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1 Introduction

The classical Euler Maclaurin summation formula expresses the discretization error made
by the trapezoidal rule approximation to a finite integral as an asymptotic expansion in the
mesh ratio. As such, it plays a significant role in the theory of numerical quadrature. In
particular, it forms the basis for Richardson’s deferred approach to the limit, also known
as Romberg integration and as quadrature by extrapolation. In this review, we draw at-
tention to some more recent theory, based on the Euler Maclaurin summation formula (or
expansion).

During the past 25 years, this theory has undergone significant development. Briefly, the
expansion has been systematized to embrace all quadrature rules. It has been generalized
to the N-dimensional cube and to the N-dimensional simplex. Moreover, a significant gen-
eralization has been made to cover functions having algebraic and logarithmic singularities
at vertices. In this article we discuss some of these developments in the context of their
possible use to analyze finite elements. In general, no proofs are provided, but references
are given.

This article, and most of the available theory, is limited to the following class of problem
(together with its higher-dimensional analogues). The integration regions are the square
and the triangle. The integrand function is singular only at a vertex of the integration

region. Taking this as the origin, we treat only integrand functions of the type

f(&) = p™Inp O(O)h(r)g(x.y).
Here & = (a,y) are Cartesian coordinates with the corresponding polar coordinates r, 8.

The functions ©(8), h(r), and g(z,y) are regular, and rho is homogeneous about the origin.
Examples of p(Z) include the following:

p =7

p = Az + By, A B >0

p = A3+ By,
The quadrature rules may be linear combinations of m;-copies Q™) f of any quadrature
rule Qf = QUJ = Y wy f(#).
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2 The Classical One-Dimensional Background

In one dimension, we treat the interval [0, 1] and an integrand f(z) € CP71[0,1]. We denote
the exact integral by

If = /01 flx)de, (2.1)

and we consider any quadrature rule of the form
= ijf(wj), ij =1. (2.2)
i=1 i=1

The m-copy version Q™) of this quadrature rule Q is obtained by subdividing the inte-
gration interval into m equal parts and applying the properly scaled version of () to each.
Specifically,
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m—1 w] $] k‘
AW Zr(SE). (2.3)

Theorem 2.4. (The Euler Maclaurin summation formula). When f(z) € C?[0,1],
QUM —1If = Z—‘l'R Qs 1), (2.4)
where B is independent of m and Rém) =0(m™P).

The important feature of this expansion is that the coefficients B, = Bs(Q); f) are indepen-
dent of m. In fact, they take the form

By(Q; f) = cs(Q)If, (2.5)

where ¢,(@Q) is the result obtained by applying @ to the integrand function B,(z)/s! and
Bg(z) is the Bernoulli function. A simple integral representation for the remainder term is
available.

We shall now demonstrate how the information that expansion (2.4) exists may be ex-
ploited to construct a quadrature technique or a new quadrature rule. In this demonstration,

we choose @) to be the trapezoidal rule @ f = 1(f(0)+ f(1)) so that

Q=L ( +mey/m )+ 51 )) (2.6)

m

Let us write down the expansion (2.4) with p = 6 for m = 1,2 and 4. (We may omit B, for
s odd since @ is symmetric and so ¢5(¢)) = 0.) We find

Qf = If—l-Bz+B4-|-Ré
QWf = If+ By/2* + Ba/2' + B} (2.7)
QW[ = If+ By/4* + By/4* + RE.



Extrapolation comprises carrying out the following ad hoc procedure. We remove the re-
mainder terms and solve the resulting set of three equations in three unknowns. Note that,
after we have removed the remainder terms, the unknowns are only approximations to If,
By, and By. For classical reasons we denote by Tj o this particular approximation to If.

We find

1 20 64
- —oWr_2"n2) 0@
To,2 45Q J 45Q J+ 45Q /, (2.8)
which, using (2.6), we may reexpress in terms of function values
1
Too = 50 {7F(0)+32f(1/4)+ 12f(1/2) + 32f(3/4)+ Tf(1)}. (2.9)

This is, in fact, the Newton Cotes equispaced rule of degree 5.

