgraph in G.Given a subset V 0 of the vertices V , the induced subgraph G0 = (V 0; E 0) of Gcontains the edges in the set E 0 = f (i; j) j (i; j) 2 E; and i; j 2 V 0g. A completesubgraph of size r, which we call an r-clique, is a subset V 0 of V , with jV 0 j = r, forwhich every possible edge exists in the induced subgraph. Since the r vertices in anr-clique must be assigned di�erent colors, we have the following lemma.Lemma 1. If G contains an r-clique, then �(G) � r.The matrices we have considered for our experiments, with the exception of thestandard grid problems, are all from structural engineering applications. We say thatthe �nite-element model contains an r-element if there is an element in the model thatcontains r independent variables, which are represented in the model as being directlyinteracting. Thus, in the resulting linear system, we have that there is an r-cliqueassociated with this r-element. By the above lemma, this clique corresponds to a lowerbound for the chromatic number of the graph G(A).Theorem 2. If the �nite element model contains an r-element, then �(G) � r.The advantage of this observation is that it usually straightforward to determine themaximum sized r-element in the �nite element model.It is known that an optimal coloring can be obtained via a greedy heuristic if thevertices are visited in the correct order [1]. The basic structure of the greedy heuristicis shown below.Greedy Heuristic. Compute a vertex ordering fv1; : : : ; vng for V . For i =1; : : : ; n, set �(vi) equal to the smallest available consistent color.The only aspect of the heuristic that must be speci�ed is the method for obtainingthe initial vertex ordering. In work by other authors, several strategies for obtainingthis vertex ordering have been proposed. We have used two vertex ordering strategies.The �rst of these heuristics is the smallest-last ordering (SLO) suggested by Mat-ula, Marble, and Isaacson [13]. The second of these heuristics is the incidence degreeordering (IDO) suggested by Br�elaz [2] and modi�ed by Coleman and Mor�e in theirwork [3] on using coloring heuristics to obtain consistent partitions for use in Jacobianestimation.These vertex orderings are de�ned as follows. Suppose that vertices vi+1; : : : ; vnhave been chosen. In the SLO strategy, vertex vi is the vertex that has minimumdegreein the induced subgraph of G with vertices V n fvi+1; : : : ; vng. With the IDO strategy,suppose that vertices v1; : : : ; vi�1 have been chosen. Vertex vi is chosen to be a vertexwhose degree is a maximum in the induced subgraph of G with vertices fv1; : : : ; vi�1g.It is well known that the maximum degree of graph determines an upper boundfor the chromatic number [1]. Let �(G) = maxv2V deg(v), where deg(v) is the degreeof vertex v in G. The upper bound is given by �(G) � �(G) + 1. Note that thegreedy heuristics will always satisfy this bound. Also, the graphs that arise from theapplications we consider have bounded degree, independent of the size of system. Thus,the colorings determined by the heuristics will also be bounded.Both these heuristics have the additional desirable property that they can be im-plemented to run in a time proportional to Pv2V deg(v), or the number of nonzerosin the matrix. This initial computational cost is modest compared to the time to3



construct the incomplete factors and repeatedly solve the resulting triangular systems.3. Experimental Results. In this section, we present experimental results thatdemonstrate the e�ect of matrix orderings derived from the coloring heuristics on theconvergence of the conjugate gradient algorithm. The majority of the matrices in thetest set are di�cult problems that arise from �nite element models from structuralengineering applications.A �nite elementmodel is constructed by piecing together many elements to approx-imate a structure. Each element typically contains k � 2 nodes, each node typicallyhaving 1 � d � 6 degrees of freedom, resulting in kd unknowns per element. Adja-cent elements share nodes, reducing the total number of unknowns. Also, the numberof unknowns may be reduced by several other factors, including the application ofconstraints on the structure.The subgraph containing these unknowns is usually completely connected and thuscomprises an r-element, with r = kd. Many di�erent element types, of course, can beincluded in a model. The coloring heuristics can be expected to perform well on thesematrices because of the local nature of the models and the bound of kd on the maximumclique size.For the sake of comparison, matrices arising from the �ve-point and nine-point�nite-di�erence discretizations on a 30 � 30 grid were included in the test suite. It iswell known that matrices arising from these stencils can be colored using two and fourcolors, respectively.The CLAM package [9] was the environment used to run the experiments. InTable 1, the complete suite of test problems is described.1 The diagonal of each matrixwas scaled to be the identity matrix. For every problem, the right-hand side was thevector of ones, scaled to have a 2-norm of one. The initial guess for the conjugategradient algorithm was the zero vector. Solutions were sought to a relative accuracy of0.001, where the relative accuracy at step k is de�ned as krkk2=kr0k2, where rk is theresidual at step k. When the incomplete Cholesky factorization failed, 0:01 was addedto the diagonal until the factorization succeeded.The �rst experiment shows the performance of the coloring heuristics on LAP5 andLAP9 for which an optimal coloring is known. The results in Table 2 show that bothalgorithms produce optimal or slightly suboptimal colorings but the IDO heuristic isslightly superior.In the second set of experiments, the performance of the coloring heuristics iscompared with three other ordering algorithms: minimum degree, reverse Cuthill-McKee (RCM), and nested dissection. A good description of these other algorithmscan be found in [7]. In Appendix A, �gures showing the orderings produced by thevarious heuristics for the PANEL problem are given. Points of interest are the numberof iterations needed to solve the linear systems and the depth of the dependency graphfor incomplete factorization and forward/backward substitution. Results are given in1 Because of the application of constraints and the elimination of superuous degrees of freedom,the maximum clique size for several of the problems is less than the maximum number of degrees offreedom per node times the number of nodes per element. In addition, the PLANE problem was toolarge for our system to determine the condition number.4



