
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439-4801AN IMPROVED INCOMPLETE CHOLESKYFACTORIZATION�Mark T. Jones and Paul E. PlassmannMathematics and Computer Science DivisionPreprint MCS-P206-0191January 1991(Revised July 1992)ABSTRACTIncomplete factorization has been shown to be a good preconditioner for the con-jugate gradient method on a wide variety of problems. It is well known that al-lowing some �ll-in during the incomplete factorization can signi�cantly reduce thenumber of iterations needed for convergence. Allowing �ll-in, however, increasesthe time for the factorization and for the triangular system solves. In addition,it is di�cult to predict a priori how much �ll-in to allow and how to allow it.The unpredictability of the required storage/work and the unknown bene�ts ofthe additional �ll-in make such strategies impractical to use in many situations.In this paper we motivate, and then present, two \black-box" strategies thatsigni�cantly increase the e�ectiveness of incomplete Cholesky factorization as apreconditioner. These strategies require no parameters from the user and do notincrease the cost of the triangular system solves. E�cient implementations forthese algorithms are described. These algorithms are shown to be successful fora variety of problems from the Harwell-Boeing sparse matrix collection.� This work was supported by the Applied Mathematical Sciences subprogramof the O�ce of Energy Research, U.S. Department of Energy, under ContractW-31-109-Eng-38.



1. Introduction. One of the most successful iterative methods for solvinglarge sparse symmetric positive de�nite linear systems is the preconditioned con-jugate gradient method [7]. The incomplete Cholesky factorization, proposedby Meijerink and van der Vorst [12] for use on symmetric M-matrices, has beenshown to be a very e�ective preconditioner for a wide variety of problems. How-ever, the incomplete Cholesky factorization can fail for symmetric positive de�nitematrices [10]. To alleviate this problem, Manteu�el [11] introduced the shiftedincomplete factorization algorithm.No-�ll incomplete Cholesky factorization computes incomplete factors, L̂L̂T ,of the original matrix A, where L̂ has nonzeros only in those positions that corre-spond to nonzero positions inA [12]. To improve the quality of the preconditioner,many strategies for altering the pattern of the nonzeros in the incomplete factorhave been proposed. For the purposes of this paper, we classify these strategiesas either �xed �ll-in or drop-tolerance strategies. We discuss these strategies inmore detail in Section 2. Unfortunately, these strategies have the disadvantagethat they are not suitable for a \black-box" implementation; it is di�cult to apriori choose the e�ective parameters and/or the required storage.In this paper we propose an approach that incorporates aspects of both ofthese strategies. Our approach allows a �xed number of nonzeros in each row orcolumn; the number of nonzeros kept in the factor is the number of nonzeros thatwere originally in that row or column. However, the original sparsity pattern isignored, and only the nonzeros with the largest magnitude are retained. In thisway, the space required for factorization is �xed, yet by keeping the nonzeroslargest in magnitude, we can capture some of the bene�ts of the drop-tolerancemethods without having to choose a drop-tolerance level. Row and column ver-sions of this algorithm, along with e�cient implementations, are described inSections 3 and 4.The major advantage of our approach is that it is a \black-box" strategy.It is evident that this strategy will not always result in less overall work thanother strategies for incomplete factorization. If one is able to pick the correctlevel of �ll-in or a good drop-tolerance, it is likely that some other strategy willoutperform the strategy proposed here. However, for general sparse matrices theselection of these parameters is very di�cult.In this paper we give the motivation, description, and demonstration of e�-cient software for new methods without this drawback. We show that the row andcolumn algorithms mentioned above are black-box, low-risk algorithms that canbe implemented in a very e�cient manner. We present experimental results thatshow that these methods should be preferred to the no-�ll incomplete Choleskyfactorization algorithm when factoring matrices of moderate to high conditionnumber. In Section 2 we review a number of previously proposed techniquesfor incomplete factorization. We motivate and describe the two new algorithmsin Section 3. In Section 4 we discuss the e�cient implementation of these algo-rithms. We give experimental results for the algorithms in Section 5. In Section 6we summarize and draw conclusions. 1