This straightforward example is given here toillustrate an important general point. Once
the form (2.4) of the asymptotic expansion for QU™ f — If is known, one may construct an
integration rule using only linear algebra. No further explicit information about moments or
about interpolation polynomials is necessary. Any required information of that type must
have already been contained implicitly in the expansion.

We note that (other than B, = 0 for s odd) we do not need to know the form of B, at all,
merely that it is independent of m. Thus, starting with a rule ), the only restriction being
that Yw; = 1, and using only QUM f = If + SB,/m® + R,(m), we can find a respectable
quadrature rule of moderate polynomial degree.

We make this point strongly here because, in many elementary descriptions, the theory
becomes enmeshed in algebraic detail and the reader can be left with the impression that
serious restrictions are in place. The only serious restriction we know is that the integrand
must be well behaved.

Note that this technique cannot produce all quadrature rules. Omne could, however,
develop the theory of (constant weight finite interval) quadrature if one took advantage of
detailed expressions for the term ¢4(@)) which appears in (2.5) above. Such a development
would be roughly equivalent to the standard development of numerical quadrature theory.

However, given a quadrature rule, one can sometimes find interesting properties or useful
extensions simply using the Fuler Maclaurin expansion. In one dimension, one discovers only
already-known properties. The extension of these ideas to simplices and cubes with simple
singularities at vertices can be helpful by providing new insight into standard intractable
problems. This is the thrust of the rest of this paper.

3 Multidimensional Generalizations of Classical Results

The generalizations of the asymptotic expansion to the N-dimensional hypercube [0,1)% is
straightforward. In this new context, () f stands for any rule that integrates the constant
function correctly, while Q™) f stands for the result of subdividing the hypercube into m!¥
subcubes each of side m~! and applying the appropriately scaled version of @) to each. We
find immediately that

p—1
QUIf=1If+ 3 By/m® + RI™(Q, f). (3.1)

s=1
Here, By is an obvious generalization of (2.5), namely,

B’S = Z C'Sl7527"'75N(Q)If(517527“.75N)' (3-2)
Ye;=s

S
5;2>0



However, the corresponding integral representation for R, (which is O(m™?)) is a somewhat
lengthy uncompromising expression.

Turning to the simplex, we encounter further complications. There are variant defini-
tions for Q(™) f. We shall proceed as follows. We treat the isosceles simplex

Sz, >0; Ya; < 1. (3.3)

This forms a part of the hypercube [0, 1)N. We define our rule Q f as if for this hypercube.
Then Q™) f for the simplex is the result of applying the rule ¢) to a function @ that coincides
with f within S and is zero outside 5. (Certain conventions, not given here, apply on the
boundary of S within H.) The reason for this somewhat complicated definition can be seen
even in two dimensions. The subdivision of the triangle into four equal subtriangles by lines
parallel to the edges of the triangle leaves the center triangle with a different orientation to
the other three. If we simply defined a rule ) for the triangle 5, we would leave ambiguity
as to how to apply it in this center triangle. The approach given above provides a definite
specification for this situation. The “rule” for the “other” triangle is the part of the rule
for the square that lies in this “other” triangle.

An asymptotic expansion of precisely the same form as (3.1) appears to exist for the
simplex. The coefficients B, are, as before, independent of m but are given by an expression
significantly more complicated than (3.2) above.

In the practice of higher-dimensional extrapolation, it is important to know whether any
of these coefficients B, vanish. In fact, certain cofactors ¢, s, 5,(Q) vanish when the rule
() enjoys certain symmetry and polynomial properties (SPP). This, in turn, causes terms
B, to vanish as specified in the following theorem.

Theorem 3.4 When Q is symmetric (about (%, %, .. .,%)), then
B, =0, Vs odd. (3.4)
When Q is of polynomial degree d (for the hypercube), then
B,=0, ¥ se[lé], (3.5)

where 6 = d for the hypercube and 6 = d+ 1 — N for the N-dimensional simplez.

Conditions (3.4) and (3.5) are termed SPP conditions. It is important to note that in
this theorem, one inspects the behavior of ) over the hypercube to determine its symmetry
and degree. The result of this inspection determines which B, may vanish when it is
used over the simplex and which B; may vanish when it is used over the hypercube. The
possible properties of the truncated part of ) that may be applied to S may be of interest
independently, but play no direct role in this theorem.

