ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, lllinois 60439-4801

AN IMPROVED INCOMPLETE CHOLESKY
FACTORIZATION*

Mark T. Jones and Paul E. Plassmann

Mathematics and Computer Science Division
Preprint MCS-P206-0191
January 1991
(Revised July 1992)

ABSTRACT

Incomplete factorization has been shown to be a good preconditioner for the con-
jugate gradient method on a wide variety of problems. It is well known that al-
lowing some fill-in during the incomplete factorization can significantly reduce the
number of iterations needed for convergence. Allowing fill-in, however, increases
the time for the factorization and for the triangular system solves. In addition,
it 1s difficult to predict a priori how much fill-in to allow and how to allow it.
The unpredictability of the required storage/work and the unknown benefits of
the additional fill-in make such strategies impractical to use in many situations.
In this paper we motivate, and then present, two “black-box” strategies that
significantly increase the effectiveness of incomplete Cholesky factorization as a
preconditioner. These strategies require no parameters from the user and do not
increase the cost of the triangular system solves. Efficient implementations for
these algorithms are described. These algorithms are shown to be successtul for
a variety of problems from the Harwell-Boeing sparse matrix collection.

* This work was supported by the Applied Mathematical Sciences subprogram
of the Office of Energy Research, U.S. Department of Energy, under Contract
W-31-109-Eng-38.

1. Introduction. One of the most successful iterative methods for solving
large sparse symmetric positive definite linear systems is the preconditioned con-
jugate gradient method [7]. The incomplete Cholesky factorization, proposed
by Meijerink and van der Vorst [12] for use on symmetric M-matrices, has been
shown to be a very effective preconditioner for a wide variety of problems. How-
ever, the incomplete Cholesky factorization can fail for symmetric positive definite
matrices [10]. To alleviate this problem, Manteuffel [11] introduced the shifted
incomplete factorization algorithm.

No-fill incomplete Cholesky factorization computes incomplete factors, [A/[A/T,
of the original matrix A, where L has nonzeros only in those positions that corre-
spond to nonzero positions in A [12]. To improve the quality of the preconditioner,
many strategies for altering the pattern of the nonzeros in the incomplete factor
have been proposed. For the purposes of this paper, we classify these strategies
as either fixed fill-in or drop-tolerance strategies. We discuss these strategies in
more detail in Section 2. Unfortunately, these strategies have the disadvantage
that they are not suitable for a “black-box” implementation; it is difficult to «
priori choose the effective parameters and/or the required storage.

In this paper we propose an approach that incorporates aspects of both of
these strategies. Our approach allows a fixed number of nonzeros in each row or
column; the number of nonzeros kept in the factor is the number of nonzeros that
were originally in that row or column. However, the original sparsity pattern is
ignored, and only the nonzeros with the largest magnitude are retained. In this
way, the space required for factorization is fixed, yet by keeping the nonzeros
largest in magnitude, we can capture some of the benefits of the drop-tolerance
methods without having to choose a drop-tolerance level. Row and column ver-
sions of this algorithm, along with efficient implementations, are described in
Sections 3 and 4.

The major advantage of our approach is that it is a “black-box” strategy.
It is evident that this strategy will not always result in less overall work than
other strategies for incomplete factorization. If one is able to pick the correct
level of fill-in or a good drop-tolerance, it is likely that some other strategy will
outperform the strategy proposed here. However, for general sparse matrices the
selection of these parameters is very difficult.

In this paper we give the motivation, description, and demonstration of effi-
cient software for new methods without this drawback. We show that the row and
column algorithms mentioned above are black-box, low-risk algorithms that can
be implemented in a very efficient manner. We present experimental results that
show that these methods should be preferred to the no-fill incomplete Cholesky
factorization algorithm when factoring matrices of moderate to high condition
number. In Section 2 we review a number of previously proposed techniques
for incomplete factorization. We motivate and describe the two new algorithms
in Section 3. In Section 4 we discuss the efficient implementation of these algo-
rithms. We give experimental results for the algorithms in Section 5. In Section 6
we summarize and draw conclusions.

