
The Parallel Scalabilityof the Spectral Transform MethodIan Foster, William Gropp, Rick StevensMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439{4801, USAAbstractThis paper investigates the suitability of the spectral transform method for parallel implementation.The spectral transform method is a natural candidate for general circulation models designed to runon large-scale parallel computers due to the large number of existing serial and moderately parallelimplementations. We present analytic and empirical studies that allow us to quantify the parallel per-formance, and hence the scalability, of the spectral transform method on di�erent parallel computerarchitectures. We consider both the shallow-water equations and complete GCMs. Our results indicatethat for the shallow-water equations parallel e�ciency is generally poor because of high communica-tion requirements. We predict that for complete global climate models, the parallel e�ciency will besigni�cantly better; nevertheless, projected Teraop computers will have di�culty achieving acceptablethroughput necessary for long-term regional climate studies.1 IntroductionCurrent general circulation models (GCMs) are rarely run at resolutions �ner than 100 km when used forweather modeling (Simmons 1990) and 400 km when used for climate modeling (Williamson 1990). Yetsimulation of weather and climate on a regional scale requires resolution measured in the small tens ofkilometers (DOE 1990). This will require substantially greater computational resources than are avail-able today on even the fastest vector computers. For example, the European Center for Medium-rangeWeather Forecast's (ECMWF) model requires one hour per simulated day when run at 100-km resolutionon a CRAY-2 computer (Gates et al. 1990). At this rate, a 100-year simulation would take four years.Computational requirements also increase rapidly when resolution is increased.Recognizing the limitations of conventional supercomputers, the U.S. Department of Energy has spon-sored a multiyear e�ort called CHAMMP (Computer Hardware, Advanced Mathematics, and ModelPhysics) to investigate the feasibility of developing GCMs capable of exploiting the large-scale parallelmachines that will become available in the mid 1990s. These machines will have several thousand proces-sors, each as powerful as a CRAY-1.One aspect of the CHAMMP program is the investigation of numerical methods for use in parallelmodels. Candidate methods must not only have good numeric properties but must also be scalable: thatis, they must be able to exploit large numbers of processors with reasonable e�ciency. Despite well-knownde�ciencies (Williamson and Rasch 1989), the spectral transform method is the most widely used in currentmodels because of its computational e�ciency (Bourke 1972, Browning 1989). Hence, it is important tounderstand the suitability of this method for parallel implementation. In this paper, we report analyticand empirical studies designed to quantify the scalability of the spectral transform method.Parallel computers are often touted as the solution to problems with vast computational requirements.However, it is by no means obvious that a particular algorithm will perform well on a parallel computer. Asmore and more processors are added, the cost of coordinating the computation and sharing data among theprocessors increases. It is the rate at which these costs increase that determines an algorithm's scalability.1

The costs of coordinating computation and sharing data depend critically on the way in which the algorithmis decomposed, that is, how its data and computation are distributed among the processors of a parallelcomputer. In this paper, we consider two alternative decompositions of the spectral transform method andmention others that have proved less promising (Foster and Gropp 1991). The rejected decompositionso�er substantially inferior performance for practical problem sizes. Hence, the results of this paper tell usnot only how e�cient and scalable the spectral transform method is, but how it should be implemented.The performance of parallel programs is typically studied in one of two ways. Asymptotic analysisconsiders the behavior of an algorithm on very large numbers of processors; empirical studies seek to ex-trapolate from results obtained on a small number of processors to predict large-scale parallel performance.Unfortunately, it is rare that either approach provides accurate predictions of program performance. Assimple asymptotic analysis drops lower-order cost terms, it is often inaccurate on realistic numbers of pro-cessors. Extrapolation from empirical results without guidance from analytic studies is always dangerous.We combine aspects of both asymptotic and empirical analysis to obtain results that we believe tobe better than could be attained using either method alone. We �rst analyze the communication andcomputation costs of a parallel algorithm, but only drop lower-order terms that we can demonstrate arealways negligible in the problem sizes of interest. We then calibrate our models with performance dataobtained from empirical studies.In this paper, we consider only horizontal decompositions; that is, we assume that the vertical structureof the model is left unchanged. This assumption permits us to ignore the model physics component ofGCMs, which in existing models is generally column oriented, and focus on the dynamics component. Tosimplify empirical studies of scalability, we initially restrict ourselves to the shallow-water equations. Wediscuss how our results can be extended to deal with GCMs in Section 9.A parallel spectral model is in regular use on a multi-processor CRAY at the European Center forMedium-range Weather Forecasts (ECMWF) (Simmons 1990). However, a completely di�erent set of issuesmust be addressed when designing algorithms capable of exploiting thousands of processors. Kauranne haspreviously provided a quick survey of some current thinking about parallelism in weather models (Kauranne1990b) and a high-level discussion of achievable parallelism (Kauranne 1990a). The present paper is the�rst to attempt a detailed analysis of the scalability of the spectral transform method.This paper is divided into three parts. Tbe �rst part, comprising Sections 2{4, provides a quick reviewof parallel computers, the shallow water equations, and the spectral transform method. This materialserves to describe our notation and, in addition, includes a simple example of the approach to performanceanalysis that is the heart of this paper. The second part of the paper, comprising Sections 5 and 6, looks atthe time and space complexity of the spectral transform algorithm applied to the shallow water equations onuniprocessors and distributed memory parallel computers. The third part of the paper, comprising Sections7{10, is concerned with estimating the performance of parallel implementations of the spectral transformmethod for global climate models. Section 7 compares our complexity model with computations on an InteliPSC/860 parallel computer; we use this comparison both to validate our model (by checking the shape ofthe curves) and to determine values for those coe�cients that depend on algorithm implementation details.Section 8 discusses the parallel performance of the spectral transform method applied to the shallow waterequations on several parallel computers. Section 9 predicts the performance of the spectral transformmethod applied to general circulation models. Section 10 presents some conclusions and directions forfurther work.2 The Machine ModelIn this paper, we focus on a single class of parallel computer: distributed-memory MIMD (multiple in-struction, multiple data) computers, or multicomputers. The distinguishing feature of this kind of parallelcomputer is that individual processors work independently of each other and exchange data via an inter-connection network. Computers in this class include Intel's iPSC and Ncube Corporation's NCUBE.We do not consider shared-memory multiprocessors, such as those produced by Cray and Sequent, in2