4 Singularities in One-Dimensional Quadrature

The error functional expansions given above are valid only when the integrand functions
are sufficiently well behaved. In one dimension, for example, (2.4) is valid only when
f(x) € CP71[0,1]. This is not simply a technical restriction. The expression for B contains
a factor If(®) that exists only when f(s)(ac) is integrable.



In 1961, Navot published a generalization of the Euler Maclaurin expansion which applies
to the function f(z) = z® with noninteger a (as well as with integer a). His original proof
involved somewhat heavy algebraic manipulation. Successively simpler proofs appeared
later. A slightly more general version of his result is the following theorem.

Theorem 4.1 Let f,(x) = ka®, where a # —1; then

moz—l—l

(m) Aoz—l—l 1 By _
Q" fo — Ifo = ‘I'ZE—I_O(m p)7 (41)
s=1

where Ay41 and By are independent of m.

Simple analytic forms for these coefficients are known. A,y1 involves the generalized zeta
function.

To specify these new coefficients B, we extend the notation [f defined in (2.1) (or (4.2)
below). When dealing with f,, which is simply xa®, we define Ifc(f) as a finite part integral,
namely,

1
]fc(f) = / fc(f)(x)dw, a—s>—1, (4.2)

0
09 == [N @yde, a-s<-t (43)

1
This is not defined for « — s = —1. For other values of @ — s, one and only one of the

integrals (4.2) or (4.3) converges and this one is used for the definition. In the next section

this definition is extended to N dimensions with f, any homogeneous function of order a.
The coefficient in (4.1) is

By = c,(Q)IfY). (4.4)
Thus, By is given by its standard formula (2.5) when that is meaningful but is modified
when that is not meaningful. We note in passing that the theorem applies, as written, when
a < —1, and so the conventional integral does not exist. The term If, on the right of (4.1)
is then simply a finite part integral as in (4.3) above. In fact, it is notationally convenient
but initially bewildering to replace If, in (4.1) by Bp and to include this in the sum on the
right. Finally, we note that the only value of a for which Theorem 4.1 is invalid is o = —1.
In that case the proper expansion includes other terms not given in (4.1).
Naturally, this expansion is not needed to integrate z® whose integral is known to be
1/(a+1). It is used to construct an expansion for the more sophisticated function z®g(z),
where g(z) € C?[0,1]. Using a Taylor expansion (with remainder term), we set

1"
[ = g0 4 g0t 4 L1 ot (4.5)
(»-1)
4+ ...+ g (O)xa‘i'p_l + Gp(x)wa‘i'p.

(p—1)!
One may apply Theorem 2.4 to the final term on the right. The other terms on the right

are functions to which Theorem 4.1 applies (for the appropriate «).
Applying these theorems leads to the result

A ; B
(m) £ _ [f ~ S otlty s ive i
QY f — If ~ 2 P + 5221 — a # negative integer. (4.6)



The structure of B, here is not trivial. It is composed of a weighted sum of integrals over
two possible intervals. However, it is independent of m, and each integral has a cofactor
¢s(Q)). Thus, these coeflicients B, also satisfy the SSP conditions (Theorem 3.4).

Note that, at this point, the restriction in Theorem 4.1 to the effect that a # —1 has
the effect of invalidating (4.6) for all negative integers a.

5 The Euler Maclaurin Expansion for a Vertex Singularity

The generalization to the N-dimensional hypercube of the result of the preceding section
appeared in Lyness (1976a). Before stating this generalization, Theorem 5.10, we clarify
some of the concepts on which it is based.

Definition 5.1 The N-dimensional function f(Z) is said to be homogeneous of degree
a (about the origin) if

FOZ) =Xf(&), ¥V A>0and&#0. (5.1)

We denote such a function by f,(Z). We have anticipated this notation in Section 4. The
one-dimensional function f,(z) = ra® is clearly homogeneous of degree a.

A monomial zPy? is homogeneous of degree p 4+ ¢, and many properties relating to
the polynomial degree of functions of monomials have direct analogues in the context of
homogeneous degree. Thus, (f,)” and fafs are of degree a3 and a + 3, respectively, and
fa(MZ) when | M| # 0 is also of degree a; 0°f,/dz® is of degree a — s.