2. Other Techniques. Fixed fill-in strategies for incomplete factorization
fix the non-zero pattern of the incomplete factor prior to the numeric factoriza-
tion phase. The pattern may be determined by a symbolic factorization step or
may be known a priort if the matrix has a very regular structure. For example,
fixed fill-in strategies for naturally-ordered matrices arising from finite-difference
stencils have been proposed that allow extra diagonals of fill-in [12, 13]. Gustafs-
son has proposed modifications to the methods in [12] for which has he proved
have better convergence than the standard incomplete factorizations [6]. This
concept of extra diagonals is only useful within the context of naturally-ordered
matrices arising from finite-difference stencils. For general sparse matrices, the
extra diagonal concept can be generalized to the concept of “levels” of fill-in. For
example, level 1 fill-in would allow nonzeros corresponding to the original ma-
trix nonzeros and any nonzeros directly introduced by the elimination of original
nonzeros. Level 2 fill-in would include the level 1 fill and any nonzeros directly
introduced by the elimination of the level 1 nonzeros. For general sparse matri-
ces, this method requires a symbolic factorization step to determine the position
of nonzeros and the amount of storage required.

An alternative to fixed fill-in strategies is a drop-tolerance strategy. In these
strategies nonzeros are included in the incomplete factor if they are larger than
some threshold tolerance. A simple drop-tolerance strategy is to set the tolerance
for element a;; to be ¢, /a;;a;;, where c is a constant [14]. Neither the pattern or
number of nonzeros in the incomplete factor can be determined a priori for such a
strategy; they are determined during the factorization. More complex strategies
where the tolerance varies during the factorization according to the amount of
fill-in included at each stage of the factorization have been proposed [1, 14]. These
more complex strategies keep the storage required by the incomplete factor within
the fixed amount of storage allocated by the user. The number of nonzeros in
the factor at step k is compared with the amount of space that the user has
allocated for the incomplete factor. If the number of nonzeros in the factor at
a particular step does not match the number predicted by a proposed formula,
then the tolerance threshold is altered. The only parameters that must be chosen,
aside from the initial ¢, are the formula for altering ¢ and the amount of storage
to allocate for the incomplete factor.

Fixed fill-in and drop-tolerance strategies were evaluated on grid problems
with with five-point and nine-point stencils by Duff and Meurant [3]. They
compared a level 1 fill-in algorithm to a no-fill incomplete Cholesky factorization
and found that the extra work in the factorization and forward /back substitutions
was greater than the work saved by the reduced number (if any) of iterations. A
drop-tolerance strategy was also evaluated and was found to be cost-effective if
the right drop-tolerance was selected, but was found to be more difficult from an
implementation standpoint.

Freund and Nachtigal [4] have independently developed an algorithm that
is similar to our proposed algorithm. Their algorithm combines drop-tolerances
with a cap on the number of nonzeros that can be kept per row. For example, if

2

the drop-tolerance determines that 30 elements are to be kept, but the cap is 20,
then only the 20 largest elements are kept. This algorithm is not a black-box be-
cause of the tolerance setting, but most likely it is not as sensitive to the tolerance
setting as a drop-tolerance algorithm alone. The drop-tolerance can be viewed
as a means for saving work if it is set at the proper level. If the drop-tolerance
is set to zero and the number of nonzeros per row were set to be the number
of nonzeros per row in the original matrix, the Freund and Nachtigal algorithm
is similar to our algorithm. However, it differs in two significant aspects. First,
their strategy does not preserve symmetry. Second, our implementation does not
need to check drop-tolerances and therefore should be more efficient.