our analysis. In these computers, processors exchange data via a common memory. This organizationprovides rapid access to data but is unlikely to scale economically to large numbers of processors.2.1 Basic NotationWe assume that a parallel computer consists of p processors, or nodes, each running at the same speedand able to exchange data by means of messages sent via an interconnection network. In the executionof a parallel algorithm, each processor will spend some time doing essential computation and some timein overhead: communication, idling, or work that is not performed by a good sequential algorithm. Wede�ne the sequential time, Te, to be the time taken by a good sequential algorithm and the overhead, To,to be the sum of the overheads incurred at each processor. We also de�ne speedup (or utilization), S, ande�ciency, E: S = pTeTe + To ; (1)E = Sp = 11+ ToTe : (2)Both Te and To are de�ned to be times taken in a single time step.2.2 Machine ParametersThe performance of a multicomputer depends on more than just the oating point speed of its componentprocessors. As processors must coordinate their activities and exchange data, the cost of sending messagesmust also be considered. There are two principal components of this cost: the cost of transferring a messageto the interconnection network, and the cost incurred while in transit which is related to the distance themessage must travel in the network. The cost to move a message to the interconnection network reectsdetails of the software and hardware implementation. The cost while in the network is determined in partby how the processors are connected to one another.Two popular interconnects are a 2-D mesh, where each nonboundary processor is connected to its fourimmediate neighbors, and a hypercube, where each processor is connected to log p other processors. (Alllogs used in this paper have base 2.) The key parameter here is the maximum distance from any processorto any other processor. This is called the diameter of the network. The diameter of a nonperiodic mesh is2pp and of a hypercube log p. An important feature of a hypercube is that it contains a mesh (it may beconsidered a mesh with additional, long-distance connections). In this paper, we concentrate on the meshnetwork; at points where the additional connectivity of a hypercube can be exploited, we shall commenton how that changes our results.The cost of actually transmitting a message between any two processors can be represented with threemajor parameters: the message startup time, which represents the time required to format the message andtransfer it to the communication hardware (ts); the per-hop time, which represents the time required tomove from one processor to a neighbor (th); and the transfer time per word, which represents the physicalbandwidth of the channel (tw). Multicomputers commonly employ cut-through routing; this permits amessage to be pipelined when its destination is more than one \hop" away. The time required to send amessage of size s words to a processor h hops distant is thents + thh+ tws:This expression is approximate, as on some computers the full bandwidth is realized only for larger s.In addition, it is important to realize that channel bandwidth must generally be shared by all processorssending on a channel. For example, if k processors must send messages through the same channel, thenthe e�ective bandwidth available to each processor is 1=k of the true bandwidth. This e�ect, which can bemodeled by increasing tw by a factor of k, proves to be important in pipelined communication algorithmsdiscussed below. 3

Table 1: Target Machine Characteristics (times in �sec)Machine Interconnect Processors C ts th twGAMMA hypercube 128 1.0 136 2.0 1.6DELTA 2-D mesh 528 0.8 50 0.05 0.32SIGMA 2-D mesh 2,048 0.5 10 0.03 0.04NCUBE-2 hypercube 8,096 12 60 2.0 1.6FastMesh 2-D mesh 2,048 0.1 5 0.01 0.04BigCube hypercube 65,536 2.0 20 0.6 0.4All three terms need to be maintained in the cost expression. As ts is generally much larger than tw , thets term can dominate in applications that send mostly small messages. The th term can also be signi�canton large computers if an application performs many nonlocal communications.2.3 Target MachinesWe can sketch a broad class of multicomputers that are likely to be available in a two- to �ve-year time-frame. Intel Corporation's Supercomputer Systems Division has installed examples of its TouchstoneGAMMA and DELTA computers, containing 128 and 528 Intel i860 microprocessors respectively, and hasannounced a follow-on SIGMA computer with 2,048 similar microprocessors. Each i860 processor has apeak performance of 60 Mops. Ncube Corporation manufactures an NCUBE-2 machine with up to 8,192processors. The DELTA will have 16 MB of memory per processor, while the NCUBE-2 typically has 4MB. An important di�erence between these machines is that the DELTA and SIGMA are mesh connectedwhereas the GAMMA and NCUBE-2 use a hypercube interconnect.We summarize in Table 1 the machine parameters (ts, th, tw , each in �sec) used in our complexityestimates. We also specify the type of interconnect, the maximum machine size, and a computationscaling factor C. The scaling factor is applied to the sequential time (Te) in a performance model; itreects the performance di�erential between a machine's base processor and compiler and the i860 andpreliminary compiler used in the calibration studies reported in Section 7. It is the relatively large size ofthese parameters, compared to the time for a oating-point operation, that makes a careful analysis of thecommunication times necessary. Note also that 50 � ts=tw � 250 in Table 1 (with an even greater rangefor ts=th); the size of this range is the reason that our model or communication needs all three of the termsts, th, and tw.The machine parameters for the GAMMA and DELTA were obtained by experiment. The parametersfor the SIGMA are estimates provided by Intel. The scaling factor is intended to account for a 25%increase in i860 performance resulting from better compilation. The scaling factor of 0.5 for the SIGMAreects the fact that this machine will be built with a future generation of Intel components that we haveestimated to be 100% faster than the current i860. This estimate is based on likely improvements in bothprocessor speed and compiler technology. The machine parameters for the NCUBE-2 are based on �guresprovided by Ncube; the scaling factor reects the fact that the NCUBE-2 processor has a peak speed thatwe estimate is one twelfth that of the i860.It is di�cult to predict characteristics of the \next generation" of parallel machines, the \Teraop"machines that will be available in a �ve- to ten-year timeframe. However, to permit preliminary evaluationof the suitability of the spectral transform method for these machines, we present parameters for twopossible con�gurations: a mesh-based machine, with a relatively small number of very fast processors,and a hypercube, with a large number of slower processors. We consider these machines, which we nameFastMesh and BigCube, in Section 9.Note that our models do not attempt to represent the e�ect of memory speeds on sequential and parallel4

performance. This can be expected to become an increasingly important factor in future computers, asprocessor speeds are increasing faster than memory speeds.2.4 Example Analysis: Ring PipelineWe use a simple example to illustrate the use of scalability analysis techniques. Assume that a vector ofsize n has been distributed evenly among p processors. A parallel algorithm requires that the processorsare connected in a virtual ring and that all processors engage in p� 1 computation/communication steps.In each step, each processor performs some computation using its local data, sends a copy of its local datato its neighbor in the ring, and receives a message of the same type from its other neighbor. How do weexpect the performance of this ring pipeline algorithm to change as the number of processors increases?Assume that the total amount of essential computation performed in this algorithm is Cn, where C is acoe�cient that can be determined by empirical studies and n is the vector size. No redundant computationis performed by the parallel algorithm. Hence, the only overhead is that due to communication. At eachstep, each processor sends a message of size n=p to its neighbor in the ring. If p is even, then a ring canbe embedded in a mesh in such a way that each processor's neighbors are exactly one hop distant. Hence,the cost to send this message is ts + th + tw np ;and the e�ciency of the algorithm is (cf. Eq. 2)E = 1 + p(p� 1)(ts + th + tw np)Cn !�1 : (3)A great deal can be learned about the behavior of the algorithm by a simple qualitative analysis of thisexpression. For example, we see that communication costs are proportional to both p2 and np, whilecomputation is proportional only to n. Hence, we may expect this algorithm to scale badly: e�ciencydrops rapidly as p is increased.Such qualitative analysis is useful but does not allow us to make predictions of actual performance.To make such predictions, we must �rst calibrate Eq. 3 by �nding values for the computation coe�cientC and the machine parameters ts, th, and tw on a parallel computer of interest. C can be determined bytiming an implementation of the algorithm on a single processor; the machine parameters are determinedby experimentally measuring the message-passing performance.3 The Shallow-Water EquationsFor completeness, we provide the shallow-water equations in the form that we solve using the spectraltransform method (to be described in Section 4). LetV = velocity on spherei; j;k = unit vectors� = geopotentialf = coriolis terma = radius of spherewhere V = iu + jv. Then the equations are (Washington and Parkinson 1986)dVdt = �fk�V� r� (4)d�dt = ��r �V;5

