
Exploiting Parallelism inAutomaticDi�erentiation�Christian BischofAndreas GriewankDavid JuedesMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, Illinois 60439-4801Argonne Preprint MCS-P204-0191Published in Proc. 1991 Int. Conf. onSupercomputing, E. Houstis and Y. Muraoka, Eds.,ACM Press, Baltimore, Md., pp. 146-153, 1991.Abstract. The numerical methods employed in the solutionof many scienti�c computing problems require the computationof �rst- or second-order derivatives of a function f :Rn !Rm.We present an approach that, given a serial C program for thecomputationof f(x), derives a parallel execution schedule for thecomputation of f and its derivatives in a completely automaticfashion. This is achieved by overloading the computation of f(x)in C++ to obtain a trace of the computations to be performedand then transforming this trace into a data ow graph for thecomputation of f(x). In addition to the computation of f(x),this graph also allows us to exactly and inexpensively computederivates of f by the repeated use of the chain rule. Parallelismis exploited in two ways: rows or columns of derivative matri-ces can be computed by independent passes through the com-putational graph, and parallelism within the processing of thiscomputational graph can be exploited by processing indepen-dent subgraphs concurrently. We present experimental resultsthat show that good performance on shared-memory machinescan be obtained by using a graph interpreter approach. Wethen present some ideas that are currently under developmentfor improving computational granularity and for implementingparallel automaticdi�erentiationschemes in a portable andmoree�cient fashion.1 IntroductionThe methods employed for the solution of many sci-enti�c computing problems require the evaluation ofderivates of some objective function. Probably bestknown are gradient methods for optimization and New-ton's method for the solution of nonlinear systems [8,10]. Other examples can be found in [9]. For example,�This work was supported by the Applied Mathematical Sci-ences subprogramof the O�ce of Energy Research, U. S. Depart-ment of Energy, under Contract W-31-109-Eng-38. The thirdauthor was also supported through NSF CooperativeAgreementNo. CCR-8809615.

given a function f : Rn ! R;one can �nd a minimizer x� of f using variable metricmethods that involve the iterationfor i = 1, 2, doSolve Bisi = �rf(xi)xi+1 = xi + �isiend forfor suitable step multipliers �i > 0. Hererf(x) = 0B@ @@x1f(x)...@@xn f(x) 1CA (1)is the gradient of f at a particular point xo, and B isa positive de�nite matrix that may change from iter-ation to iteration. For �nding the root of a nonlinearfunction F : Rn ! Rn; F = 0B@ f1...fn 1CA ;Newton's method requires the computation of the so-called Jacobian matrixF 0(x) = 0@ @@x1f1(x) � � � @@xn f1(x)� � � � � �@@x1fn(x) � � � @@xn fn(x) 1A : (2)Then we execute the following iteration:for i = 1, 2, doSolve F 0(xi)si = �F (xi)xi+1 = xi + siend forIn many applications, F 0 is large and sparse, and thesolution of an equation system involving F 0 requiresthe use of an orthogonal factorization. From the view-point of the designers of mathematical software, thecomputation of derivatives was often considered to beexpensive. If derivative information was employed,derivatives were approximated by �nite di�erences, orthe user was required to provide a program that com-puted the necessary derivative information. Both alter-natives are unsatisfactory, as �nite di�erence approxi-mations can lead to loss of accuracy, and the computa-tion of derivatives by hand is tedious and error-prone.One has to keep in mind that, in particular for large-scale problems, the objective function usually is notrepresented in closed form, but is given in the form ofa computer program that computes f or an approx-imation thereof. Symbolic di�erentiation techniquescurrently are often not feasible, since they do not fully