In more than one dimension, many more interesting functions are homogeneous. For
example, r = (22 —|—y2)1/2 is homogeneous of degree 1, and 8 = arctan y/z is homogeneous of
degree zero, as is any function ¢(6). Our basic result, (5.10) below, applies to a homogeneous
function of specified degree.

We also require an N-dimensional generalization of the interval [a,b) when 0 < a <'b.

Definition 5.2 L[a,b);{Z|a < max;z; <b; z; > 0}.

This is the region remaining when [0, a) is removed from [0,5). In two dimensions, it has
the shape of the capital letter L.

We shall be integrating homogeneous functions over L-shaped regions. To this end we
note first that

/ Fo(&)dN e = m—W—N/ F(&)dVz. (5.3)
Lla,b) L[ma,mb)
This follows by elementary scaling. Next we express
L[1,00) = | J L[m?,m/T), (5.4)
7=0
obtaining
/ FAD)dNe = (14 m" TN 4 204N .)/ (@)Y, (5.5)
L[1,00) L1,m)



which, so long as v + N < 0, can be put in the form

[ p@de = -t [ @V, (5.6)
L[1,m) L[1,00)
When v + N > 0, a similar derivation leads to
[ R@de = (=) [ g @ (5.7)
L[1,m) [0,1)

These formulas are basic in establishing the main result (5.10) below. We note that the
left-hand side of (5.7) appears at first sight to depend on m in an involved way. In fact,
(5.7) shows that the dependence on m has a straightforward form; we write both (5.6) and
(5.7) in the form

/[)n@w%:—u—mWme TN £, (5.8)
L[1,m

where we have used the following definition, which is an immediate generalization of the
one given in (4.2) and (4.3) above.

Definition 5.9 When f, is of homogeneous degree v # — N,
I, = /[ )fw(f)de N 47>0,
0,1

_ —/ L@de N4y <o. (5.9)
L[1,00)

Theorem 5.10 Let f,(Z) be an N-dimensional homogeneous function of degree ow # —N
which has no singularity in L[1,2). Let Qf be any integration rule for the hypercube [0,1)V.
Then

A, Cornlnm 2L B, _
QU fo = Ifo = 2T + ==+ 30—+ O(m ™), (5.10)

s=1

the constants A;, B;, and C; being independent of m.

In addition, the coefficients B; and C; have relatively simple forms:

Bs _ 2251:5 6517527“.751\7(Q)Ifo(lshsm...ﬁn) s 7£ a+ N
B, =0 s=a+ N
Cosn =0 a+ N # integer

Coz-I-N = ZEsi:s 6517527~~~75N(Q) fL[1,2) fo(z517527m75N)dN$/1n2 s=a+ N.

The proof of this theorem is given in Lyness (1976a). An expression for A and an
integral representation of the remainder term is given there. In fact, although (5.10) is an
asymptotic expansion, no use of this is made in the derivation. It may be treated as an
identity.

We close this section by making some minor and detailed observations about the formula.



1. The coefficients By and C involve the factors ¢s, 5, . s, (@) in the same way as in the
standard case (where f(Z) does not have a singularity). Thus, both B; and Cs obey
the SPP conditions (Theorem 3.4 above); that is, specified coefficients vanish when ¢
is symmetric and when () is of specified polynomial degree. (In fact, C also satisfies
Theorem 3.4 with ¢ replaced by d.)

2. The condition that f,(Z) has no singularity in L[1,2) is simply an alternative way
of indicating that f,(Z) has no singularity in any finite region R of the first octant
0 < x; which does not contain the origin.

3. For large «, this formula reduces to the standard N-dimensional Euler Maclaurin
formula (3.1). While this is, of course, a convenient special case, the reader should
bear in mind that (3.1) is used precisely in this context in the standard proof of (5.10).

4. We note that one can obtain the expansion for F(Z) = f,(Z)g(Z), where ¢(Z) has low-
order integrable derivatives, in precisely the same manner as in the one-dimensional
case (see (4.6) above).