where ddt = @@t +V � r;and r in spherical coordinates is r = ia(1� �2) @@� + ja @@�;with � the longitude and � = sin�, where � is the latitude.The spectral transform method does not solve these equations directly; rather, it uses a streamfunction-vorticity formulation in order to work with scalar �elds. De�nevorticity : � = f + k � (r�V)divergence : � = r �Vand (U; V) = V cos�so that U and V are continuous scalars at the poles. Then, after some manipulation, the equations can bewritten in the form @�@t = � 1a(1� �2) @@�(U�)� 1a @@�(V �)@�@t = + 1a(1� �2) @@�(V �)� 1a @@�(U�)� r2 �+ U2 + V 22(1� �2)! (5)@�@t = � 1a(1� �2) @@�(U�)� 1a @@�(V�)� ���:Finally, U and V are represented in terms of � and � through two auxiliary equations expressed interms of the streamfunction and velocity potential �:� = r2 + f (6)� = r2�and U = 1a @�@� � 1� �2a @ @� (7)V = 1a @ @� + 1� �2a @�@�:Equation 5, like Eq. 4, is in three unknowns. The velocity terms have been replaced with a vorticityand a divergence term; the velocities are found by solving Eq. 6 and then evaluating Eq. 7.4 Spectral Transform MethodThe spectral transform method used to solve Eq. 5 maintains prognostic variables U , V , and Z in acomputationally uniform physical grid with coordinates (�i; �j), where 1 � i � I and 1 � j � J . Incontrast, the scalar quantities �, �, and � are represented as sets of spectral coe�cients.An arbitrary scalar �eld is approximated by a truncated series of its spectral coe�cients amn as follows:a(�; �) = m=MXm=�M N(m)Xn=jmj amn Pmn (�)eim�; (8)6

12
123456789012345678901
123456789012345678901
123456789012345678901

123456789012345678901
123456789012345678901
123456789012345678901

1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234

12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345
12345

 FFT

φ

λ

φ

m

n

m

LT Figure 1: Spectral Transform Method Data Dependencieswhere Pmn are the associated Legendre functions. N(m) speci�es the form of the truncation of coe�cients;this is discussed below.Computation is performed in both the physical and spectral data spaces: Physics and nonlinear termsare evaluated in physical space; time stepping is performed in spectral space. At each time step, data istransferred between the two spaces by means of forward and inverse spectral transforms.As Eq. 8 suggests, the spectral transform can be implemented by a Fourier transform followed by aLegendre transform. The operation of the two transforms is illustrated in Figure 1. The Fourier transform,which can be implemented with the Fast Fourier Transform (FFT), operates on each grid space latitudeindependently to produce a set of intermediate quantities. The Legendre transform then operates on eachcolumn of the intermediate array independently to produce the spectral coe�cients. (The inverse spectraltransform operates in the reverse sequence.) In Figure 1, the areas shaded with vertical and horizontalbars represent the input and output of a single FFT and Legendre transform, respectively.Note that Eq. 5 contains linear and quadratic terms. To prevent aliasing of the quadratic terms in thenumerical approximation, the number of points in both directions is chosen to be larger than the degree ofthe expansion. For example, the number of points in longitude I � 3M+1, whereM is the highest Fourierwave number. Thus, we use a standard discrete Fourier transform but truncate its output to 2M+1 points.The number of terms in the Legendre expansions is similarly truncated.We provide in Figure 2 a summary of the spectral transform method used to solve Eq. 5. Note the foursteps in the algorithm; these will be referred to in subsequent sections. The FFT and its inverse (IFFT)are represented in the �gure. Here, �(; �j) is a vector (over i) for each �j , and Am(�j) is also a vector(over m) for each �j . Each of the FFTs and IFFTs is of length I . The sums that the IFFTs are appliedto are evaluated for each �M � m �M ; these give the 2M + 1 Fourier coe�cients.The inverse Legendre transform requires the computation of an integral; this is done by using Gaussianquadrature. Thus, the latitude points �j are picked as Gaussian grid points (the longitude points �i areordinarily picked as uniformly spaced to simplify the Fourier transforms). The Gaussian quadrature hasweights wj; these appear in Figure 2. (The term Hmn , which also appears in Figure 2, is the derivative ofPmn .)It is useful to de�ne some intermediate quantities. These terms appear in several places in Eq. 5, andtheir computation as a separate step is an important optimization.A = U�B = V �C = U�D = V�E = U2 + V 22(1� �2) :7

At each time step:1. Inverse transform spectral quantities to physical space:Z(; �j) = IFFT � N(m)Xn=jmj �mn Pmn (�j)2. Determine physical quantities U and V :U(; �j) = �IFFT � N(m)Xn=jmj an(n+ 1)(im�mn Pmn (�j)� �mn Hmn (�j))V (; �j) = �IFFT � N(m)Xn=jmj an(n + 1)(im�mn Pmn (�j) + �mn Hmn (�j))3. Evaluate nonlinear products in physical space and transform to spectral spaceAm(�j) = FFT � Z(�i; �j)U(�i; �j)Bm(�j) = FFT � Z(�i; �j)V (�i; �j)Cm(�j) = FFT � �(�i; �j)U(�i; �j)Dm(�j) = FFT � �(�i; �j)V (�i; �j)Em(�j) = FFT � U2(�i; �j) + V 2(�i; �j)2(1� �2j)4. Time-step spectral quantities:@�mn@t = � JXj=1(imAm(�j)Pmn (�j)�Bm(�j)Hmn (�j)) wja(1� �2j)@�mn@t = � JXj=1(imBm(�j)Pmn (�j) + Am(�j)Hmn (�j)) wja(1� �2j)+n(n+ 1)a2 (Em(�j) + �m(�j))PMn (�j)wj@�mn@t = � JXj=1(imCm(�j)Pmn (�j)�Dm(�j)Hmn (�j)) wja(1� �2j) � ���mn :Figure 2: Spectral Transform Method8