utilize common subexpressions, and therefore are com-putationally ine�cient. These issues are discussed inmore detail in [12].The situation is even more complicated if one wishesto exploit parallelism. Considerable progress has beenmade in the implementation of linear algebra kernels,such as orthogonal factorizations, on parallel machines[2, 3, 21, 23]. With respect to the computation ofderivative information, approaches to computing �nite-di�erence approximations in parallel using graph col-oring approaches have been successful [7, 19, 22], butagain accuracy may be lost.We, in turn, suggest the use of automatic di�eren-tiation to compute derivative information. This ap-proach computes derivative information without trun-cation error, and in an automatic fashion. That is, auser can take a black-box view of the di�erentiationprocess. Automatic di�erentiation techniques rely onthe fact that every function, no matter how compli-cated, is executed on a computer as a (potentially verylong) sequence of elementary operations such as addi-tions, multiplications, and elementary functions suchas sin and cos. By applying the chain rule@@tf(g(t))jt=to) = (@@sf(s)js=g(to))(@@tg(t)jt=to) (3)over and over again to the composition of those elemen-tary operations, one can compute derivate informationof f exactly and in a completely mechanical fashion.In the next section, we will expand on the ideas be-hind automatic di�erentiaton and give an overview ofthe various ways in which it can be implemented. Insection 3, we then discuss how automatic di�erentia-tion can be used to derive in an automatic fashion aparallel execution schedule for the computation of theobjective functions and its derivatives. We also presentsome experimental results obtained on the Symmetry.In Section 4 we discuss ongoing work to improve thee�ciency of parallel automatic di�erentation.2 Automatic Di�erentiationThe idea behind automatic di�erentiation is best un-derstood through an example. Assume that we havethe sample program shown in Figure 2 for the com-putation of a function F : R2 ! R2. Here, x1 andx2 are the independent variables, and y1 and y2 thedependent variables.If we were to execute this program to computeF (1; 1:5), the the list of elementary instructions shownin Figure 2 would be executed. Here r1 through r4 referto main memory or register locations where interme-diate results are stored. The code shown in Figure 2is a trace of the computations performed to computeF (1; 1:5). As long as x1 < 2, this trace can be usedas a blueprint for the computation of F (x1; x2), when

if ((x1 - 2) > 0) thena = x1elsea = 2*x1end ifb = 1for i = 1:2 dob = b + sqrt(b)*aend fory0 = b/x2y1 = a*x2Figure 1: Sample Programi operation ti di �di1: x1 = 1 1 1 4.412: x2 = 1.5 1.5 0 -2.873: r1 = x1 - 2 1 � �4: r1 = 2 * x1 2 2 2.215: r2 = 1 1 0 1.056: r3 = sqrt(r2) 1 0 2.107: r4 = r1 * r3 2 2 1.058: r2 = r2 + r4 3 2 1.059: r3 = sqrt(r2) 1.73 0.58 1.3310: r4 = r1 * r3 3.46 4.61 0.6711: r2 = r2 + r4 6.46 6.62 0.6712: y1 = r2 / x2 4.31 4.41 1.013: y2 = r1 * x2 3 3 0Figure 2: Trace of Function Executionwe change the initializations in line 1 and 2 accord-ingly. To compute derivatives in an automatic fashion,we now associate a unique variable ti, i = 1; 13 witheach computed value. This value (rounded to threesigni�cant digits) is shown in the column labeled ti inFigure 2.Derivatives can now be computed by associating avalue di with each intermediate quantity and by us-ing elementary di�erentiation arithmetic. For exam-ple, if we wish to compute @@x1F (x1; x2)j(x1;x2)=(1;1:5),di will hold @ti@x1 for every intermediate quantity ti.Hence, after setting d1 = 1 and d2 = 0, we can pro-ceed to d12 = @@x1f1(x1; x2)j(x1;x2)=(1;1:5) and d13 =@@x1f2(x1; x2)j(x1;x2)=(1;1:5) by simple use of the chainrule. For example, if tj = tk + tl;then dj = dk + dl:For tj = tk � tl;2

