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Abstract. The efficiency of a parallel implementation of the conjugate gradient method precon-
ditioned by an incomplete Cholesky factorization can vary dramatically depending on the column
ordering chosen. One method to minimize the number of major parallel steps is to choose an ordering
based on a coloring of the symmetric graph representing the nonzero adjacency structure of the matrix.
In this paper, we compare the performance of the preconditioned conjugate gradient method using
these coloring orderings with a number of standard orderings on matrices arising from applications
in structural engineering. Because optimal colorings for these systems may not be a priori known,
we employ several graph coloring heuristics to obtain consistent colorings. Based on lower bounds
obtained from the local structure of these systems, we find that the colorings determined by these
heuristics are nearly optimal. For these problems, we find that the increase in parallelism afforded by
the coloring-based orderings more than offsets any increase in the number of iterations required for
the convergence of the conjugate gradient algorithm.

1. Introduction. The preconditioned conjugate gradient method [10] is one of
the most successtul iterative methods for solving large, sparse, symmetric, positive-
definite linear systems. A preconditioner that has been shown to be very effective
over a wide variety of problems is the incomplete Cholesky factorization [12]. Re-
cently, several authors [4, 5, 15, 17] have examined the effect of matrix orderings based
on multicolorings on the convergence properties of iterative methods. However, this
work has considered only problems generated from regular grids, for which an optimal
coloring is a priori known. These problems generate M-matrices [14] that are not rep-
resentative of general systems of equations for which the straightforward incomplete
Cholesky factorization may not exist.

In this paper, we consider sparse linear systems that arise from applications in
structural engineering as well as the standard grid problems. For many of these prob-
lems, optimal multicolorings are not known. In general, the determination of an op-
timal coloring is an NP-hard problem [6]. Thus, we have explored the use of graph
coloring heuristics to obtain the desired orderings. Our experimental results show that
the combination of incomplete factorization and coloring heuristics results in a par-
allel preconditioner that is applicable to symmetric, positive-definite matrices arising
in practical applications. We also compare the effectiveness of the coloring heuris-
tics to some standard orderings: minimum degree, reverse Cuthill-McKee, and nested
dissection.

The parallelism inherent in computing and applying the preconditioner is limited
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by the solution of the triangular systems generated by the incomplete Cholesky factors
[17]. Tt was first noted by Schreiber and Tang [16] that if the nonzero structure of
the triangular factors is identical to that of the original matrix, then the minimum
number of major parallel steps possible in the solution of the triangular system is
given by the chromatic number of the symmetric adjacency graph representing those
nonzeros. Thus, given the nonzero structure of a matrix A, an approach to generating
greater parallelism is to compute a permutation matrix, P, based on a coloring of the
symmetric graph G(A). The incomplete Cholesky factor L of the permuted matrix
PAPT is computed, instead of the factor based on the original matrix A.

In this permutation, vertices of the same color are grouped and ordered sequen-
tially. As a consequence, during the triangular system solves, the unknowns corre-
sponding to these vertices can be solved for in parallel, after the updates from previous
color groups have been performed. The result of Schreiber and Tang states that the
minimum number of inherently sequential computational steps required to solve one of
the triangular systems, Lu=vor LTw = u, is given by the minimum possible number
of colors, or chromatic number, of the graph.

This reordering of the matrix is reminiscent of the reorderings done to minimize
the fill in a direct factorization. However, in the incomplete factorization, fill that cor-
responds to initial zeros of the matrix is ignored. Instead, the permutation is chosen to
minimize the number of communication steps inherent in the solution of the triangular
systems generated by the incomplete factorization.

The organization of this paper is as follows. In Section 2 we briefly present some
important issues in computing graph coloring and review two coloring heuristics that
we have employed in our experiments. Here we also introduce the concept of an r-
element, which can be used to generate an effective lower bound for the chromatic
number of the graphs arising from our testbed applications. In Section 3 we introduce
a suite of test problems and present experimental results. Finally, in Section 4 we
summarize our research and suggest areas for future investigation.

2. Coloring Heuristics. Given the nonzero structure of an n x n symmetric
matrix A, one can associate the symmetric graph G(A) = (V, E) with the matrix,
where the vertex set is given by V = {1,...,n} and the edge set is given by F =
{(4,j)| Aij # 0, and ¢ # j}. We say that the function ¢ : V. — {1,...,s} is an
s-coloring of GI(A), if o(¢) # o(y) for all edges (7, ) in F. The minimum possible value
for s is known as the chromatic number of G(A), which we denote as y(G).

The question as to whether a general graph G/(A) is s-colorable is NP-complete
[6]. It is known that unless P = NP, there does not exist a polynomial approximation
scheme for solving the graph coloring problem [6]. In fact, the best polynomial time
heuristic known [11] can theoretically guarantee a coloring of only size ¢ (n/logn) x(G),
where ¢ is some constant.