2. Other Techniques. Fixed �ll-in strategies for incomplete factorization�x the non-zero pattern of the incomplete factor prior to the numeric factoriza-tion phase. The pattern may be determined by a symbolic factorization step ormay be known a priori if the matrix has a very regular structure. For example,�xed �ll-in strategies for naturally-ordered matrices arising from �nite-di�erencestencils have been proposed that allow extra diagonals of �ll-in [12, 13]. Gustafs-son has proposed modi�cations to the methods in [12] for which has he provedhave better convergence than the standard incomplete factorizations [6]. Thisconcept of extra diagonals is only useful within the context of naturally-orderedmatrices arising from �nite-di�erence stencils. For general sparse matrices, theextra diagonal concept can be generalized to the concept of \levels" of �ll-in. Forexample, level 1 �ll-in would allow nonzeros corresponding to the original ma-trix nonzeros and any nonzeros directly introduced by the elimination of originalnonzeros. Level 2 �ll-in would include the level 1 �ll and any nonzeros directlyintroduced by the elimination of the level 1 nonzeros. For general sparse matri-ces, this method requires a symbolic factorization step to determine the positionof nonzeros and the amount of storage required.An alternative to �xed �ll-in strategies is a drop-tolerance strategy. In thesestrategies nonzeros are included in the incomplete factor if they are larger thansome threshold tolerance. A simple drop-tolerance strategy is to set the tolerancefor element aij to be cpaiiajj, where c is a constant [14]. Neither the pattern ornumber of nonzeros in the incomplete factor can be determined a priori for such astrategy; they are determined during the factorization. More complex strategieswhere the tolerance varies during the factorization according to the amount of�ll-in included at each stage of the factorization have been proposed [1, 14]. Thesemore complex strategies keep the storage required by the incomplete factor withinthe �xed amount of storage allocated by the user. The number of nonzeros inthe factor at step k is compared with the amount of space that the user hasallocated for the incomplete factor. If the number of nonzeros in the factor ata particular step does not match the number predicted by a proposed formula,then the tolerance threshold is altered. The only parameters that must be chosen,aside from the initial c, are the formula for altering c and the amount of storageto allocate for the incomplete factor.Fixed �ll-in and drop-tolerance strategies were evaluated on grid problemswith with �ve-point and nine-point stencils by Du� and Meurant [3]. Theycompared a level 1 �ll-in algorithm to a no-�ll incomplete Cholesky factorizationand found that the extra work in the factorization and forward/back substitutionswas greater than the work saved by the reduced number (if any) of iterations. Adrop-tolerance strategy was also evaluated and was found to be cost-e�ective ifthe right drop-tolerance was selected, but was found to be more di�cult from animplementation standpoint.Freund and Nachtigal [4] have independently developed an algorithm thatis similar to our proposed algorithm. Their algorithm combines drop-toleranceswith a cap on the number of nonzeros that can be kept per row. For example, if2



the drop-tolerance determines that 30 elements are to be kept, but the cap is 20,then only the 20 largest elements are kept. This algorithm is not a black-box be-cause of the tolerance setting, but most likely it is not as sensitive to the tolerancesetting as a drop-tolerance algorithm alone. The drop-tolerance can be viewedas a means for saving work if it is set at the proper level. If the drop-toleranceis set to zero and the number of nonzeros per row were set to be the numberof nonzeros per row in the original matrix, the Freund and Nachtigal algorithmis similar to our algorithm. However, it di�ers in two signi�cant aspects. First,their strategy does not preserve symmetry. Second, our implementation does notneed to check drop-tolerances and therefore should be more e�cient.In summary, each one of these