In summary, each one of these modifications to the no-fill algorithm requires
extra work during the factorization phase. It is not possible to predict a priori
the amount of extra work required by the factorization phase for general sparse
matrices. Each strategy differs in the amount of storage required, the amount
of work in the forward/backward substitution steps, and the sensitivity of the
method to parameter settings. In Table 1 we have summarized these three aspects
of the algorithms discussed above. We note that the storage requirement given
in the table is determined assuming that the original matrix is already being
stored in a sparse format. We denote the order of the original matrix by n and
by nz the number of nonzero elements in the strict lower triangle of the matrix.
An efficient implementation of the factorization may require additional low-order
storage over the amount given in the table.

3. New Algorithms. First, we provide the motivation for the row and
column factorization strategies by discussing incomplete factorization from a dif-
ferent viewpoint from that normally used. In this paper all norms are assumed to
be the two-norm. Given the symmetric positive definite matrix A, let A = LLT
be the complete Cholesky factorization and A = LLT — R be an incomplete
factorization. The size and structure of R have typically been examined for in-
sights into the goodness of the preconditioner [3]. Ultimately, however, the goal
is to reduce the condition number of the matrix B = L~'AL~T [9]. If we define
E=1IL—-1and X = f/_lE, then B can be expressed as perturbation of the
identity in terms of the lower triangular matrix X,

(1) B=1+X+X"4+XxX",

Thus, as || X]| is reduced, B approaches the identity. We can assume that A is
scaled so that its diagonal is the identity matrix and that any shift used in the
incomplete factorization is positive. Therefore, because element (1,1) of Lis> 1,
|L]] > 1. Thus we may bound the norm of X by

(2) X < w(D)I1E]

where /i(ﬁ) is the condition number of L. This bound on || X]|| is not tight,
however, we are primarily interested in the relationship that as || F|| decreases

3

TABLE 1
Comparison of Algorithms for General Sparse Symmetric Matrices.

No-fill Algorithm

Storage: Only nz reals are required; the row and column positions are the same as
those in the original matrix.

Forward/Back Solves: n + 2 * nz floating-point additions and multiplications are
required.

Parameters: no parameters; a black box.

Drop Tolerance

Storage: The size of the factor is dependent on the tolerance setting; it can be more
or less than that required by the original matrix. The entire sparse data
structure must be provided, because the rows and columns are no longer
those of the original matrix.

Forward/Back Solves: The amount of work is dependent on the tolerance strategy.

Parameters: The amount of work and the size and effectiveness of the factors are
completely dependent on the tolerance strategy.

Level £k Fill

Storage: Requires more storage than the original matrix; this amount can be de-
termined by a preprocessing step. The entire sparse data structure must
be provided, because the rows and columns are no longer those of the
original matrix.

Forward/Back Solves: The amount of work is larger than that required by the no-fill
algorithm.

Parameters: The level of fill, k, must be selected; however, the amount of storage
cannot be predicted a prior:; therefore, a preprocessing step is necessary.

New Row and Column Algorithms

Storage: Nonzero storage and column (or row) indices for a sparse matrix of the
same size as A must be provided. Pointers to the column (or row) indices
are the same as those of the original matrix.

Forward/Back Solves: Same as for no-fill algorithm.

Parameters: No parameters; a black box.

then || X|| decreases with a corresponding decrease in x(B). This behavior can
be observed in the experiments in Section 5.

This relationship between || E||, || X]|, and &(B) provides the motivation for
our method. By reducing the norm of X, we expect to reduce the condition
number of B. Unfortunately, since we are considering incomplete factorizations,
the size of ||E]| is at least as large as the largest element of L not included in
the structure of L. Equation (2) also presents a different perspective as to why
including a shift is important, namely, to reduce the size of the condition number
of L. We note that this is counterintuitive, since for ill-conditioned problems one
might assume that a good preconditioner has the property /i(ﬁ) ~ r(L). On the
other hand, when L is positive definite, shifting the diagonal usually increases
| £||. Thus, these two goals, seeking to minimize the condition number of L and
the reduction of | F||, can be conflicting.