It is therefore rather surprising that a coloring heuristic should perform well at
all in practice. However, for the problems considered in this paper, we find that the
heuristics obtain colorings only slightly worse than a lower bound determined from
the local structure of the graphs considered. To obtain a lower bound, we employ the
following well-known result which bounds the chromatic number by the size of any
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complete subgraph in G.

Given a subset V' of the vertices V, the induced subgraph G' = (V/,E/) of G
contains the edges in the set £ = { (i,7) | (i,j) € F, and i,j € V'}. A complete
subgraph of size r, which we call an r-clique, is a subset V' of V, with [V'| = r, for
which every possible edge exists in the induced subgraph. Since the r vertices in an
r-clique must be assigned different colors, we have the following lemma.

LEMMA 1. If G contains an r-clique, then x(G) > r.

The matrices we have considered for our experiments, with the exception of the
standard grid problems, are all from structural engineering applications. We say that
the finite-element model contains an r-element if there is an element in the model that
contains r independent variables, which are represented in the model as being directly
interacting. Thus, in the resulting linear system, we have that there is an r-clique
associated with this r-element. By the above lemma, this clique corresponds to a lower
bound for the chromatic number of the graph G(A).

THEOREM 2. If the finite element model contains an r-element, then x(G) > r.
The advantage of this observation is that it usually straightforward to determine the
maximum sized r-element in the finite element model.

It is known that an optimal coloring can be obtained via a greedy heuristic if the
vertices are visited in the correct order [1]. The basic structure of the greedy heuristic
is shown below.

GREEDY HEURISTIC. Compute a vertex ordering {vi,...,v,} for V. For i =
L,...,n, set o(v;) equal to the smallest available consistent color.

The only aspect of the heuristic that must be specified is the method for obtaining
the initial vertex ordering. In work by other authors, several strategies for obtaining
this vertex ordering have been proposed. We have used two vertex ordering strategies.

The first of these heuristics is the smallest-last ordering (SLO) suggested by Mat-
ula, Marble, and Isaacson [13]. The second of these heuristics is the incidence degree
ordering (IDO) suggested by Brélaz [2] and modified by Coleman and Moré in their
work [3] on using coloring heuristics to obtain consistent partitions for use in Jacobian
estimation.

These vertex orderings are defined as follows. Suppose that vertices v;11,...,v,
have been chosen. In the SLO strategy, vertex v; is the vertex that has minimum degree
in the induced subgraph of G with vertices V' \ {vi11,...,v,}. With the IDO strategy,
suppose that vertices vy, ..., v;_1 have been chosen. Vertex v; is chosen to be a vertex
whose degree is a maximum in the induced subgraph of G with vertices {vq,...,v,_1}.

It is well known that the maximum degree of graph determines an upper bound
for the chromatic number [1]. Let A(G) = max,ev deg(v), where deg(v) is the degree
of vertex v in G. The upper bound is given by x(G) < A(G) + 1. Note that the
greedy heuristics will always satisty this bound. Also, the graphs that arise from the
applications we consider have bounded degree, independent of the size of system. Thus,
the colorings determined by the heuristics will also be bounded.

Both these heuristics have the additional desirable property that they can be im-
plemented to run in a time proportional to >,y deg(v), or the number of nonzeros
in the matrix. This initial computational cost is modest compared to the time to
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construct the incomplete factors and repeatedly solve the resulting triangular systems.

3. Experimental Results. In this section, we present experimental results that
demonstrate the effect of matrix orderings derived from the coloring heuristics on the
convergence of the conjugate gradient algorithm. The majority of the matrices in the
test set are difficult problems that arise from finite element models from structural
engineering applications.

A finite element model is constructed by piecing together many elements to approx-
imate a structure. Each element typically contains & > 2 nodes, each node typically
having 1 < d < 6 degrees of freedom, resulting in £d unknowns per element. Adja-
cent elements share nodes, reducing the total number of unknowns. Also, the number
of unknowns may be reduced by several other factors, including the application of
constraints on the structure.

The subgraph containing these unknowns is usually completely connected and thus
comprises an r-element, with r = kd. Many different element types, of course, can be
included in a model. The coloring heuristics can be expected to perform well on these
matrices because of the local nature of the models and the bound of kd on the maximum
clique size.

For the sake of comparison, matrices arising from the five-point and nine-point
finite-difference discretizations on a 30 x 30 grid were included in the test suite. It is
well known that matrices arising from these stencils can be colored using two and four
colors, respectively.