4.1 TruncationEquation 8 represents a �nite truncation of the in�nite spectral transform for a scalar �eld. A triangulartruncation is frequently adopted; in this case N(m) =M:Other truncations are also employed (e.g., rhomboidal). However, the choice of truncation does not havea signi�cant impact on our analysis of computational requirements. Hence, without signi�cant loss ofgenerality we consider only triangular truncations here. This allows us to �x I and J in terms of thetruncation number n: henceforth, we assume that I = 3:2n and J = 1:6n. We can also compute thenumber of spectral coe�cients. Three sets of coe�cients must be maintained, for three �elds: �, �, and �.Each �eld has size (4 + 3n + n2)=2 (Foster and Gropp 1991), giving a total number of (12 + 9n+ 3n2)=2spectral coe�cients. For the problem sizes of interest here, 3n2 � 12 + 9n; hence, we approximate thenumber of spectral coe�cients as 3n22 : (9)4.2 Alternative approachesIt is known that the computational cost of the spherical transform method is dominated asymptoticallyby the Legendre transform, which requires O(n2) operations per longitude. The authors are not aware ofany spectral climate model using an algorithm di�erent than that described above. However, there are anumber of possible replacements that are less computationally expensive per grid point. For example, Diltsdescribes an approach based on 2-dimensional FFTs (Dilts 85). In a recent paper (Alpert and Rokhlin91), it is shown how to compute the Legendre transform (involving Pn) in time O(n log n). Unfortunately,the extension of that method to Pmn (x), as required by the spherical transform method, remains an activeresearch problem.Orszag describes a method for evaluating a wide class of eigenfunction transforms (Orszag 86). Thismethod is O(n log2 n= log logn) but has a rather large constant, making it slower than the direct methodfor modest sized n. As the resolution of climate models increases, an approach that uses Orszag's methodwill become faster than the current spectral transform method.Finally, Boyd (Boyd 90, Boyd 91) has described two approaches for the fast evaluation of pseudospectralmethods. The �rst uses the Fast Multipole Method (Greengard 88) to evaluate pseudospectral transformson arbitrary grids (Boyd 90). The second takes advantage of weights of alternating sign in the sinc pseu-dospectral method to produce a fast method for evaluating this transform (Boyd 91). These recent resultssuggest that fast versions of either the spectral transform method, or an alternate pseudospectral method,may appear in the near future. Such methods will become increasingly competitive as the resolution ofclimate model increases.Once alternative methods become established in a climate model, a scalability analysis of the sortdescribed in this paper will need to be conducted to ascertain the best decomposition of the algorithmonto a parallel computer. The interested reader can gain an approximate understanding of the potentialparallel performance of these algorithms by replacing the cost of the Legendre transform in the complexityequations given in subsequent sections with the cost of an FFT (for both arithmetic and communication).Note however that the precise computation and communication requirements of some alternative methodscan be quite di�erent: for example, the arithmetic complexity of the Fast Multipole Method is linear inthe number of mesh points, while the communication cost of other replacement algorithms may well behigher than that of the Legendre transform. 9

5 Sequential ComplexityThe �rst step in the development of a parallel performance model for a parallel algorithm is to determine thesequential time complexity of the algorithm, that is, the time requirements of the method on a uniprocessorcomputer, as a function of problem size. Here, we adopt the truncation number n as the problem size.A simple inspection of the spectral method equations (Figure 2) shows that asymptotically the methodperforms O(n3) operations. Hence, at su�ciently large n we can expect to be able to model the computa-tional requirements of this method by a function of the form Cn3, C a constant.Unfortunately, the spectral method is never likely to be used in the asymptotic execution time regime,because of its enormous computational requirements for large n. In practice, we need to consider relativelysmall n: for example, in the range 40 to 500. This in turn requires that we perform a more detailedanalysis, as lower-order terms can be signi�cant at small n if the associated constants are large. To obtainan accurate picture of the time complexity of the spectral method, we relate the mathematical formulationgiven in Section 4 to a Fortran implementation of the method. This code, provided by the National Centerfor Atmospheric Research (NCAR) (Hack 1990), has been carefully tuned to obtain good performance ona vector computer. A detailed analysis of the Fortran program suggests that the number of operationsperformed is approximately 8 + 15:6n+ 195n2 + 550n2 logn + 35:2n3:We do not expect this expression to provide accurate predictions of program execution time, as the opera-tions being counted are of di�erent types. However, it suggests that we need to consider both n2 logn andn3 terms: 550n2 log n is actually larger than 35n3 for n < 106. Hence, we model sequential time asTe = C1n2 logn + C2n3: (10)The coe�cients C1 and C2 will be determined by �tting with experimental data (cf. Section 7).6 Parallel ComplexityWe now analyze the time requirements of parallel decompositions of the spectral transform method. Inpreparing this paper, we considered a large number of alternative decompositions (Foster and Gropp1991). Here, we present just two. The �rst, one-dimensional decomposition, is used to introduce ourapproach and to motivate the empirical investigations described in Section 7. The second, two-dimensionaldecomposition, represents the most promising decomposition that we have investigated.We assume in the following analysis that FFTs always involve a number of points that is an integer powerof two. We also assume that decompositions always allocate the same number of points to every processor.These simplifying assumptions must be kept in mind when applying the analysis to real situations.6.1 Data Dependencies and Data DecompositionsThe time complexity of a parallel algorithm depends on the time complexity of the corresponding sequentialalgorithm (which we have already determined in the present case) plus the parallel overhead resulting fromcommunication, idle time, and redundant computation. It is frequently possible to trade o� redundantcomputation for communication: it may be cheaper to recompute a data value locally rather than fetch itfrom another processor. However, neither of the algorithms considered here involves signi�cant redundantcomputation.The communication requirements of a parallel algorithm depend on how data is allocated to processors(the data decomposition) and on the data values that are required when computing a new value for apiece of data (the data dependencies). The principal data dependencies inherent in the spectral transformmethod can be deduced from Figure 1. Each point in the intermediate array depends on all the values inthe corresponding grid space latitude (row). Each point in spectral space depends on all the values in the10