Our approach is to attempt to minimize the norm of E. while keeping the
incomplete factorization as stable as possible, and thus decrease the condition
number of L. In the row algorithm, we use a Crout-Doolittle factorization: during
step k, row k of L is updated by the first £ — 1 rows of L. At step k, row k is
stored in a dense vector, and fill-in is allowed. If there were originally m nonzero
off-diagonal elements in row k, the largest m elements (in absolute value) in the
dense vector are returned to the storage allocated for L. The diagonal is updated,
and the remainder of the dense vector is discarded.

The column strategy is similar. At step k of the factorization, the off-diagonal
of column k of I is updated by the first £ — 1 columns of L. As before, column
k is stored in a dense vector, and fill-in is allowed. After the updates have taken
place, the nonzero elements in the dense vector are used to update the last n — &
diagonal elements of L. Again, if m nonzero off-diagonal elements were originally
in column k, the largest m elements are incorporated into the sparse I matrix.

Computationally, at least one of these two strategies was always found to
require significantly fewer iterations for convergence than the standard shifted
preconditioner. However, our results show that the superiority of one of the two
strategies varied. We have also considered a variation of the second strategy
that kept the off-diagonals in the same positions as in A, but still allowed the
elements in the dense vector to update the remaining diagonals. This strategy
was sometimes much better, but not consistently or dramatically better than
incomplete factorization with no fill-in.

Aside from being better preconditioners, these two strategies often allow for
a more stable incomplete factorization. If we use shifted incomplete factorization
[11] to form a positive definite preconditioner, the shift required to make the
factorization positive definite is often smaller for our two strategies than it is
for incomplete factorization without fill-in. Therefore, if one uses a strategy
of performing the factorization with increasing shifts until the factorization is
positive definite, then much time can be saved with our strategies, because an
acceptable factorization will be found much sooner.

4. Efficient Implementation. The efficient implementation of the column-
oriented approach is simple and is therefore described first. First, we give a de-
scription of the data structure used to store the matrix, A. The nonzeros of A are
stored in four arrays: (1) diag, which stores the n diagonal elements; (2) nonz,
which stores the off-diagonal nonzeros in column-major order; (3) ja, where ja(z)
is the row value for element ¢ in nonz; and (4) ia, where ta(j) points to the be-
ginning of column j in nonz and ja. The first concern in designing the algorithm
is to ensure that O(n?) overhead operations are not necessary. To achieve this,
we use two n-length arrays: first, where first(j) points to the position in nonz
and ja of the next entry in column j to be used during the factorization, and [ist,
where [ist(j) points to a linked list of columns that will update column j. Two
additional n-length arrays are used to allow for fill-in at step j of the factoriza-
tion: teolumn, which stores the nonzero values in the current column, and trow,
which stores the row values for the current column. The column-based algorithm
is shown in Figure 1.

1) DOjy=1,...,n

2) Load nonzeros from column j in nonz into tcolumn;

3) Load row values from column j in ja into trow;

4) ptr = list(j);

5) WHILE (ptr #0) DO

6) Update tcolumn using column ptr starting at

7) position first(ptr) in nonz;

8) first(ptr) = first(ptr) + 1; {advance to next row in column}
9) IF (first(ptr) < ia(ptr + 1)) THEN

10) tptr = ptr;

1) ptr = list(ptr); {move ptr to the next column in list}

12) list(tptr) = list(ja(first(tptr))); {add this column to a new list}
13) list(ja(first(tptr))) = tptr;

14) ENDIF

15) ENDWHILE

16) Divide the elements in the tcolumn by diag(y);

17) Update the remaining diagonals with tcolumn;

18) Copy the largest ia(j + 1) — ta(y) values in tcolumn into nonz and ja;
19) ENDDO

Fig. 1. The column-based algorithm.