modi�cations to the no-�ll algorithm requiresextra work during the factorization phase. It is not possible to predict a priorithe amount of extra work required by the factorization phase for general sparsematrices. Each strategy di�ers in the amount of storage required, the amountof work in the forward/backward substitution steps, and the sensitivity of themethod to parameter settings. In Table 1 we have summarized these three aspectsof the algorithms discussed above. We note that the storage requirement givenin the table is determined assuming that the original matrix is already beingstored in a sparse format. We denote the order of the original matrix by n andby nz the number of nonzero elements in the strict lower triangle of the matrix.An e�cient implementation of the factorization may require additional low-orderstorage over the amount given in the table.3. New Algorithms. First, we provide the motivation for the row andcolumn factorization strategies by discussing incomplete factorization from a dif-ferent viewpoint from that normally used. In this paper all norms are assumed tobe the two-norm. Given the symmetric positive de�nite matrix A, let A = LLTbe the complete Cholesky factorization and A = L̂L̂T � R be an incompletefactorization. The size and structure of R have typically been examined for in-sights into the goodness of the preconditioner [3]. Ultimately, however, the goalis to reduce the condition number of the matrix B = L̂�1AL̂�T [9]. If we de�neE = L � L̂ and X = L̂�1E, then B can be expressed as perturbation of theidentity in terms of the lower triangular matrix X,B = I +X +XT +XXT :(1)Thus, as kXk is reduced, B approaches the identity. We can assume that A isscaled so that its diagonal is the identity matrix and that any shift used in theincomplete factorization is positive. Therefore, because element (1,1) of L̂ is � 1,kL̂k � 1. Thus we may bound the norm of X bykXk � �(L̂)kEk ;(2)where �(L̂) is the condition number of L̂. This bound on kXk is not tight,however, we are primarily interested in the relationship that as kEk decreases3



Table 1Comparison of Algorithms for General Sparse Symmetric Matrices.No-�ll AlgorithmStorage: Only nz reals are required; the row and column positions are the same asthose in the original matrix.Forward/Back Solves: n + 2 � nz 
oating-point additions and multiplications arerequired.Parameters: no parameters; a black box.Drop ToleranceStorage: The size of the factor is dependent on the tolerance setting; it can be moreor less than that required by the original matrix. The entire sparse datastructure must be provided, because the rows and columns are no longerthose of the original matrix.Forward/Back Solves: The amount of work is dependent on the tolerance strategy.Parameters: The amount of work and the size and e�ectiveness of the factors arecompletely dependent on the tolerance strategy.Level k FillStorage: Requires more storage than the original matrix; this amount can be de-termined by a preprocessing step. The entire sparse data structure mustbe provided, because the rows and columns are no longer those of theoriginal matrix.Forward/Back Solves: The amount of work is larger than that required by the no-�llalgorithm.Parameters: The level of �ll, k, must be selected; however, the amount of storagecannot be predicted a priori; therefore, a preprocessing step is necessary.New Row and Column AlgorithmsStorage: Nonzero storage and column (or row) indices for a sparse matrix of thesame size as A must be provided. Pointers to the column (or row) indicesare the same as those of the original matrix.Forward/Back Solves: Same as for no-�ll algorithm.Parameters: No parameters; a black box.
4



then kXk decreases with a corresponding decrease in �(B). This behavior canbe observed in the experiments in Section 5.This relationship between kEk, kXk, and �(B) provides the motivation forour method. By reducing the norm of X, we expect to reduce the conditionnumber of B. Unfortunately, since we are considering incomplete factorizations,the size of kEk is at least as large as the largest element of L not included inthe structure of L̂. Equation (2) also presents a di�erent perspective as to whyincluding a shift is important, namely, to reduce the size of the condition numberof L̂. We note that this is counterintuitive, since for ill-conditioned problems onemight assume that a good preconditioner has the property �(L̂) � �(L). On theother hand, when L̂ is positive de�nite, shifting the diagonal usually increaseskEk. Thus, these two goals, seeking to minimize the condition number of L̂ andthe reduction of kEk, can be con