Table 1The suite of test problems.Name Size �(A) DescriptionLAP5 900 389 5-pt �nite di�erence discretization on a 30x30 gridLAP9 900 260 9-pt �nite di�erence discretization on a 30x30 gridCUBE3 180 3725 �nite element model of a cube with 3x3x3 8-nodeelements with 3 degrees of freedom per nodeCUBE4 363 1.1E4 �nite element model of a cube with 4x4x4 8-nodeelements with 3 degrees of freedom per nodeCUBE5 636 1.4E4 �nite element model of a cube with 5x5x5 8-nodeelements with 3 degrees of freedom per nodeCUBE6 1017 1.6E4 �nite element model of a cube with 6x6x6 8-nodeelements with 3 degrees of freedom per nodeCUBE7 1524 2.9E4 �nite element model of a cube with 7x7x7 8-nodeelements with 3 degrees of freedom per nodeCYL7 216 3.9E4 �nite element model of a circular cylindrical shellwith 36 4-node elements with up to 6 dof per nodeCYL11 510 7.5E4 �nite element model of a circular cylindrical shellwith 100 4-node elements with up to 6 dof per nodePANEL 477 2.1E4 �nite element model of a blade-sti�ened panel withdiscontinuous sti�ener. The model uses 86 4-nodeelements with up to 6 dof per nodePLT4 327 1.1E7 �nite element model of a plate with 64 4-nodeelements with up to 6 dof per nodePLT9 1295 4.2E7 �nite element model of a plate with 64 9-nodeelements with up to 6 dof per nodePLANE 2141 * �nite element model of a airplane with a mixture of2-dimensional element typesTable 2The performance of the coloring heuristics.Heuristic Problem Number of colorsKnown Coloring LAP5 2SLO LAP5 4IDO LAP5 2Known Coloring LAP9 4SLO LAP9 7IDO LAP9 55



Table 3, where �(G) is the maximum degree of a node in G(A) and cl(G) is the largestapparent clique,2 or r-element, used in constructing G(A). For each problem, thenumbers in the �rst row are the number of iterations required for convergence, and thenumbers is the second row give the number of levels in the dependence graph. Theseresults show that the coloring heuristics produce orderings that are very close to thelargest clique size in the graphs of the matrices. The amount of parallelism availablefrom the colorings is much greater than that produced by the other orderings; morethan enough to o�set the larger number of iterations required.An examination of the CUBE problems reveals how the coloring heuristics performas the size of the problem increases. The IDO heuristic did very well; the number ofcolors increased only slightly as the size of the problem was increased by a large factor.The e�ect of using elements with more nodes can be seen in the two plate problems,PLT4 and PLT9, where the number of colors increased by approximately a factor oftwo as the number of nodes per element went from 4 to 9.The reverse Cuthill-McKee (RCM) ordering seems to be the best ordering to chooseto minimize the number of iterations. However, the triangular system solves on parallelmachines are extremely communication intensive. As a rough measure of the commu-nication complexity of the di�erent orderings we can use the product of the numberof iterations and the dependency graph depth. In Figure 1 we show the ratio of thiscomplexity measure for the RCM ordering when compared to the IDO ordering. Theresults for the PLANE problem show a substantial improvement when using the IDOordering. We note that the results for the CUBE and CYL problems indicate thatthere is a improvement in this ratio as the size of the problems increases. Even thoughthe maximum clique size increases for the PLT problem when the number of node isincreased from 4 to 9, we see an improvement in this ratio.When the number of colors does not allow for enough parallelism, the number ofcolors can be reduced by setting selected o�-diagonals to zero. For example, if A isa 3 � 3 matrix in which node 1 is colored red and nodes 2 and 3 are colored black,then by setting a1;2, a1;3, a2;1, and a3;1 to 0, all three nodes can be colored red. Ofcourse, removing these o�-diagonals will increase the number of iterations requiredfor convergence. To observe the e�ect of removing these nonzeroes on the number ofiterations, we reran the problems used in experiment 2, this time using the coloringheuristics followed by a coloring reduction. The coloring reduction compacted thenodes in a color into the next color if the number of nodes in the color was less thana speci�ed minimum value. The �rst column in Table 4 gives the minimum number ofelements allowed in a color. The results show that a signi�cant gain in parallelism canbe realized without paying an excessive price in terms of an increase in the number ofiterations.4. Conclusions. Our results have shown that for these systems the coloringheuristics have close to optimal colorings for the graphs based on these matrices. In2 The determination of the largest clique in a general graph is an NP-hard problem. We have useda heuristic to �nd a large clique, which is reported as cl(G). Therefore, there may exist a larger cliquethan this number. 6