A similarly efficient implementation can be constructed for the no-fill incom-
plete factorization algorithm, but in this case the trow variable is not needed, and
ja is not modified.

To construct a row-based implementation of the Crout-Doolittle algorithm
that meets our goal of not taking O(n?) overhead operations is more challenging
and requires more storage. The same data structure used in the column-based

6

1) DOjy=1,...,n

2) Load nonzeros from row j in nonz into trow;

3) Load column values from row j in ja into tcolumn;

4) k = the column number of the first nonzero in row j;

5) WHILE (k # j) DO

6) trow(k) = trow(k)/diag(k);

7) diag(y) = diag(j) — trow(k) * trow(k);

8) use column k to update trow; {find column k by traversing
9) the list beginning at eptr(k)}

10) k is the column number of the next nonzero in row j;

1) ENDWHILE

12) Copy the largest ia(j + 1) — ta(y) values in trow into nonz and ja;
13) Add this row to the column linked list structure;

14) ENDDO

Fig. 2. The row-based algorithm.

algorithm is used to store A in row-major form. In addition, trow and tcolumn
arrays are used to store the current row. However, for the sake of efficiency, linked
lists must be constructed that, at step j, store the columns of A up to row 57 — 1.
Three arrays are required: eptr, where eptr(j) points to the beginning of column
J; next, where next(z) points to the element following the element in position ¢,;
and rval, where rval(e) is the row value of the element in position ¢. The last
two arrays are the same length as nonz, a sizable amount of storage. Additional
efficiency can be gained by using a vector of length n to quickly determine if a
nonzero exists in specific position of the current row. The row-based algorithm
is shown in Figure 2.

5. Experimental Results. In this section, the strategies given in the pre-
ceding section are compared to incomplete factorization without fill-in. The ma-
trices used for the comparisons are described in Table 2. The first five problems
were generated from finite element models from the Computational Structural
Mechanics Branch at NASA Langley Research Center. The last five problems
are from the Harwell-Boeing Sparse Matrix Collection [2].

A first set of experiments was run using the environment provided by the
CLAM package [5]. A second set of experiments were run using a Fortran program
on a Sun Sparcstation. For these experiments, each matrix was scaled so that its
diagonal was the identity and the right-hand side was chosen to be the normalized
vector of ones. The initial guess for the problems was the zero vector. The
solutions were sought to a relative accuracy of 0.001, where the relative accuracy
at step k is defined as ||rx||2/||ro]l2 and ry is the residual at step k. When the
incomplete Cholesky factorization failed, 0.01 was added to the diagonal until

! The PLANE problem was too large for our system to determine the condition number.

7

TABLE 2
Description of Problems.

Name H Size ‘ nz(L) ‘ k(A) ‘ Description

PLATE 327 | 8474 | 1.1E7 | finite element model of a plate
using 4-node elements

PLANE 2141 | 30350 * 1| finite element model of an airplane
using various 2-D element types

CUBE 180 | 4301 | 4.7E6 | finite element model of a cube
using 8-node elements

CYL 216 | 3347 | 1.3E6 | finite element model of a circular

cylindrical shell using
4-node elements
PANEL 477 5007 | K.64 | finite element model of a blade-

stiffened panel with a discontinuous

stiffener using 4-node elements
BCSSTKOS8 || 1074 | 7017 | 2.6E7 | TV studio

BCSSTKO09 || 1083 | 9760 | 9.5E3 | Square plate clamped
BCSSTKI10 || 1086 | 11578 | 5.2E5 | Buckling of a hot washer
BCSSTKI11 || 1473 | 17857 | 2.2E8 | Ore car

BCSSTK19 || 817 | 3835 | 1.3E11 | Part of a suspension bridge

the factorization succeeded.