6 Further Generalizations of the Multidimensional Results

As mentioned above, when one sets into expansion (5.10) the forms of the constants A,
B, and C; and the integral representation for the remainder term, it becomes an identity.
Because of this, it is not surprising to learn that the theorem is valid for all values of «
and not only those for which If, is a convergent integral. Intrinsically, it can be used to
evaluate finite part integrals. For example, with N = 2 and a = —5/2, we would find
an expansion with terms in m2 m® m=1/2,m=1, ..., and we might extrapolate to find
the coefficient of m® in this expansion. This is not the leading coefficient; this approach,
akin to numerical differentiation, is not generally recommended by this author, but we
mention it to clarify the underlying situation. When « is a negative integer and a <
— N, even this approach is extraordinarily difficult because the coefficient denoted by Ag
is indistinguishable numerically from that denoted by Bp. The situation in one dimension
has been clarified and is the subject of a forthcoming paper by Lyness and Monegato, but
in higher dimensions it remains open.

Another consequence of the circumstance that this is an identity is that we may obtain
a new identity by differentiating this one with respect to any incidental parameter. An
obvious candidate is a. For example, when F(z,y) = (Az + By)®g(z,y), we find 0F/0a =
F(z,y)In(Az + By); and it appears that, when a # integer, we may obtain from the
expansion for F' an expansion for F(z,y)In(Az + By). When a # integer, this derived
expansion contains terms in m=(@TN+3) pp=(atnti) Iy m and m=*.

At first sight this procedure might appear to be limited to noninteger a. This is because,
as « passes through an integer value, one of the coefficients B, in (5.10) changes abruptly

as Ifc(f) changes its region of integration, and another coeflicient C's; appears and disappears.
Further investigation leads to the conclusion that @ f, — If, does not change abruptly and
that these apparently abrupt changes result simply from the way the expansion is expressed.
In Lyness (1976a), it is shown how to reformulate the expansion. It then appears that crude
differentiation of form (5.10) gives, after all, a valid result. The reader may refer to that
paper to see how Theorem 3.4 (about SSP conditions) can be applied in general in these
cases. However, we recommend that potential users rederive any expansion they plan to
use from (5.10) and carry out numerical experiments to confirm its validity.



Other generalizations of (5.10) are geometric in character. The formula as written
applies equally to the simplex § : 0 < 2; < 1;¥2; < 1, though the coefficients By are
different. This fact may be demonstrated geometrically. In two dimensions, for example,
the square H may be considered to be the union of two triangles, $ and 5, with S defined
as above. The Euler Maclaurin expansion for S is then the difference of the appropriate
expansions for H and for S. Since f, has no singularity in 5, the expansion for S contains
only terms B;/m?®. It follows that the expansion for S contains the same terms as the
expansion for H. This brief synopsis of the two-dimensional derivation requires elaboration,
and the N-dimensional result is significantly more difficult to derive; see Lyness (1978) and
Lyness and Monegato (1980). It is again a result that is easy to state and is readily
predictable, but is difficult to prove.

However, the next geometrical result is easy to prove and extraordinarily useful. The
reader will be familiar with the circumstance that, by means of an affine transformation,
one simplex may be transformed into another and that any quadrature rule of specified
polynomial degree for one is transformed into one of the same degree for the other. The
reader should also be aware that this remark refers only to situations where no weight
function is involved. When a weight function is involved, the new rule applies with respect
to a transformed and generally different weight function. One of the inconvenient aspects
of the boundary element method seems to be that different Gaussian rules are required for
differently shaped regions and only occasionally are such rules related.

Methods based on extrapolation do not suffer from this drawback. The underlying
reason is that the affine transformation of f,, a homogeneous function of degree «, is
another homogeneous function of degree a. Furthermore, no weight function is involved in
the formulation of the theory. To the author’s knowledge, this is the first time this possibility
has been mentioned in the literature. Properly exploited, it allows the straightforward
construction of powerful quadrature results for these regions and function singularities.

7 Concluding Remarks

This review article covers a small area of numerical quadrature. It is designed to treat
only those aspects of quadrature by extrapolation that might be of interest in the theory of
boundary integration methods. While one or two remarks are original, with few exceptions
the mathematical theory described here has already been published in the open literature.
The author hopes that this article will be helpful in informing the user as to what is available
and where to look for further details.
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