icting.Our approach is to attempt to minimize the norm of E, while keeping theincomplete factorization as stable as possible, and thus decrease the conditionnumber of L̂. In the row algorithm, we use a Crout-Doolittle factorization: duringstep k, row k of L̂ is updated by the �rst k � 1 rows of L̂. At step k, row k isstored in a dense vector, and �ll-in is allowed. If there were originally m nonzeroo�-diagonal elements in row k, the largest m elements (in absolute value) in thedense vector are returned to the storage allocated for L̂. The diagonal is updated,and the remainder of the dense vector is discarded.The column strategy is similar. At step k of the factorization, the o�-diagonalof column k of L̂ is updated by the �rst k � 1 columns of L̂. As before, columnk is stored in a dense vector, and �ll-in is allowed. After the updates have takenplace, the nonzero elements in the dense vector are used to update the last n� kdiagonal elements of L̂. Again, if m nonzero o�-diagonal elements were originallyin column k, the largest m elements are incorporated into the sparse L̂ matrix.Computationally, at least one of these two strategies was always found torequire signi�cantly fewer iterations for convergence than the standard shiftedpreconditioner. However, our results show that the superiority of one of the twostrategies varied. We have also considered a variation of the second strategythat kept the o�-diagonals in the same positions as in A, but still allowed theelements in the dense vector to update the remaining diagonals. This strategywas sometimes much better, but not consistently or dramatically better thanincomplete factorization with no �ll-in.Aside from being better preconditioners, these two strategies often allow fora more stable incomplete factorization. If we use shifted incomplete factorization[11] to form a positive de�nite preconditioner, the shift required to make thefactorization positive de�nite is often smaller for our two strategies than it isfor incomplete factorization without �ll-in. Therefore, if one uses a strategyof performing the factorization with increasing shifts until the factorization ispositive de�nite, then much time can be saved with our strategies, because anacceptable factorization will be found much sooner.5



4. E�cient Implementation. The e�cient implementation of the column-oriented approach is simple and is therefore described �rst. First, we give a de-scription of the data structure used to store the matrix, A. The nonzeros of A arestored in four arrays: (1) diag, which stores the n diagonal elements; (2) nonz,which stores the o�-diagonal nonzeros in column-major order; (3) ja, where ja(i)is the row value for element i in nonz; and (4) ia, where ia(j) points to the be-ginning of column j in nonz and ja. The �rst concern in designing the algorithmis to ensure that O(n2) overhead operations are not necessary. To achieve this,we use two n-length arrays: �rst, where �rst(j) points to the position in nonzand ja of the next entry in column j to be used during the factorization, and list,where list (j) points to a linked list of columns that will update column j. Twoadditional n-length arrays are used to allow for �ll-in at step j of the factoriza-tion: tcolumn, which stores the nonzero values in the current column, and trow,which stores the row values for the current column. The column-based algorithmis shown in Figure 1.1) DO j = 1; : : : ; n2) Load nonzeros from column j in nonz into tcolumn;3) Load row values from column j in ja into trow ;4) ptr = list(j);5) WHILE (ptr 6= 0) DO6) Update tcolumn using column ptr starting at7) position �rst(ptr) in nonz ;8) �rst(ptr) = �rst(ptr) + 1; fadvance to next row in columng9) IF (�rst(ptr) < ia(ptr + 1)) THEN10) tptr = ptr ;11) ptr = list(ptr); fmove ptr to the next column in listg12) list (tptr) = list (ja(�rst(tptr))); fadd this column to a new listg13) list (ja(�rst(tptr))) = tptr ;14) ENDIF15) ENDWHILE16) Divide the elements in the tcolumn by diag(j);17) Update the remaining diagonals with tcolumn ;18) Copy the largest ia(j + 1)� ia(j) values in tcolumn into nonz and ja;19) ENDDO Fig. 1. The column-based algorithm.A similarly e�cient implementation can be constructed for the no-�ll incom-plete factorization algorithm, but in this case the trow variable is not needed, andja is not modi�ed.To construct a row-based implementation of the Crout-Doolittle algorithmthat meets our goal of not taking O(n2) overhead operations is more challengingand requires more storage. The same data structure used in the column-based6