we have dj = tk � dl + tl � dk:For univariate functions g = g(t) such as sin, cos, orsqrt, tj = g(tk)implies dj = @@tg(tk) � dk:The values of the dj's in our particular example areshown in the column labeled di in Figure 2. Afterwe have traversed all statements, we have computed@@x1F (x1; x2)j(x1;x2)=(1;1:5), i.e. the �rst column of theJacobian matrix. To obtain the second column of theJacobian matrix, we initialize d1 = 0 and d2 = 1 andrepeat the previous procedure. Since the propagationof the di's is about as costly as that of the ti's, eachderivative pass costs roughly the same as the evaluationof the original function.This mode of automatic di�erentiation, where wemaintain the derivatives of intermediate quantitieswith respect to the independent variables, is called theforward mode of automatic di�erentiation. Insteadof having two passes over the code, we could alsohave computed J in one pass by associating a two-vector storing rtj = (@tj@x1 ; @tj@x2)T with each intermedi-ate quantity. In general, for a function with n inde-pendent variables, we could associate an n-vector witheach intermediate quantity and then perform a vectoroperation at each step. If J is dense, the evaluationof J then requires on the order of n times the workthat is required to evaluate the function. Often Jacobimatrices are sparse, and sparse storage techniques canbe employed rather advantageously. Then the ratiobetween the cost of evaluating F 0 and f is boundedby the maximum number of nonzeros in any row ofthe Jacobian (see for example [11]). We also mentionthat if one does not need J per se, but instead Jv forsome vector v, the additivity of di�erentiation allowsus to compute this quantity in one pass by initializingdi = vi; i = 1; : : : ; n.Another way to compute derivatives is the so-calledreverse mode of automatic di�erentiation. Here wemaintain the derivative of the �nal result with respectto an intermediate quantity. These quantities are usu-ally called adjoints, and they measure the sensitivityof the �nal result with respect to some intermediatequantity. This approach is closely related to the adjointsensitivity analysis for di�erential equations, which hasbeen used at least since the late sixties, especially innuclear engineering [5,6], weather forecasting [25], andeven neural networks [26]. The discrete analog usedin automatic di�erentiation was apparently �rst dis-covered by Linnainmaa [18] in the context of roundingerror estimates.Again we associate a scalar �di (say) with each inter-mediate quantity. As a consequence of the chain rule

it can be shown that for an intermediate quantity tjwhose value is used in the computation of tk; k 2 Ij,we have �dj = Xk2Ij @gk@xj �dkwhere gk is the elementary operation that de�nes tk.This is best understood with an example. Assume thatwe wish to compute rf1(x1; x2)j(x1;x2)=(1;1:5), that is,the �rst row of the Jacobian of F . We then initialize�d12 = 1 and �d13 = 0. Since t2 alias x2 is used only inthe computation of t12 and t13, we can compute@f1@x2 = �d2 = @g12@t2 � �d12 + @g13@t2 � �d13:Now g12 = t11=t2, and g13 = t4 � t2, so@g12@t2 = �t11=(t2)2and @g13@t2 = t4:By starting from the dependent variables in this fash-ion, and traversing the computation in reverse or-der, we emerge at the independent variables withrf1. The adjoint quantities are shown in the col-umn labeled ��i in Figure 2. If we were to computerf2(x1; x2)j(x1;x2)=(1;1:5), we could repeat this proce-dure with �d12 initialized to 0 and �d13 initialized to 1.Again we can compute all rows in one pass by associat-ing an m-vector with each intermediate quantity, anda product wTJ can be computed in one pass by ini-tializing �di = wi; i = 1; : : : ; n. Exploiting the sparsityof these vectors, one can bound the ratio between thecost of evaluating J rowwise and that of evaluating fby the maximum number of nonzeros in any column.Both the reverse and forward mode of automatic dif-ferentiation have been implemented in the ADOL-Cpackage. Using the operator overloading features ofC++, ADOL-C generates a computational trace (theso-called tape) of the evaluation of F (xo). First- andhigher-order derivatives can then be computed usingeither the forward or reverse mode by passing over thetape in the appropriate fashion. While the tape itselfmay be quite large, it is always accessed in a purelysequential fashion, and RAM storage requirements aremodest by exploiting the fact that only few temporaryvariables are active at any given point in time. Detailscan be found in [13].We mention that the automatic di�erentiation ofcomputer arithmetic has been investigated since before1960. Since then there have been various implementa-tions of automatic di�erentiation. Most of these imple-mentations have concentrated on the simple forwardevaluation of derivatives. For scalar functions of theform y = F (x1; :::xn), the forward evaluation of par-tial derivatives requires O(n) times the execution time3