The CLAM package [9] was the environment used to run the experiments. In
Table 1, the complete suite of test problems is described.! The diagonal of each matrix
was scaled to be the identity matrix. For every problem, the right-hand side was the
vector of ones, scaled to have a 2-norm of one. The initial guess for the conjugate
gradient algorithm was the zero vector. Solutions were sought to a relative accuracy of
0.001, where the relative accuracy at step k is defined as ||rx||2/]|70l|2, where r is the
residual at step k. When the incomplete Cholesky factorization failed, 0.01 was added
to the diagonal until the factorization succeeded.

The first experiment shows the performance of the coloring heuristics on LAP5 and
LAP9Y for which an optimal coloring is known. The results in Table 2 show that both
algorithms produce optimal or slightly suboptimal colorings but the IDO heuristic is
slightly superior.

In the second set of experiments, the performance of the coloring heuristics is
compared with three other ordering algorithms: minimum degree, reverse Cuthill-
McKee (RCM), and nested dissection. A good description of these other algorithms
can be found in [7]. In Appendix A, figures showing the orderings produced by the
various heuristics for the PANEL problem are given. Points of interest are the number
of iterations needed to solve the linear systems and the depth of the dependency graph
for incomplete factorization and forward/backward substitution. Results are given in

! Because of the application of constraints and the elimination of superfluous degrees of freedom,
the maximum clique size for several of the problems is less than the maximum number of degrees of
freedom per node times the number of nodes per element. In addition, the PLANE problem was too
large for our system to determine the condition number.
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TABLE 1
The suite of test problems.

Name H Size ‘ k(A) ‘ Description
LAP5 900 389 | 5-pt finite difference discretization on a 30x30 grid
LAPY 900 260 | 9-pt finite difference discretization on a 30x30 grid
CUBE3 180 | 3725 | finite element model of a cube with 3x3x3 8-node
elements with 3 degrees of freedom per node
CUBE4 363 | 1.1E4 | finite element model of a cube with 4x4x4 8-node
elements with 3 degrees of freedom per node
CUBE5 636 | 1.4E4 | finite element model of a cube with 5x5x5 8-node
elements with 3 degrees of freedom per node
CUBES6 || 1017 | 1.6E4 | finite element model of a cube with 6x6x6 8-node
elements with 3 degrees of freedom per node
CUBET || 1524 | 2.9E4 | finite element model of a cube with 7x7x7 8-node
elements with 3 degrees of freedom per node
CYL7 216 | 3.9E4 | finite element model of a circular cylindrical shell
with 36 4-node elements with up to 6 dof per node
CYL11 510 | 7.5E4 | finite element model of a circular cylindrical shell
with 100 4-node elements with up to 6 dof per node
PANEL | 477 | 2.1E4 | finite element model of a blade-stiffened panel with
discontinuous stiffener. The model uses 86 4-node
elements with up to 6 dof per node
PLT4 327 | 1.1E7 | finite element model of a plate with 64 4-node
elements with up to 6 dof per node
PLT9 1295 | 4.2E7 | finite element model of a plate with 64 9-node
elements with up to 6 dof per node
PLANE || 2141 * | finite element model of a airplane with a mixture of
2-dimensional element types
TABLE 2
The performance of the coloring heuristics.
‘ Heuristic H Problem ‘ Number of colors
Known Coloring LAP5 2
SLO LAP5 4
IDO LAP5 2
Known Coloring LAPY 4
SLO LAPY 7
IDO LAP9 5




Table 3, where A(() is the maximum degree of a node in G(A) and ¢l(() is the largest
apparent clique,? or r-element, used in constructing G(A). For each problem, the
numbers in the first row are the number of iterations required for convergence, and the
numbers is the second row give the number of levels in the dependence graph. These
results show that the coloring heuristics produce orderings that are very close to the
largest clique size in the graphs of the matrices. The amount of parallelism available
from the colorings is much greater than that produced by the other orderings; more
than enough to offset the larger number of iterations required.

An examination of the CUBE problems reveals how the coloring heuristics perform
as the size of the problem increases. The IDO heuristic did very well; the number of
colors increased only slightly as the size of the problem was increased by a large factor.
The effect of using elements with more nodes can be seen in the two plate problems,
PLT4 and PLTY9, where the number of colors increased by approximately a factor of
two as the number of nodes per element went from 4 to 9.

The reverse Cuthill-McKee (RCM) ordering seems to be the best ordering to choose
to minimize the number of iterations. However, the triangular system solves on parallel
machines are extremely communication intensive. As a rough measure of the commu-
nication complexity of the different orderings we can use the product of the number
of iterations and the dependency graph depth. In Figure 1 we show the ratio of this
complexity measure for the RCM ordering when compared to the IDO ordering. The
results for the PLANE problem show a substantial improvement when using the IDO
ordering. We note that the results for the CUBE and CYL problems indicate that
there is a improvement in this ratio as the size of the problems increases. Even though
the maximum clique size increases for the PLT problem when the number of node is
increased from 4 to 9, we see an improvement in this ratio.