 Sequential FFT Parallel

LT 12
123456789012345678901
123456789012345678901
123456789012345678901

123456789012345678901
123456789012345678901
123456789012345678901

1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234

1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234
1234Figure 3: Decomposition by Latitudecorresponding column of the intermediate array. We shall explore two alternative data decompositions insubsequent sections.6.2 Decomposition by LatitudeWe �rst consider a simple decomposition by latitude, in which grid space variables from J=(2p) latitude lines(grouped for reasons of computational e�ciency as north/south pairs) and 1=p of the spectral coe�cientsare allocated to each of p processors. This decomposition is illustrated in Figure 3: the grid space variablesand spectral coe�cients allocated to a single processor are shaded with vertical bars.It should be clear from the discussion in Section 4 that a decomposition by latitude permits FFTs toproceed without communication but requires communication for the forward and reverse Legendre trans-forms in Steps 1 and 4 (Figure 2). This is illustrated in Figure 3: updates to a single processor's spectralcoe�cients (C) are computed from a complete intermediate column (shaded in B). As this column is parti-tioned among all p processors, global communication is required. We shall assume that this communicationis structured in terms of a ring pipeline (cf. Section 2.4).The ring pipeline requires that each processor participate in 2(p� 1) communication steps. Recall thatthere are approximately 3n2=2 spectral coe�cients at truncation n (Eq. 9). We assume that a complexspectral coe�cient occupies two words; hence, each message sent in the pipeline has size 3n2=p words. Ifp is even, then communications can be organized in a mesh so that each message travels exactly one hopand no link carries more than one message in each step. The total communication cost incurred at a singleprocessor is then ts2(p� 1) + th2(p� 1) + tw p� 1p 6n2:Recall that e�ciency is given by E = (1 + To=Te)�1 (Eq. 2). In the present case, To consists of thecommunication cost multiplied by the number of processors, p, and Te is given by Eq. 10. Hence,E = 1 + ts2p(p� 1) + th2p(p� 1) + tw(p� 1)6n2C1n2 log n+ C2n3 !�1 : (11)This equation also holds for a hypercube interconnect as a nearest neighbor embedding of a ring is alsopossible in this architecture. However, it may be more e�cient on a hypercube to use a di�erent algorithmbased on spanning trees, particularly for large p (Foster and Gropp 1991).In Section 7, we show how empirical studies can be used to calibrate this equation and predict theperformance of the decomposition on a variety of parallel computers. The results there show that thecommunication terms in Equation 11 are signi�cant for modest resolutions on current parallel computers.A 1-D decomposition by longitude is also possible (Foster and Gropp 1991); in this case, the FFTrequires communication while the Legendre transform can proceed without communication. However, as11

 Parallel

LT
1234
1234
1234
1234

1234
1234
1234
1234

1234
1234
1234
1234

Parallel FFT

Figure 4: Decomposition by Latitude and Longitudethe 2-D decomposition considered in the next section proves to be better than any 1-D decomposition, wedo not consider the longitudinal decomposition here.6.3 Decomposition by Latitude and LongitudeThe latitudinal decomposition has two disadvantages: it has a high communication overhead and canutilize at most J=2 = 0:8n processors. We now consider a 2-D decomposition that requires signi�cantlyless communication and in addition can employ up to (I=2)(J=2)� 1:3n2 processors.Assume that p processors are partitioned into p=q sets of q processors each. We refer to these sets as q-sets. Assume also that the grid space variables (grouped as latitude pairs) and the spectral coe�cients arepartitioned and allocated to q-sets. Within each q-set, the variables are further partitioned by longitude, sothat each processor is allocated I=q longitudes of each of the Jq=p latitudes allocated to its set. Longitudesare paired in such a way that the amount of computation performed in spectral space is the same on eachprocessor. This decomposition is illustrated in Figure 4: as in Figure 3, the grid space variables andspectral coe�cients allocated to a single processor are shaded with vertical bars and the data requiredfrom other processors when performing a forward transform are colored grey.We see from Figure 1 that both the FFTs and the Legendre transforms require communication when thisdecomposition is used. The Legendre transforms are achieved with a ring pipeline as before and require2(p/q-1) communications. The FFTs require log q communications. The cost of these communicationsdepends on how the q-sets are arranged on a mesh.We have identi�ed two particularly promising organizations (Foster and Gropp 1991). In the �rst,each of the p=q q-sets is allocated as a sub-mesh, and processors responsible for corresponding spectralsubvectors are scattered across the mesh. In the second, the processors responsible for correspondingspectral subvectors are concentrated, and processors in the same q set are scattered. We present the �rstof these alternatives here. For simplicity, we assume that q = r2, for some integer r, and that the processorsin each q-set are organized in a r � r submesh. The organization is illustrated in Figure 5, with p = 64and q = 16. Processors allocated to one of the four q-sets are outlined; processors holding correspondingspectral subvectors are shaded.Ring Pipeline. A total of 2q ring pipeline operations must be performed, each involving p=q pro-cessors (one from each q-set) and requiring (p=q)� 1 communications of approximately 3n2=p words (cf.Section 6.2). The q-sets can be organized in such a way that the processors involved in a particular pipelineform a mesh in which neighboring processors are pq distant. This organization is illustrated in Figure 5;the processors involved in one of the pipelines are distinguished by grey shading. Each communicationmust traverse pq hops; hence, in the absence of competition for bandwidth, communication costs from the12

 q-set
(FFT)

= processsors
 involved in
 1 pipeline Figure 5: Mesh Organizationpipeline are 2�pq � 1� ts + thpq + tw 3n2p ! :In practice, q pipelines must operate concurrently. Assume that communications are organized so that allfour links connecting each processor are fully utilized. Then at each communication step, each link mustcarry pq=4 messages; if pq � 4, the e�ective bandwidth must be reduced by this factor to reect this load.Hence, the total communication cost from the global sum is2�pq � 1� ts + thpq + tw 3n2pq4p ! when (pq � 4):Parallel FFT. An unordered FFT on r points using q processors, with r and q integer powers of 2, canbe achieved in log q steps in which each processor exchanges r=q points with another processor, followed bya local computation step (Pease 1968). The q processors can organized on a mesh in such a way that thecommunication steps involve processors in the same row or column, 20, 21, ..., 2log(pq)�1 hops distant, fora total of 2pq hops. It can be shown that the total communication cost of the FFT with this organizationis approximately (Gupta and Kumar 1990; Foster and Gropp 1991),ts log q + th2(pq � 1) + tw2r(pq � 1)q :The data transfer term is 2r(pq � 1)=q, not 2r log q=q as might be expected, because competition forbandwidth increases the time required for data transfer. On some computers, it may be possible toreduce the data transfer overhead by overlapping some computation with other processors' communication.However, we do not consider this possibility here.The decomposition considered here allocates Jq=p = 1:6nq=p latitudes to each q-set. A parallel FFTmust be performed for each latitude; each FFT involves a vector of size I = 3:2n words. We show in(Foster and Gropp 1991) that a total of 10 sets of FFTs is required (3, 2, and 5 in Steps 1, 2, and 3,respectively), giving a total FFT size of r = 10(1:6nq=p)(3:2n) � 51qn2=p. As all FFTs in each step canbe performed concurrently, the di�erent FFTs can be bundled into a total of three transforms. Hence, thetotal communication cost from FFTs ists3 log q + 2(pq � 1)(th3 + tw 51n2p):E�ciency. Let Te be de�ned by Eq. 10. The overhead, To, consists of the communication costassociated with both the ring pipelines and the parallel FFTs, multipled by p. Hence for pq � 4,13