1312

11

10

9

8

7

6

5

4

21 x_1 x_2

y_1 y_2

1

sqrt

*

+

sqrt

*

+

/ *

*2

Figure 3: Computational Graph for the Eval-uation of fof the original function. Speelpenning [24] mentionedand Baur and Strassen [1] later published a proof thatthe number of operations required to compute a scalarfunction and its partial derivatives is bounded aboveby a �xed constant times the number of operations re-quired to compute the function. This theoretical resultleads to the more e�cient reverse mode of derivativeevaluation. Speelpenning [24], Iri and Kubota [16], andHorwedel et al. [15] have all implemented the reversemode of evaluating derivatives in their respective For-tran precompilers.3 Exploiting ParallelismWhile the computation of derivatives has been pre-sented in a strictly serial framework until now, thereis actually considerable scope for the exploitation ofparallelism. Before we go further, let us change ourview of the computation from the serial nature of thetrace to a data ow graph. For example, we can rep-resent the trace of Figure 2 by the graph shown inFigure 3. The leaves of this directed acyclic graph arethe independent variables; the roots are the dependentvariables. We have noted the operation performed ata node inside the node, and the number next to a nodeindicates the intermediate value that this node repre-sents in Figure 2. Note that we eliminated t3. This

sin

cos

tan

sqrt

+

x yFigure 4: A Chain of Nodes Resulting from aNontrivial Right-Hand Sideintermediate value would have been a \spurious root,"since it has no inuence on the �nal results, but was aresult of some control ow computation. Our assump-tion is that the control ow through a program will notchange with every traversal, so that we can amortizethe e�orts to parallelize a given schedule over manyexecutions of this schedule. This assumption is truefor most optimization approaches. Even if the controlow should change, chances are that the change wouldbe mostly local, so that incremental computation tech-niques like those described in [14] would be applicable.We have implemented a system that takes the \tape"produced by ADOL-C and converts it into a compu-tational graph. Several transformations are performedto reduce the size of the graph: we eliminate spuri-ous roots and all assignments, and we coalesce nodesthat result from the expansion of nontrivial right-handsides. The ADOL-C tape contains many assignmentsas a result of the compiler's actions. If we, for example,evaluate the expressiont = a + b;the GNU C++ compiler will actually generate two as-signments: It will �rst assign the sum of a + b to atemporary and then assign this temporary to t.On the other hand, nontrivial right-hand sides willgenerate chains of nodes. For example, an expressionsuch as sin(cos(tan(px+ y)))would result in the graph fragment shown in Figure 3.In our current implementation, we will collapse thosenodes on the y into a \supernode" that will containall those operations. We call this operation hoisting.In general, we can hoist a node n into a node p if pis the only node that uses the result computed by n,4

and p represents a unary operation. Details on howthis transformation is implemented can be found in[4]. These transformations can have a signi�cant e�ecton the number of nodes in the graph. For the Bratuproblem, a classical problem in combustion modeling,the ADOL-C tape contained 1,142 nodes, of which 184were assignments. Through elimination of assignmentsand hoisting, we arrived at a graph representation with613 nodes, a savings of 46%. A shallow-water modelfor weather modeling [20] contained 281,805 operationson the tape. After eliminating the 61,236 assignments,we eliminated another 29,694 nodes through hoisting,for a �nal representation with 153,484 nodes { again asavings of 46%.In computing derivatives and the function itself, par-allelism can be exploited in two fundamentally di�er-ent ways: either through independent passes over thecomputional graph, or through concurrent computa-tion of nodes in the graph itself. The �rst approachis the easier one. Di�erent processes can compute dif-ferent rows or columns of the Jacobian independently,as long as they have access to the tape representationof the functions to be performed. For example, if onewere to evaluate the gradient of a function f : Rn ! Rusing the forward mode, one could assign di�erent pro-cesses to the task of calculating the partial derivativewith respect to one particular independent variable. Inthis manner the main problem is broken into n smallerproblems, which can be solved concurrently.More di�cult is exploitation of parallelism withinthe graph itself. However, if one evaluates the functionor computes its gradient using the reverse mode, onlyone pass over the graph is performed, and thus this isthe only chance for exploiting parallelism.Juedes and Griewank [17] produced a parallel im-plementation for the reverse mode of automatic di�er-entiation on the Sequent Symmetry, a shared-memorymultiprocessor. This parallel implementation of thereverse mode traverses the dependency graph, evalu-ating partial derivatives at each node. The embeddeddependency information is inverted during the reversesweep. The node that corresponds to the dependentvariable is seeded with the value 1 and placed on anevaluation queue. Each node placed on the evaluationqueue will eventually be visited and its derivative in-formation propagated to the nodes that depend on it.An unevaluated node is placed on the evaluation queueonce all of the nodes it depends on have been evalu-ated. When a processor is available, it accesses theevaluation queue and evaluates the next node. Whenthe evaluation queue is empty, the reverse sweep ofderivative evaluation is complete.In order to ensure the consistency of a section ofshared memory, locks are used to surround critical sec-tions of code. The extensive use of locking mechanismscan be a drain on the performance of any parallel pro-