In the first set of experiments, the effect of the strategies on the E, X, and B
matrices, as well as the number of iterations, was of interest. The results for the
first set of experiments are given in Table 3. All norms shown are 2-norms, x(A)
is the condition of A, 5 is the number of nonzeros that have shifted positions
in [2, and « is the amount that the diagonal must be multiplied by to force a
positive-definite preconditioner. We note that the row and column strategies are
always superior to the standard factorization. The column-based strategy always
requires less work than the row-based. However, the improvement of the column-
based algorithm over the standard approach, in terms of the number of iterations,
is less consistent than the row-based strategy. The column FLOPS gives the
number of floating point operations used during the incomplete factorization step.
We point out that the number of floating-point operations required per iteration
is approximately four times the number of nonzeros in the original matrix; this
number is identical for each strategy. It is clear from these results that the
reduction of a few iterations in the conjugate gradient algorithm can offset the
additional factorization costs. Thus, many floating-point operations can be saved
by using these strategies.

In the second set of experiments, the primary concern was the amount of time
required by efficient implementations of the strategies. To determine whether the
superiority of the column and row algorithms was independent of how the equa-
tions were ordered, we studied the effect of reordering the matrices by the mini-

8

TABLE 3
Comparison of Strategies.

Name ‘ Strategy H # of its. ‘ I|E| ‘ I|X | ‘ k(B) ‘ FLOPS ‘ n ‘ « ‘
PLATE | Standard 510 | 2.3 1.6 | 2.3E6 | 6.48E4 01 1.37
PLATE | Row 141 | 1.0 1.2 | 8.8E4 | 2.36E5 | 1946 | 1.02
PLATE | Column 337 | 2.0 3.3 | 7.3E6 | 9.59E4 | 1992 | 1.19
PLANE | Standard 805 | 9.97 * * 3.80E5 0| 1.04
PLANE | Row 566 | 7.67 * * 1.38E6 | 6286 | 1.02
PLANE | Column 436 | 6.7" * * 1.05E6 | 6576 | 1.01
CUBE | Standard 125 | 0.6 1.3 | 1.2E4 | 9.27E4 01 1.01
CUBE | Row 89 | 0.4 1.2 | 8.8E3 | 2.38E5 | 1168 | 1.01
CUBE | Column 86 | 0.4 1.2 | 8.5E3 | 1.39E5 | 1138 | 1.01
CYL Standard 104 | 1.7 3.0 | 2.3E4 | 4.19E4 01]1.32
CYL Row 62 | 1.3 2.3 | 7.2E3 | 1.33E5 | 708 | 1.14
CYL Column 28 | 0.6 1.1 | 2.8E2 | 6.80E4 | 681 | 1.02
PANEL | Standard 49 | 1.1 1.3 637 | 4.74E4 01]1.02
PANEL | Row 28 | 0.6 1.1 79| 1.64E5 | 719 | 1.01
PANEL | Column 43 1 0.7 4.6 | 2502 | T.43E4 | 585 | 1.02
TABLE 4
Comparison of Strategies Using Different Orderings for BCSSTKOS.
Factorization Number of | Iteration
Ordering | Strategy || Time o [terations | Time
Given Standard || 0.35 1.00 17 1.33
Given Column 1.57 1.01 13 1.03
Given Row 12.05 1.00 11 0.89
MDO Standard || 0.20 1.00 (1.01) | 26 (25) 2.61 (2.59)
MDO Column 0.51 1.00 16 1.91
MDO Row 1.30 1.00 60 0.67
RCM Standard || 0.24 1.00 20 2.23
RCM Column 0.56 1.01 10 1.16
RCM Row 4.92 1.01 14 1.44

TABLE 5

Comparison of Strategies Using Different Orderings for BCSSTKO09.