Table 3Comparison of orderings.Nested Reverse MinimumName �(G) cl(G) Dissection Cuthill-McKee Degree SLO IDOPLANE 68 20 1251 1362 1082 1636 1585(78) (542) (294) (23) (21)CUBE3 81 24 37 34 33 59 69(68) (111) (81) (26) (25)CUBE4 81 24 84 48 81 104 90(108) (148) (93) (26) (26)CUBE5 81 24 100 48 102 130 128(123) (207) (171) (44) (27)CUBE6 81 24 163 67 128 194 178(164) (224) (202) (31) (29)CUBE7 81 24 175 80 185 215 223(176) (269) (263) (42) (29)CYL7 54 18 80 101 92 86 107(47) (79) (54) (20) (19)CYL11 45 16 108 148 195 199 177(75) (138) (90) (20) (16)PANEL 42 12 73 70 82 84 100(47) (103) (38) (15) (14)PLT4 43 16 556 567 520 411 470(81) (115) (68) (20) (18)PLT9 124 35 2013 2015 1744 2542 2568(143) (406) (142) (36) (35)Table 4E�ect of coloring reduction.Minimum SLO SLO IDO IDOName Color Size # of Its. # of Levels # of Its. # of LevelsPLANE 100 1784 14 1725 13CUBE3 10 77 12 81 13CUBE4 20 119 13 115 13CUBE5 30 160 15 145 13CUBE6 40 269 18 191 18CUBE7 50 294 22 213 24CYL7 20 107 8 111 7CYL11 40 252 9 189 8PANEL 30 85 12 104 10PLT4 20 421 12 554 11PLT9 100 3759 11 3633 117



CUBE3CUBE4CUBE5CUBE6CUBE7CYL7CYL11PANELPLT4PLT9PLANE 0 5 10 15 20 25Fig. 1. The improvement in communication complexity a�orded by the IDO ordering when com-pared to the RCM ordering.addition, this work has shown that the increase in parallelism a�orded by this reorder-ing more than o�sets any of the increases seen in the number of iterations required forconvergence over other commonly used ordering heuristics. It was also observed thatthe bene�t reaped from reducing the number of colors by ignoring speci�c o�-diagonalsis large enough to justify the increased number of iterations.A signi�cant pitfall for the straightforward incomplete factorization algorithm isthat it may fail to produce a positive-de�nite factorization, even though the matrix ispositive de�nite. Because positive de�niteness is required for the conjugate gradientmethod [8], some mechanism must be included to deal with the detection of inde�-niteness during the incomplete factorization process. For the results presented in thispaper, we have used the technique of adding an increasing multiple of the diagonaluntil the matrix can be successfully factored. However, we note that an improvementof these methods for forcing a positive de�nite factorization while still maintaining agood preconditioner is an important area for future research.Acknowledgement. This work was supported by the Applied MathematicalSciences subprogram of the O�ce of Energy Research, U.S. Department of Energy,under contract W-31-109-Eng-38. The authors would like to thank Chris Bischof forhis comments on a preliminary version of this paper.REFERENCES[1] B. Bollob�as, Graph Theory, Springer-Verlag, 1979.[2] D. Br�elaz, New methods to color the vertices of a graph, Comm. ACM, 22 (1979), pp. 251{256.[3] T. F. Coleman and J. J. Mor�e, Estimation of sparse Jacobian matrices and graph coloringproblems, SIAM Journal on Numerical Analysis, 20 (1983), pp. 187{209.[4] I. S. Duff and G. A. Meurant, The e�ect of ordering on preconditioned conjugate gradients,BIT, 29 (1989), pp. 635{657. 8
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Fig. 2. Ordering produced by SLO for the PANEL problem.9



Fig. 3. Ordering produced by IDO for the PANEL problem.

Fig. 4. Ordering produced by minimum degree for the PANEL problem.10



Fig. 5. Ordering produced by Reverse Cuthill-McKee for the PANEL problem.

Fig. 6. Ordering produced by nested dissection for the PANEL problem.11