1) DO j = 1; : : : ; n2) Load nonzeros from row j in nonz into trow;3) Load column values from row j in ja into tcolumn;4) k = the column number of the �rst nonzero in row j;5) WHILE (k 6= j) DO6) trow(k) = trow(k)=diag(k);7) diag(j) = diag(j)� trow(k) � trow(k);8) use column k to update trow; f�nd column k by traversing9) the list beginning at cptr(k)g10) k is the column number of the next nonzero in row j;11) ENDWHILE12) Copy the largest ia(j + 1)� ia(j) values in trow into nonz and ja;13) Add this row to the column linked list structure;14) ENDDO Fig. 2. The row-based algorithm.algorithm is used to store A in row-major form. In addition, trow and tcolumnarrays are used to store the current row. However, for the sake of e�ciency, linkedlists must be constructed that, at step j, store the columns of A up to row j � 1.Three arrays are required: cptr, where cptr(j) points to the beginning of columnj; next, where next(i) points to the element following the element in position i,;and rval, where rval(i) is the row value of the element in position i. The lasttwo arrays are the same length as nonz, a sizable amount of storage. Additionale�ciency can be gained by using a vector of length n to quickly determine if anonzero exists in speci�c position of the current row. The row-based algorithmis shown in Figure 2.5. Experimental Results. In this section, the strategies given in the pre-ceding section are compared to incomplete factorization without �ll-in. The ma-trices used for the comparisons are described in Table 2. The �rst �ve problemswere generated from �nite element models from the Computational StructuralMechanics Branch at NASA Langley Research Center. The last �ve problemsare from the Harwell-Boeing Sparse Matrix Collection [2].A �rst set of experiments was run using the environment provided by theCLAM package [5]. A second set of experimentswere run using a Fortran programon a Sun Sparcstation. For these experiments, each matrix was scaled so that itsdiagonal was the identity and the right-hand side was chosen to be the normalizedvector of ones. The initial guess for the problems was the zero vector. Thesolutions were sought to a relative accuracy of 0.001, where the relative accuracyat step k is de�ned as krkk2=kr0k2 and rk is the residual at step k. When theincomplete Cholesky factorization failed, 0:01 was added to the diagonal until1 The PLANE problem was too large for our system to determine the condition number.7



Table 2Description of Problems.Name Size nz (L) �(A) DescriptionPLATE 327 8474 1.1E7 �nite element model of a plateusing 4-node elementsPLANE 2141 30350 * 1 �nite element model of an airplaneusing various 2-D element typesCUBE 180 4301 4.7E6 �nite element model of a cubeusing 8-node elementsCYL 216 3347 1.3E6 �nite element model of a circularcylindrical shell using4-node elementsPANEL 477 5007 8.6E4 �nite element model of a blade-sti�ened panel with a discontinuoussti�ener using 4-node elementsBCSSTK08 1074 7017 2.6E7 TV studioBCSSTK09 1083 9760 9.5E3 Square plate clampedBCSSTK10 1086 11578 5.2E5 Buckling of a hot washerBCSSTK11 1473 17857 2.2E8 Ore carBCSSTK19 817 3835 1.3E11 Part of a suspension bridgethe factorization succeeded.In the �rst set of experiments, the e�ect of the strategies on the E, X, and Bmatrices, as well as the number of iterations, was of interest. The results for the�rst set of experiments are given in Table 3. All norms shown are 2-norms, �(A)is the condition of A, � is the number of nonzeros that have shifted positionsin L̂, and � is the amount that the diagonal must be multiplied by to force apositive-de�nite preconditioner. We note that the row and column strategies arealways superior to the standard factorization. The column-based strategy alwaysrequires less work than the row-based. However, the improvement of the column-based algorithm over the standard approach, in terms of the number of iterations,is less consistent than the row-based strategy. The column FLOPS gives thenumber of 
oating point operations used during the incomplete factorization step.We point out that the number of 