gram; thus we minimized the use of locking mecha-nisms. We saw the evaluation queue to be the mainbottleneck of our implementation; we therefore choseto use a multiple-layered approach to simulate a singleevaluation queue. Our approach is as follows.� Each processor uses a local evaluation queue. Thisqueue is accessed locally and does not need to belocked. If the local queue has an element, it isevaluated �rst. This queue is of �xed length.� Each pair of two processors has a local/sharedqueue. If a processor's local queue is full, it placeselements ready for evaluation on its local/sharedqueue. When a processor's local queue is empty,it �rst searches its local/shared queue for the nextelement to be evaluated. This queue is shared andaccessed via locking mechanisms.� If both a processor's local and local/shared queuesare empty, then the local/shared queues of the re-maining processors are searched in a round robinfashion.This scheme is illustrated in Figure 5.This approach led to promising results. The functionf(x) = RT nXi=1 xi log xi1� bT x� xTAxp8bT x log 1 + (1 +p2)bT x1 + (1�p2)bT xis the Helmholtz energy at the absolute temperatureT of a mixed uid in a unit volume. Here R is theuniversal gas constant, and0 � x; b 2 Rn; A = AT 2 Rn�n:This function and its gradient are used extensively inthe simulation of oil reservoirs. Computing the gradi-ent of the Helmholtz energy function with 300 indepen-dent variables, we were able to execute it over 11 timesfaster using 15 processors than using a single processor.We obtained similar results for up to 18 processors onthe Sequent Symmetry. Figure 6 plots our results withrespect to the theoretical linear speedup in the numberof processors used.4 Work in ProgressOur main concern at the moment is to develop amore e�cient schedule for the parallel evaluation of thefunction and its derivatives using the reverse mode ofautomatic di�erentiation. We are working on improv-ing the e�ciency of parallel automatic di�erentiationin several ways:� To increase the granularity of parallelism,� to decrease the synchronization overhead for lock-ing queues and nodes in the computational graph,5

....Queue
Shared

PEPE

Local Queues Local Queues

PE PE

Shared
Queue Queue

Shared

PEPE

Local QueuesFigure 5: Simulating a Global Evaluation Queue

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

R
un

 T
im

e
R

at
io

 (
T

im
e

U
si

ng
 1

 p
ro

ce
ss

or
 /

T
im

e
U

si
ng

 N
 p

ro
ce

ss
or

s)