E = 0B@1 + 2p �pq � 1��ts + thpq + tw 3n2pq4p �+ ts3p log q + 2(pq � 1)(th3p+ tw51n2)C1n2 logn + C2n3 1CA�1 : (12)Somewhat di�erent results are obtained for a hypercube interconnect. If each q-set is allocated to asubcube, both the FFT and the ring pipeline can proceed with only nearest neighbor communication andno competition for bandwidth. In this caseE = 0@1 + 2p �pq � 1��ts + th + tw 3n2p �+ 3 log q �tsp+ thp+ tw17n2�C1n2 logn + C2n3 1A�1 : (13)As in the 1-D case, we note that it may be more e�cient on a hypercube to use a di�erent algorithm basedon spanning trees, particularly for large p.The optimal value of q depends on various characteristics of a computer such as interconnect andmachine parameters. In a mesh, our performance model shows that it is typically aboutpp. In a hypercube,where the cost of the FFT communications is greatly reduced, q should be as large as possible.7 CalibrationThe analytic models developed in preceding sections are intended to capture as accurately as possible thebehavior of parallel algorithms on architectures of interest. However, the models still need to be calibratedto account for variables such as compilers, processor speed, and additional communication costs (e.g.,formatting of message bu�ers) not accounted for by the models. We achieve this calibration by �ttingthem with data obtained from actual executions.Recall that the performance model that we have developed for the 1-D decomposition includes �veimplementation- and machine-speci�c coe�cients: C1, C2, ts, th, and tw . We compute values for thesecoe�cients by �tting the model to run-times from a parallel shallow-water equation code developed by P.Worley (Worley and Drake 1991) at Oak Ridge National Laboratory, using the decomposition described inSection 6.2. This code is based on the sequential code discussed in Section 5 (Hack 1990), and is run hereon an Intel GAMMA, a multicomputer with 128 i860 processors. A least squares �t to this data gives thefollowing values: C1 = 36 �sec; C2 = 2:4 �sec; ts + th = 230 �sec; tw = 1:2 �sec:The �t is illustrated in Figure 6, with observed speedup indicated by points and predicted speedupby solid lines, for a variety of di�erent n. Note that the proportion C1 / C2 (20.1) is in reasonably goodagreement with the ratio (15.6) between the n2 logn / n3 operation counts obtained in Section 5.Because the time complexity for the oating-point computation contains terms with the same asymp-totic form as the principal communication terms, it is impossible to determine an exact correspondencebetween the ts; th; and tw values obtained by �tting and the \best achievable" communication parametersgiven in Table 1 (ts = 136�sec; th = 2:0�sec; tw = 1:6�sec:). However, the similarities in the valuesgive us con�dence that our model is accurate and the parallel implementation is e�cient. The disparitiesmay be artifacts of the �tting process or may reect additional operations (e.g., bu�er formatting andmanagement) or optimizations (e.g., overlapping of communication and computation) not dealt with byour model.The disparity between \best achievable" and observed communication costs poses problems when mod-els are used for performance predictions. We choose to use the ts, th, and tw values given in Table 1 whenmaking performance predictions. This means that it may be possible to achieve slightly better performancethan we predict in some circumstances. However, we expect overlapping of communication and computa-tion to be less signi�cant on future parallel computers (in which channel bandwidth will be higher). The14

Figure 6: Predicted (lines) and Observed (data points) Speedupsinterested reader is invited to substitute the more aggressive observed values into our models and comparepredictions. The qualitative nature of our conclusions is not changed by these small variations in machineparameters.8 Forecasting Model PerformanceWe use our analytic models and empirical studies to predict the performance of spectral transform-basedshallow-water equation models on future parallel computers. For concreteness, we focus primarily oncomputers that are likely to become available in the next two to �ve years; these were described inSection 2.3.We employ two di�erent measures of parallel performance: speedup and throughput. The �rst of thesemeasures is commonly used in parallel computing; the second is useful because, when plotted as a functionof resolution, it makes apparent the relationship between problem size and parallel performance.8.1 SpeedupWe �rst develop projections for achievable speedups on the �rst three target computers. Recall that speedupS = pTe=(Te + To). These forecasts use the 2-D performance model developed in Section 6 (Eq. 12). (The1-D model is not considered here, as it cannot utilize su�cient processors to be interesting.) The coe�cientsC1 and C2 in Eq. 12 are those obtained in the calibration studies reported in Section 7, scaled accordingto the scaling factors speci�ed in Table 1. The machine parameters are also obtained from Table 1.Performance predictions for the DELTA, SIGMA, and NCUBE-2 are given in Figures 7, 8, and 9respectively. The parameter q is chosen to be pp, which gives close to optimal performance. Note thatthe 2-D decomposition is able to employ all 2,048 SIGMA processors when n > 40 and all 8,096 NCUBE-2processors when n > 80.Recall that parallel e�ciency is de�ned as speedup divided by the number of processors (Equation 2).Wesee that in each case, reasonable e�ciencies are achieved at high resolutions (e.g., 73%, 77%, and 71% atT213 for the DELTA, SIGMA, and NCUBE-2, respectively). However, at lower truncation numbers theresults are poor: at T80, the DELTA, SIGMA, and NCUBE-2 achieve 50%, 35%, and 23% e�ciency,respectively.These disappointing results can easily be accounted for: the high communication requirements of thespectral method come to dominate execution time as the number of processors is increased. (Note that allthree machines do relatively well when the number of processors is small.) The hypercube achieves betterspeedup than the DELTA and SIGMA for two reasons: the hypercube interconnect scales better, and thenode processors are slower. However, we shall see in the next section that the DELTA and SIGMA stillachieve better total throughput.8.2 ThroughputThe results obtained in the preceding section make it clear that the performance of the parallel spectraltransform depends critically on model resolution. Achievable resolution depends in turn on the throughputthat is required from a parallel model. We now quantify the relationship between achievable resolutionand required throughput for di�erent parallel computers.Let throughput R be expressed in simulated years per real-time hour. We haveR = pEY Te (3:6� 109 �sec=hour) = 3:6� 109pY (Te + To) ; (14)15