oating-point operations required per iterationis approximately four times the number of nonzeros in the original matrix; thisnumber is identical for each strategy. It is clear from these results that thereduction of a few iterations in the conjugate gradient algorithm can o�set theadditional factorization costs. Thus, many 
oating-point operations can be savedby using these strategies.In the second set of experiments, the primary concern was the amount of timerequired by e�cient implementations of the strategies. To determine whether thesuperiority of the column and row algorithms was independent of how the equa-tions were ordered, we studied the e�ect of reordering the matrices by the mini-8



Table 3Comparison of Strategies.Name Strategy # of its. kEk kXk �(B) FLOPS � �PLATE Standard 510 2.3 1.6 2.3E6 6.48E4 0 1.37PLATE Row 141 1.0 1.2 8.8E4 2.36E5 1946 1.02PLATE Column 337 2.0 3.3 7.3E6 9.59E4 1992 1.19PLANE Standard 805 9:9F * * 3.80E5 0 1.04PLANE Row 566 7:6F * * 1.38E6 6286 1.02PLANE Column 436 6:7F * * 1.05E6 6576 1.01CUBE Standard 125 0.6 1.3 1.2E4 9.27E4 0 1.01CUBE Row 89 0.4 1.2 8.8E3 2.38E5 1168 1.01CUBE Column 86 0.4 1.2 8.5E3 1.39E5 1138 1.01CYL Standard 104 1.7 3.0 2.3E4 4.19E4 0 1.32CYL Row 62 1.3 2.3 7.2E3 1.33E5 708 1.14CYL Column 28 0.6 1.1 2.8E2 6.80E4 681 1.02PANEL Standard 49 1.1 1.3 637 4.74E4 0 1.02PANEL Row 28 0.6 1.1 79 1.64E5 719 1.01PANEL Column 43 0.7 4.6 2502 7.43E4 585 1.02Table 4Comparison of Strategies Using Di�erent Orderings for BCSSTK08.Factorization Number of IterationOrdering Strategy Time � Iterations TimeGiven Standard 0.35 1.00 17 1.33Given Column 1.57 1.01 13 1.03Given Row 12.05 1.00 11 0.89MDO Standard 0.20 1.00 (1.01) 26 (25) 2.61 (2.59)MDO Column 0.51 1.00 16 1.91MDO Row 1.30 1.00 60 0.67RCM Standard 0.24 1.00 20 2.23RCM Column 0.56 1.01 10 1.16RCM Row 4.92 1.01 14 1.449



Table 5Comparison of Strategies Using Di�erent Orderings for BCSSTK09.Factorization Number of IterationOrdering Strategy Time � Iterations TimeGiven Standard 0.23 1.06 (1.09) 111 (53) 10.43 (5.40)Given Column 0.51 1.00 22 2.14Given Row 1.55 1.00 17 1.68MDO Standard 0.25 1.11 (1.16) 92 (69) 8.72 (6.54)MDO Column 0.61 1.05 (1.06) 51 (49) 4.87 (4.68)MDO Row 2.87 1.17 77 7.31RCM Standard 0.22 1.09 (1.13) 66 (56) 6.23 (5.28)RCM Column 0.49 1.00 33 3.16RCM Row 1.30 1.00 24 2.33Table 6Comparison of Strategies Using Di�erent Orderings for BCSSTK10.Factorization Number of IterationOrdering Strategy Time � Iterations TimeGiven Standard 0.32 1.09 71 7.61Given Column 0.62 1.01 32 3.50Given Row 0.91 1.01 26 2.85MDO Standard 0.34 1.07 (1.10) 116 (113) 12.41 (12.09)MDO Column 0.70 1.06 (1.07) 78 (74) 8.37 (7.95)MDO Row 1.22 1.01 (1.02) 45 (44) 4.89 (4.77)RCM Standard 0.32 1.04 59 6.33RCM Column 0.60 1.01 27 2.95RCM Row 0.86 1.17 100 10.68Table 7Comparison of Strategies Using Di�erent Orderings for BCSSTK11.Factorization Number of IterationOrdering Strategy Time � Iterations TimeGiven Standard 0.51 1.03 (1.04) 623 (622) 99.90 (99.90)Given Column 1.15 1.05 610 98.12Given Row 2.65 1.02 415 66.56MDO Standard 0.55 1.06 717 115.87MDO Column 1.22 1.10 828 133.84MDO Row 2.77 1.02 (1.03) 540 (508) 87.07 (81.92)RCM Standard 0.52 1.06 688 109.97RCM Column 1.12 1.07 672 107.65RCM Row 3.32 1.02 448 71.6510



Table 8Comparison of Strategies Using Di�erent Orderings for BCSSTK19.Factorization Number of IterationOrdering Strategy Time � Iterations TimeGiven Standard 0.09 1.14 (1.18) 1375 (1129) 61.17 (50.25)Given Column 0.15 1.04 (1.05) 689 (596) 30.67 (26.52)Given Row 0.95 1.01 341 15.29MDO Standard 0.10 1.15 (1.17) 1462 (1182) 64.70 (52.31)MDO Column 0.16 1.17 (1.18) 1283 (1184) 56.77 (52.38)MDO Row 0.24 1.07 (1.09) 899 (866) 39.86 (38.39)RCM Standard 0.09 1.18 (1.20) 1263 (1207) 56.32 (53.80)RCM Column 0.14 1.07 (1.09) 844 (839) 37.63 (37.41)RCM Row 0.19 1.15 (1.17) 1126 (1074) 50.35 (48.02)mum degree (MDO) and reverse Cuthill-McKee (RCM) heuristics. We includedthese other orderings to show that the utility of our strategies is not limited to aspeci�c ordering. In addition to using the �rst acceptable, or \critical," value of�, we also continued to search for an \optimal" �. By optimal, we mean the valueof �, after the �rst acceptable �, that results in the fewest number of iterations.The search for the optimal � is halted when the number of iterations begins toincrease; the reasoning for this search pattern is based on the results presentedin [11]. When the optimal � di�ers from the �rst acceptable �, the results forthe optimal value are reported in parentheses. Again, the