Factorization Number of | Iteration

Ordering | Strategy | Time o [terations | Time
Given Standard || 0.23 1.06 (1.09) | 111 (53) 10.43 (5.40)
Given Column 0.51 1.00 22 2.14
Given Row 1.55 1.00 17 1.68

MDO Standard || 0.25 L.11 (1.16) | 92 (69) 8.72 (6.54)
MDO Column | 0.61 1.05 (1.06) | 51 (49) 4.87 (4.68)
MDO Row 2.87 1.17 77 7.31

RCM Standard || 0.22 1.09 (1.13) | 66 (56) 6.23 (5.28)
RCM Column 0.49 1.00 33 3.16

RCM Row 1.30 1.00 24 2.33

TABLE 6

Comparison of Strategies Using Different Orderings for BCSSTK10.

Factorization Number of | Iteration

Ordering | Strategy | Time o [terations | Time
Given Standard || 0.32 1.09 71 7.61

Given Column 0.62 1.01 32 3.50

Given Row 0.91 1.01 26 2.85

MDO Standard || 0.34 1.07 (1.10) | 116 (113) | 12.41 (12.09)
MDO Column || 0.70 1.06 (1.07) | 78 (74) 8.37 (7.95)
MDO Row 1.22 1.01 (1.02) | 45 (44) 4.89 (4.77)
RCM Standard || 0.32 1.04 59 6.33

RCM Column 0.60 1.01 27 2.95

RCM Row 0.86 1.17 100 10.68

TABLE 7

Comparison of Strategies Using Different Orderings for BCSSTK11.

Factorization Number of | Iteration
Ordering | Strategy | Time o [terations | Time
Given Standard || 0.51 1.03 (1.04) | 623 (622) 99.90 (99.90)
Given Column 1.15 1.05 610 98.12
Given Row 2.65 1.02 415 66.56
MDO Standard || 0.55 1.06 77 115.87
MDO Column 1.22 1.10 828 133.84
MDO Row 2.77 1.02 (1.03) | 540 (508) 87.07 (81.92)
RCM Standard || 0.52 1.06 688 109.97
RCM Column 1.12 1.07 672 107.65
RCM Row 3.32 1.02 448 71.65

10

TABLE 8
Comparison of Strategies Using Different Orderings for BCSSTK19.

Factorization Number of | Iteration

Ordering | Strategy | Time o [terations Time

Given Standard || 0.09 1.14 (1.18) | 1375 (1129) | 61.17 (50.25)
Given Column || 0.15 1.04 (1.05) | 689 (596) | 30.67 (26.52)
Given Row 0.95 1.01 341 15.29

MDO Standard || 0.10 115 (1.17) | 1462 (1182) | 64.70 (52.31)
MDO Column || 0.16 117 (1.18) | 1283 (1184) | 56.77 (52.38)
MDO Row 0.24 1.07 (1.09) | 899 (866) | 39.86 (38.39)
RCM Standard || 0.09 1.18 (1.20) | 1263 (1207) | 56.32 (53.80)
RCM Column || 0.14 1.07 (1.09) | 844 (839) | 37.63 (37.41)
RCM Row 0.19 115 (1.17) | 1126 (1074) | 50.35 (48.02)

mum degree (MDO) and reverse Cuthill-McKee (RCM) heuristics. We included
these other orderings to show that the utility of our strategies is not limited to a
specific ordering. In addition to using the first acceptable, or “critical,” value of
a, we also continued to search for an “optimal” «. By optimal, we mean the value
of a, after the first acceptable «, that results in the fewest number of iterations.
The search for the optimal « is halted when the number of iterations begins to
increase; the reasoning for this search pattern is based on the results presented
in [11]. When the optimal « differs from the first acceptable «, the results for
the optimal value are reported in parentheses. Again, the concern was whether
the superiority of the column and row algorithms was independent of whether
the “critical” or “optimal” a was found. The results of these comparisons are
given in Figures 4-8. From these results we conclude that the row and column
strategies will generally require less execution time than the standard strategy,
regardless of what ordering is used or whether an “optimal” « is found.