100 200 300 400 500

100

200

300

400
Speedup

n = 213

169

106

63

42

PFigure 7: DELTA Forecast: 2-D Decomposition
Speedup

n = 213

169

106

63

42

500 1000 1500 2000

250

500

750

1000

1250

1500

P

Figure 8: SIGMA Forecast: 2-D Decomposition16

Speedup

p

n = 213

169

106

63

42
2000 4000 6000 8000

1000

2000

3000

4000

5000

6000

Figure 9: NCUBE-2 Forecast: 2-D Decompositionwhere Y is the number of time steps required for a one-year simulation. The timestep is normally a functionof resolution, but we �x it here to a constant 0.5 hours, giving Y = 18; 000.Te is given by Eq. 10; To is easily obtained from Eq. 2. These quantities, plus the machine parametersand sizes presented earlier, allow us to compute throughput (R) as a function of truncation (n). We plotthis function in Figure 10, for the DELTA, SIGMA, and NCUBE-2 (on 528, 2,048, and 8,192 processors,respectively).A number of interesting phenomena are apparent in Figure 10. We see that rapid increases in com-putational requirements lead to a decrease in throughput as resolution increases. However, this e�ectis balanced somewhat by an increase in parallel e�ciency at higher resolutions. NCUBE-2 throughputdecreases less rapidly than that of the DELTA or SIGMA, because of its hypercube interconnect, andmatches but does not exceed the DELTA at high resolutions.Figure 10 may be used to determine maximum achievable resolution as a function of desired throughputrate. For example, assume that we wish to complete a 100-year shallow-water equation simulation in tenhours. We predict that this task can achieved at about T120, T120, and T275 resolution, on the NCUBE-2,DELTA, and SIGMA, respectively.9 Relevance to General Circulation ModelsThere are several important di�erences between the shallow-water equations considered in preceding sec-tions of this paper and the general circulation models used in weather and climate modeling. Here, wediscuss how three of these di�erences | the full primitive equations, multilayer representations of theatmosphere, and physics | e�ect our analysis. We also develop estimates for the overall computationalrequirements and scalability of a GCM. These estimates are based on a number of assumptions (listedin the text) which may or may not hold in practice. We encourage the reader who disagrees with ourassumptions to explore the impact of alternative choices by modifying the basic model appropriately.There are two important aspects of full GCMs that we do not consider in this paper: I/O and couplingwith other (e.g., ocean) models. We expect I/O requirements to be a determining factor in the scalabilityand usability of parallel GCMs. Coupling also introduces di�cult problems. However, as these issues areessentially orthogonal to numerical methods, we choose to ignore them here.Finally, we do not consider communication requirements associated with local coupling of grid spacevalues, resulting, for example, from the use of advanced physics modules with horizontal coupling or semi-17

100 150 200

20

40

60

80

100

n

Throughput
(simulated
 years/hour) SIGMA

DELTA

nCUBEFigure 10: Throughput vs. TruncationLagrangian transport (Williamson and Rasch 1989).9.1 E�ects of GCM Di�erencesThe substitution of the primitive equations for the shallow-water equations requires extra computation(and, in a parallel code, communication) but does not otherwise impact our analysis. We shall not attemptto model the additional computation directly. Instead, we introduce a scaling coe�cient into our shallow-water equation model and determine the value of this coe�cient by calibration with execution timesreported for operational weather and climate models. Neither do we develop a detailed model of primitiveequation communication costs. Instead, we simply double the communication volume communicated ineach level, to approximate overhead due to forcing and additional data �elds.As noted earlier, we assume here that the vertical structure of a GCM is not changed in a parallelimplementation: that is, all levels for a single mesh point are placed on the same processor. This means thatthe volume of computation and communication will scale linearly with the number of levels, but the actualnumber of communication operations can stay �xed, as data from all levels may be sent simultaneously.Hence, the presence of multiple layers in the GCM will tend to actually improve overall parallel e�ciency.However, as the data volume term (tw) already dominates communication costs in the machines consideredhere, we do not expect a signi�cant improvement.The physics component of GCMs frequently dominates computational requirements, at least at lowresolutions. The physics component of GCMs is commonly implemented as a purely local (column-oriented)operation that does not require additional communication. Hence, this part of a GCM would exhibitperfect speedup if the same computational e�ort were required at each grid point. In practice, the physicscomputation performed at a grid point depends on aspects of model state such as the time of day, season,or water vapor concentration. However, detailed studies conducted on CCM1 suggest that the overall loadimbalance caused by these factors is relatively small (Michalakes 1990). For example, these studies showthat a parallel e�ciency of 91% would be achieved in the physics component of CCM1 at T42 resolution,if eight grid points were located on each processor. The magnitude of physics load imbalances in futuremodels remains to be seen. In general, however, it would seem that physics computation will tend toincrease overall parallel e�ciency.This discussion suggests that the scalability of spectral-transform-based GCMs is constrained primarilyby the spectral transform method used to compute the dynamics. At low resolutions, the additional physicscomputation will tend to reduce throughput but increase parallel e�ciency. The scalability analysis devel-oped in Section 6 should be directly applicable, if corrected appropriately for the increased computation18

and communication requirements.9.2 Computational Requirements of GCMsIn order to estimate the computational requirements for a GCM, we must estimate what fraction of thework is part of the dynamics (which we can model with our shallow-water estimates) and what is \other"work (work that is nearly or perfectly parallelizable). We can use some published results from existingGCMs to help estimate the relative costs of di�erent parts of a GCM without restricting ourselves to adetailed model of a speci�c approach.We develop a simple model for the total computational requirements of a spectral-transform-basedGCM. Let D and P represent the computational requirements of the dynamics and physics components ofa GCM in a single time step, and Y the number of time steps in a year. Then the computation requiredfor a one-year simulation, Ty , is given by Ty = (D+ P)Y:We make a number of simplifying assumptions in order to obtain values for D, P , and Y . First, weassume that the computation required for the dynamics component is the time required by the shallow-water equations, multiplied by both the number of vertical layers and a scaling coe�cient Cm reectingthe additional cost of the primitive equations. Reports by users of a number of GCMs suggest that thenumber of vertical layers is often chosen to be approximately 10+n=4, where n is the truncation. In orderto predict execution times on an i860, we substitute the the values obtained from the calibration studiesreported in Section 7 for the execution time coe�cients C1 and C2 (cf. Eq. 10). This yieldsD = Cm(36n2 log n+ 2:4n3)(10 + n=4) �sec:Second, we assume that the physics computation is evenly distributed over all processors and that thephysics component of the model takes time proportional to the product of n2 and the number of verticallayers. That is, P = Cpn2(10 + n=4) �sec;where Cp is a coe�cient representing the cost per grid point. In the ECMWFmodel, the physics componentaccounts for 51% of the computation at T106 resolution (Simmons 1990). We use this information todetermine an approximate value for Cp: 526 �sec. As in Section 8.1, we assume that the number of timesteps per year is Y = 18; 000. Hence, we obtainTy = Cm18; 000(10+ n4)(526n2 + 36n2 log n+ 2:4n3) �sec: (15)We calibrate this model with execution times reported for the ECMWF and CCM1 models. We assumethat the i860 processor used to run the shallow-water equations achieves a sustained rate of 8 Mops, andobtain good �ts with Cm = 4:4. That is, it seems that typical primitive equation models requires 4.4 timesmore computational resources per vertical layer than NCAR's shallow-water equation code. The points�tted to, and the predicted values, are shown in Figure 11. The T213 value is scaled by a factor of 2.5 tocompensate for its unusually low vertical resolution.9.3 ThroughputAs noted in Section 9.1, we can expect the scalability of a spectral-transform-based parallel GCM to besimilar (probably somewhat better) than that of a shallow-water equation model. On the other hand,throughput of a GCM will be signi�cantly lower. Here, we develop estimates for throughput of a parallelGCM on the target computers listed in Table 1. These estimates were obtained using a model similarto that presented as Eq. 12. However, the computation time estimates are those from the precedingsection and the transfer time (tw) terms are scaled by the number of vertical layers. In addition, total19