concern was whetherthe superiority of the column and row algorithms was independent of whetherthe \critical" or \optimal" � was found. The results of these comparisons aregiven in Figures 4{8. From these results we conclude that the row and columnstrategies will generally require less execution time than the standard strategy,regardless of what ordering is used or whether an \optimal" � is found.6. Concluding Remarks. We have presented two new strategies for im-proving the incomplete factorization for use in the preconditioned conjugate gra-dient algorithm. The size of these incomplete factors is the same as the sizeof the lower triangle of the original matrix. Thus, the cost of the triangularsystems solves is the same as for the standard incomplete factorization. Ourexperimental observations, obtained with di�cult problems from structural en-gineering applications, show that our strategies can require signi�cantly feweriterations for convergence than does the standard method. There is a moderateincrease in the cost of computing the incomplete factorizations, but this cost ismore than o�set by the decrease in the number of iterations required. Neither ofthe two strategies seemed to consistently require fewer iterations than the other;however, we prefer the column strategy over the row strategy because it requiresless storage. We have also presented some theoretical motivation, in addition to11



the experimental results, to support the claim that these methods are superiorto a standard incomplete factorization.In other recent work, we have shown that coloring heuristics can be usedto provide orderings for positive de�nite matrices arising in practical problems[8]. These orderings provide a large amount of exploitable parallelism for incom-plete factorization and the accompanying triangular system solves. A possibledrawback to the two strategies presented in this paper is that, if implemented ina straightforward fashion, they will destroy the parallelism inherent in a givenordering. We note that a modi�cation of these strategies that does not destroythis parallelism may be achieved by restricting �ll-in to locations consistent withthe coloring employed. An e�cient parallel implementation of this algorithm isan interesting topic for further research.REFERENCES[1] O. Axelsson and N. Munksgaard, Analysis of incomplete factorizations with �xedstorage allocation, in Preconditioning Methods Theory and Applications, D. Evans,ed., Gordon and Breach, 1983, pp. 219{241.[2] I. S. Duff, R. Grimes, J. Lewis, and B. Poole, Sparse matrix test problems,SIGNUM Newsletter, 17 (1982), p. 22.[3] I. S. Duff and G. A. Meurant, The e�ect of ordering on preconditioned conjugategradients, BIT, 29 (1989), pp. 635{657.[4] R. W. Freund and N. M. Nachtigal, An implementation of the look-ahead Lanczosalgorithm for non-Hermitian matrices: Part II, Technical report, RIACS, 1990.[5] W. D. Gropp, D. E. Foulser, and S. Chang, CLAM User's Guide, Scienti�c Com-puting Associates, 1989.[6] I. Gustafsson, A class of �rst order factorization methods, BIT, 18 (1978), pp. 142{156.[7] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linearsystems, Journal of Research of the National Bureau of Standards, 49 (1952), pp. 409{436.[8] M. T. Jones and P. E. Plassmann, Scalable iterative solution of sparse linear systems,Preprint MCS-P277-1191, Mathematics and Computer Science Division, Argonne Na-tional Laboratory, Argonne, Ill., 1991.[9] S. Kaniel, Estimates for some computational techniques in linear algebra, Mathematicsof Computation, 20 (1966), pp. 369{378.[10] D. S. Kershaw, The incomplete Cholesky{conjugate gradient method for the iterativesolution of systems of linear equations, Journal of Computational Physics, 26 (1978),pp. 43{65.[11] T. A. Manteuffel, An incomplete factorization technique for positive de�nite linearsystems, Mathematics of Computation, 34 (1980), pp. 473{497.[12] J. Meijerink and H. A. van der Vorst, An iterative solution method for linear systemsof which the coe�cient matrix is a symmetric M-matrix, Mathematics of Computation,31 (1977), pp. 148{162.[13] , Guidelines for the usage of incomplete decompositions in solving sets of linearequations as they occur in practical problems, Journal of Computational Physics, 44(1981), pp. 134{155.[14] N. Munksgaard, Solving sparse symmetric sets of linear equations by preconditionedconjugate gradients, ACM Transactions on Mathematical Software, 6 (1980), pp. 206{219. 12