Number of Processors Used

Linear Speedup

ADOL-C Implementation

Figure 6: Parallel Test Results vs. Linear Speedup6

� to decrease storage requirements.The small granularity of parallelism is a consequenceof the fact that our di�erentiation arithmetic deals onlywith elementary operations at a scalar level. This ap-proach has the advantage that the run-time systemneeded to support automatic di�erentiation is easy toimplement, since it only has to support relatively fewand simple operations. If we want to maintain thisview, we could increase processing granularity by iden-tifying subgraphs of the computational graph that havecomparatively few edges crossing the subgraph bound-aries (that is, we can look for good edge separators).Subgraphs thus de�ned will be assigned to one proces-sor and will be completely evaluated on this processor.Finding good edge separators is a hard problem, how-ever, and the sheer size of the computational graphsthat we are dealing with is likely to make this approachrather expensive.An in our view more promising approach is to in-crease the granularity of the operations that are partof our di�erentiation arithmetic. The Helmholtz en-ergy function is a good example. The loops in thecomputation of g(x) = xTAx will be completely un-rolled, resulting in O(n2) vertices for an n � n matrixA. The gradient rg(x) = 2Ax will then be evaluatedby traversing those vertices, applying di�erentiationarithmetic on O(n2) scalars in succession. This is arather complicated way of computing a matrix-vectorproduct. Since derivative information for the basicvector-vector and matrix-vector operations is known,we are much better o� to make these operations partof our di�erentiation arithmetic. The advantages aretwo-fold: we increase computation granularity by go-ing from n scalar nodes to a supernode containing nscalar operations, and we tremendously decrease thestorage required for either the tape or the graph. Notethat the hoisting operation introduced in the precedingsection applies to \vector nodes" as well.Vector nodes are a special case of an operationwhere we may rely on a system other than ADOL-Cto produce the required derivative information. As-sume for example, that the user program repeatedly(` times, say), calls a subprogram computing a func-tion G : Rn ! Rm. In the current implementation,the computational graph will contain ` traces throughG, one for each of the separate invocations of G. Onthe other hand, if we were to regard G as part of ourdi�erentiation arithmetic, we really need (x1̀; : : : ; xǹ),and the function values G(x)jx=(x1̀;:::;xǹ) (the JacobianG0(x)jx=(x1̀;:::;xǹ) may be recomputed during the re-verse pass). If we have this information, we can com-plete our pass through the computational graph, andtreat g as an atomic operation. This extension is at-tractive for several reasons. For one, storage for thetrace of the computation is likely to be decreased con-siderably, since usually the number of operations per-

formed in a subroutine is signi�cantly higher than thenumber of input and output arguments. Secondly, wecan use whatever method is best suited for evaluat-ing G and its �rst derivatives. If G can make useof user- or vendor-supplied optimized routines, or hasbeen parallelized itself, we will exploit this e�ciency ina transparent fashion. The same applies to the compu-tation of the derivatives. If we know a closed form forG0(x), or have an optimized, and perhaps parallelizedcode for computing G0(x), we can exploit it. This alsowould allow for selective tuning of performance-criticalsubroutines: We write by hand code for the computa-tion of the derivatives of simple, but compute-intensivefunctions, and let ADOL-C take care of the rest.Lastly, we must �nd a way to exploit user intuitionabout parallelism. Currently, if we are evaluating aparallel do loop, we cannot capture the user's intuitionthat all the di�erent iterations of the loop body couldbe done at the same time (and as a consequence, thecorresponding forward and reverse passes through theloop body). Obviously, user-supplied parallelism canusually be exploited very advantageously, and with lit-tle synchronization overhead, and in the long run, wehave to be able to capitalize on that information.We are currently working on an improved andportable implementation of our graph evaluationscheme using the P4 communication library that hasbeen developed by Lusk et al. at Argonne NationalLaboratory. In order to decrease graph storage andprocessing overhead, we are working on incorporatingthe hoisting chains of nodes, eliminating dead rootsand assignments. As a next step, we will then incor-porate hooks for user-supplied subroutines, with vectorand matrix operations as the �rst choice, and also workon ways to incorporate user-supplied parallelism.AcknowledgmentsWe thank Brad Karp, James Hu, Shawn Reese, andJay Srinivasan for their dedicated collaboration in thisproject.References[1] W. Baur and V. Strassen. The complexity of par-tial derivatives. Theoretical Computer Science,22:317{330, 1983.[2] Christian H. Bischof. A parallel QR factorizationalgorithm with controlled local pivoting. Tech-nical Report ANL/MCS{P21{1088, Argonne Na-tional Laboratory, Mathematics and ComputerSciences Division, 1988.[3] Christian H. Bischof and Per Christian Hansen.Structure-preserving and rank-revealing QR fac-torizations. Technical Report MCS-P100-0989,7