6. Concluding Remarks. We have presented two new strategies for im-
proving the incomplete factorization for use in the preconditioned conjugate gra-
dient algorithm. The size of these incomplete factors is the same as the size
of the lower triangle of the original matrix. Thus, the cost of the triangular

Our

experimental observations, obtained with difficult problems from structural en-

systems solves is the same as for the standard incomplete factorization.

gineering applications, show that our strategies can require significantly fewer
iterations for convergence than does the standard method. There is a moderate
increase in the cost of computing the incomplete factorizations, but this cost is
more than offset by the decrease in the number of iterations required. Neither of
the two strategies seemed to consistently require fewer iterations than the other;
however, we prefer the column strategy over the row strategy because it requires
less storage. We have also presented some theoretical motivation, in addition to

11

the experimental results, to support the claim that these methods are superior
to a standard incomplete factorization.

In other recent work, we have shown that coloring heuristics can be used
to provide orderings for positive definite matrices arising in practical problems
[8]. These orderings provide a large amount of exploitable parallelism for incom-
plete factorization and the accompanying triangular system solves. A possible
drawback to the two strategies presented in this paper is that, if implemented in
a straightforward fashion, they will destroy the parallelism inherent in a given
ordering. We note that a modification of these strategies that does not destroy
this parallelism may be achieved by restricting fill-in to locations consistent with
the coloring employed. An efficient parallel implementation of this algorithm is
an interesting topic for further research.

REFERENCES

[1] O. AXELSSON AND N. MUNKSGAARD, Analysis of incomplete faclorizations with fized
storage allocation, in Preconditioning Methods Theory and Applications, D. Evans,
ed., Gordon and Breach, 1983, pp. 219-241.
[2] T. S. Durr, R. GRIMES, J. LEwIS, AND B. POOLE, Sparse matriz test problems,
SIGNUM Newsletter, 17 (1982), p. 22.
[3] I. S. Durr AND G. A. MEURANT, The effect of ordering on precondilioned conjugate
gradients, BIT, 29 (1989), pp. 635-657.
[4] R. W. FREUND AND N. M. NACHTIGAL, An implementation of the look-ahead Lanczos
algorithm for non-Hermitian matrices: Part I, Technical report, RTACS, 1990.
[6] W. D. Gropp, D. E. FOULSER, AND S. CHANG, CLAM User’s Guide, Scientific Com-
puting Associates, 1989.
[6] 1. GUSTAFSSON, A class of first order factorization methods, BIT, 18 (1978), pp. 142-156.
[7] M. R. HESTENES AND E. STIEFEL, Methods of conjugatle gradients for solving linear
systems, Journal of Research of the National Bureau of Standards, 49 (1952), pp. 409-
436.
[8] M. T. JonNES AND P. E. PLASSMANN, Scalable iterative solution of sparse linear systems,
Preprint MCS-P277-1191, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, Argonne, Ill.; 1991.
[9] S. KANIEL, Estimales for some computational technigues in linear algebra, Mathematics
of Computation, 20 (1966), pp. 369-378.
[10] D. S. KeErsuaw, The incomplete Cholesky—conjugate gradient method for the iterative
solution of systems of linear equations, Journal of Computational Physics, 26 (1978),
pp- 43-65.
[11] T. A. MANTEUFFEL, An incomplete faclorization technique for positive definile linear
systems, Mathematics of Computation, 34 (1980), pp. 473-497.
[12] J. MELJERINK AND H. A. VAN DER VORST, An ilerative solution method for linear systems
of which the coefficient matriz is a symmetric M-matriz, Mathematics of Computation,
31 (1977), pp. 148-162.
[13] ——, Guidelines for the usage of incomplete decompositions in solving sels of linear
equations as they occur in practical problems, Journal of Computational Physics, 44
(1981), pp. 134-155.
[14] N. MUNKSGAARD, Solving sparse symmelric sels of linear equations by preconditioned
conjugate gradients, ACM Transactions on Mathematical Software, 6 (1980), pp. 206—
219.

12