When the number of colors does not allow for enough parallelism, the number of
colors can be reduced by setting selected off-diagonals to zero. For example, if A is
a 3 X 3 matrix in which node 1 is colored red and nodes 2 and 3 are colored black,
then by setting aq2, @13, @21, and as; to 0, all three nodes can be colored red. Of
course, removing these off-diagonals will increase the number of iterations required
for convergence. To observe the effect of removing these nonzeroes on the number of
iterations, we reran the problems used in experiment 2, this time using the coloring
heuristics followed by a coloring reduction. The coloring reduction compacted the
nodes in a color into the next color if the number of nodes in the color was less than
a specified minimum value. The first column in Table 4 gives the minimum number of
elements allowed in a color. The results show that a significant gain in parallelism can
be realized without paying an excessive price in terms of an increase in the number of
iterations.

4. Conclusions. Our results have shown that for these systems the coloring
heuristics have close to optimal colorings for the graphs based on these matrices. In

2 The determination of the largest clique in a general graph is an NP-hard problem. We have used
a heuristic to find a large clique, which is reported as ¢/(G). Therefore, there may exist a larger clique
than this number.



TABLE 3
Comparison of orderings.

Nested Reverse | Minimum
Name A(G) | cl(G) || Dissection | Cuthill-McKee Degree | SLO | IDO
PLANE 68 20 1251 1362 1082 | 1636 | 1585
(78) (542) (294) | (23) | (21)
CUBE3 81 24 37 34 33 59 69
(68) (111) (81) | (26) | (25)
CUBEA4 81 24 84 48 81 | 104 90
(108) (148) (93) | (26) | (26)
CUBE5 81 24 100 48 102 | 130 | 128
(123) (207) (171) | (44) | (27)
CUBES6 81 24 163 67 128 | 194 | 178
(164) (224) (202) | (31) | (29)
CUBE7Y 81 24 175 80 185 | 215 | 223
(176) (269) (263) | (42) | (29)
CYL7 54 18 80 101 92 86 | 107
(47) (79) (54) | (20) | (19)
CYL11 45 16 108 148 195 | 199 | 177
(75) (138) (90) | (20) | (16)
PANEL 42 12 73 70 82 84 | 100
(47) (103) (38) | (15) | (14)
PLT4 43 16 556 567 520 | 411 | 470
(81) (115) (68) | (20) | (18)
PLT9 124 35 2013 2015 1744 | 2542 | 2568
(143) (406) (142) | (36) | (35)
TABLE 4
Effect of coloring reduction.
Minimum SLO SLO IDO IDO
Name Color Size | # of Its. | # of Levels | # of Its. | # of Levels
PLANE 100 1784 14 1725 13
CUBE3 10 77 12 81 13
CUBEA4 20 119 13 115 13
CUBE5 30 160 15 145 13
CUBES6 40 269 18 191 18
CUBE7Y 50 294 22 213 24
CYL7 20 107 8 111 7
CYL11 40 252 9 189 8
PANEL 30 85 12 104 10
PLT4 20 421 12 554 11
PLT9 100 3759 11 3633 11
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Fia. 1. The improvement tn communication complexity afforded by the IDO ordering when com-
pared to the RCM ordering.
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addition, this work has shown that the increase in parallelism afforded by this reorder-
ing more than offsets any of the increases seen in the number of iterations required for
convergence over other commonly used ordering heuristics. It was also observed that
the benefit reaped from reducing the number of colors by ignoring specific off-diagonals
is large enough to justify the increased number of iterations.

A significant pitfall for the straightforward incomplete factorization algorithm is
that it may fail to produce a positive-definite factorization, even though the matrix is
positive definite. Because positive definiteness is required for the conjugate gradient
method [8], some mechanism must be included to deal with the detection of indefi-
niteness during the incomplete factorization process. For the results presented in this
paper, we have used the technique of adding an increasing multiple of the diagonal
until the matrix can be successtully factored. However, we note that an improvement
of these methods for forcing a positive definite factorization while still maintaining a
good preconditioner is an important area for future research.
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Appendix A.

Fia. 2. Ordering produced by SLO for the PANEL problem.



Fia. 3. Ordering produced by IDO for the PANEL problem.

Fia. 4. Ordering produced by minimum degree for the PANEL problem.
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Fia. 5. Ordering produced by Reverse Cuthill-McKee for the PANEL problem.

Fia. 6. Ordering produced by nested dissection for the PANEL problem.
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