Argonne National Laboratory, Mathematics andComputer Sciences Division, September 1989.[4] Christian H. Bischof and Brad N. Karp. Increas-ing the granularity of parallelism and reducingcontention in automatic di�erentiation. TechnicalReport MCS{TM{142, Argonne National Labo-ratory, Mathematics and Computer Sciences Di-vision, November 1990.[5] D. G. Cacuci. Sensitivity theory for nonlinear sys-tems. i. nonlinear functional analysis approach.Journal of Mathematical Physics, 22(12):2794{2802, 1981.[6] D. G. Cacuci. Sensitivity theory for nonlin-ear systems. ii. extension to additional classesof responses. Journal of Mathematical Physics,22(12):2803{2812, 1981.[7] T. F. Coleman and J. J. Mor�e. Estimationof sparse Jacobian matrices and graph coloringproblems. SIAM Journal on Numerical Analysis,20:187{209, 1983.[8] Thomas F. Coleman. Large Sparse Numerical Op-timization, volume 165 of Lecture Notes in Com-puter Science. Springer Verlag, 1984.[9] George F. Corliss. Applications of di�erentiationarithmetic. In Reliability in Computing, pages127{148. Academic Press, 1988.[10] John Dennis and Robert Schnabel. Numeri-cal Methods for Unconstrained Optimization andNonlin<ear Equations. Prentice-Hall, EnglewoodCli�s, New Jersey, 1983.[11] L. C. W. Dixon. Automatic di�erentiation andparallel processing in optimization. Technical Re-port No. 176, The Hat�eld Polytechnic, Hat�eld,U.K., 1987.[12] Andreas Griewank. On automatic di�erentiation.In Mathematical Programming: Recent Develop-ments and Applications, pages 83{108. KluwerAcademic Publishers, 1989.[13] Andreas Griewank, David Juedes, and Jay Srini-vasan. ADOL-C, a package for the automaticdi�erentiation of algorithms written in C/C++.Technical Report MCS-180-1190, Argonne Na-tional Laboratory, Mathematics and ComputerSciences Division, 1990.[14] Roger Hoover. Incremental Graph Evaluation.PhD thesis, Cornell University, Department ofComputer Science, 1987.

[15] J. E. Horwedel, B. A. Worley, E. M. Oblow,and F. G. Pin. GRESS Version 0.0 Users Man-ual. Technical Report ORNL/TM 10835, OakRidge National Laboratory, Engineering Physicsand Mathematics Division, 1988.[16] M. Iri and K. Kubota. Methods of fast auto-matic di�erentiation and applications. TechnicalReport Research Memorandum 87-0, Departmentof Mathematical Engineering and Instrumenta-tion Physics, Faculty of Engineering, Universityof Tokyo, 1987.[17] David Juedes and Andreas Griewank. Implement-ing automatic di�erentiation e�ciently. TechnicalReport MCS{TM{140, Argonne National Labo-ratory, Mathematics and Computer Sciences Di-vision, 1990.[18] S. Linnainmaa. Taylor expansion of the accumu-lated rounding error. BIT, 16:146{160, 1976.[19] J. J. Mor�e. On the performance of algorithms forlarge-scale bound constrained problems. In T. F.Coleman and Y. Li, editors, Large-Scale Numeri-cal Optimization. SIAM, 1991.[20] I. M. Navon and U. Muller. FESW { a �nite-element Fortran IV program for solving the shal-low water equations. Advances in EngineeringSoftware, 1:77{84, 1979.[21] Paul E. Plassmann. The Parallel Solution of Non-linear Least-Squares Problems. PhD thesis, Dept.of Applied Mathematics, Cornell University, 1990.[22] Paul E. Plassmann. Sparse Jacobian estimationand factorization on a multiprocessor. In T. F.Coleman and Y. Li, editors, Large-Scale Optimiza-tion, pages 152{179, Philadelphia, 1990. SIAM.[23] Alex Pothen and Padma Raghavan. Distributedorthogonal factorization: Givens and Householderalgorithms. Technical Report CS{87{24, ThePennsylvania State University, 1987.[24] B. Speelpenning. Compiling Fast Partial Deriva-tives of Functions Given by Algorithms. PhD the-sis, Department of Computer Science, Universityof Illinois at Urbana-Champaign, 1980.[25] O. Talagrand and P. Courtier. Variational assimi-lation of meteorological observations with the ad-joint vorticity equation. i: Theory. Q. J. R. Me-teorological Society, 113:1311{1328, 1987.[26] P. Werbos. Applications of advances in nonlin-ear sensitivity analysis. In Systems Modeling andOptimization, pages 762{777, New York, 1982.Springer Verlag.8