CCM1
T42
1/6 hr/day
110 Mflops

ECMWF
T106, L31
0.45 hr/day
400 Mflops

ECMWF
T213, L19
1.7 hr/day
450 Mflops

(a)

(b)

(c)

75 100 125 150 175 200

10000

20000

30000

40000

50000

n

(a)
(b)

(c)

Hours per
year at
14 Mflops

Hours per
year at
8 Mflops Figure 11: Fitting GCM Performance Predictions. The solid line represents a �t to Ty for the three datapoints, which have been normalized to a 8 Mop CPU.communication costs are scaled by a factor of two to approximate additional communication requirementsdue to the primitive equations, forcing, etc. Speci�cally, the computational time is given by the formulaT = (D+ P + 2O)YD = (10 + n=4)TeO = 2(pq � 1) ts + thpq + tw 3(10 + n=4)n2pq2p !+3ts log q + 2(pq � 1) 3th + tw52(10+ n=4)n2p !where 10 + n=4 approximates the number of vertical layers.We present in Figure 12 estimated throughput (in simulated years per hour) as a function of resolution(i.e., truncation) (cf. Section 8.2), for the DELTA, SIGMA, and NCUBE-2. Figure 14 presents the sameinformation for the Teraop computers characterized in Table 1. One interesting phenomenon is that theNCUBE-2 performs proportionally better than in the shallow equation case, relative to the DELTA; weattribute this result to the higher communication volumes. In addition, the hypercube interconnect allowsthe BigCube machine to achieve best overall performance at high resolutions. However, it can keep all65,536 processors busy only at resolutions higher than 224.The most striking aspect of Figures 12 and 14 is the low throughput rates achieved. For example, assumethat we wish to complete a 100-year simulation in a week. This requires that we achieve a throughput of 0.6simulated years/hour. The highest resolutions at which this throughput can be achieved are approximatelyT47 (DELTA), T100 (SIGMA), and T140 (FastMesh). The NCUBE-2 and BigCubemachine cannot achievethis throughput rate. At these resolutions, we predict that the former three machines all achieve around90% e�ciency.Alternatively, we may wish to achieve a 10-year run in a week. In this case, the highest resolutionsthat can be achieved are approximately T118 (DELTA and NCUBE), T220 (SIGMA), T300 (FastMesh),and T410 (BigCube).These results suggest that when used for climate modeling, parallel spectral-transform-based GCMswill not be run at very high resolutions (probably not more than T300) even on large parallel machines.Hence, Eq. 15 suggests that physics computation will make a signi�cant contribution to execution time.To clarify the relationship between resolution and relative physics/dynamics execution times, we showin Figure 15 the predicted proportions of time spent in physics, dynamics, and parallel overhead on theIntel SIGMA as a function of resolution. We see that physics never dominates total execution time.Nevertheless, it is apparent that the dynamics, despite its O(n3) asymptotic cost, becomes a major burden20

60 80 100 120 140

0.2

0.4

0.6

0.8

1

1.2

n

Throughput
(years/hour)

SIGMA

DELTA

nCUBEFigure 12: GCM Throughput vs. Truncation (I)
Speedup

P

100 200 300 400 500

100

200

300

400

n = 213

42
GCM

Figure 13: GCM Speedup on Intel DELTAonly at resolutions much higher than we can expect to run in the foreseeable future. Finally, we see thatwhen physics is included, communication overhead accounts for a large proportion of total execution timeonly at very low resolutions.The focus of discussion in this section has been on the throughput required for large-scale climatemodeling runs. Our models can also be used to analyze weather modeling scenarios, in which throughputrequirements are lower and higher resolutions can be considered. However, the memory requirements ofthe spectral transform method must also be evaluated carefully at higher resolutions.In Figure 13 we have computed the estimated speedups for a full GCM on a 512 node DELTA. Wesee that high parallel e�ciency is achieved even for modest problem sizes. This is largely attributable tothe addition of physics computations, which increase the amount of work but do not change the paralleloverhead, and the increase in the amount of work for the dynamics computations.21

150 200 250 300

0.25

0.5

0.75

1

1.25

1.5

1.75

2

n

Throughput
(simulated
 years/hour)

FastMesh

BigCubeFigure 14: GCM Throughput vs. Truncation (II)
50 100 150 200 250 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n

D+O

D

P

O

Proportion
of time

Figure 15: GCM Time Breakdown (SIGMA): D=dynamics, P=physics, O=overhead22

10 ConclusionsThe spectral transform method is a natural candidate for general circulation models designed to run onlarge-scale parallel computers. In this paper, we have presented analytic and empirical studies intendedto elucidate the feasibility of constructing such models. In particular, we have attempted to quantify thescalability of the spectral transform method: that is, the extent to which a parallel implementation of thismethod can pro�tably utilize increasing numbers of processors.The bulk of the paper has focused on the shallow-water equations rather than the primitive equationsused in GCMs. This simpli�cation has permitted us to calibrate our performance models with empiricaldata. We have investigated a variety of parallel spectral transform algorithms; in this paper, we havepresented performance models for two of these, based on 1-D and 2-D decompositions of the principal datastructures.The performance models can be used to predict performance for shallow-water equation models ona variety of multicomputers. We have developed predictions for several machines. We �nd that parallele�ciency is generally poor, because of the high communication requirements of the parallel spectral trans-form. This is in spite of the fact that the high asymptotic complexity of the spectral transform methodprovides a great deal of computation that can be done in parallel.We have also discussed how our results apply to full GCMs. We account for primitive equations, verticallayering, and physics components in our performance model by changing coe�cients on computation andcommunication terms. We use this extended model to develop a rough analysis of computational require-ments and throughput. We emphasize that the results obtained are highly approximate, as a number ofassumptions in our model may not hold in practice. Furthermore, our projections probably underestimatecommunication requirements and de�nitely ignore potential computational and communication demandsof grid-space coupling, I/O, coupled ocean and biosphere models, and smaller time steps. Nevertheless, webelieve that our estimates of the relationship between compute power, required throughput, and achievableresolution provide useful insights into the feasibility of spectral-transform-based parallel GCMs.We �nd that the parallel e�ciency of spectral-transform-based GCMs is likely to be considerably betterthan that of the shallow-water equation code, even at the same resolution. This e�ect is due to increasedcomputational requirements in GCMs, associated with both more complex dynamics and the introductionof physics. However, despite this increased e�ciency we �nd that even projected Teraop computerswill have di�culty achieving acceptable throughput at the high resolutions believed necessary to resolveregional climate. For example, consider our (optimistic) analysis of the performance of the FastMeshTeraop architecture. This predicts a maximum resolution of only T185 (66km) being achieved if a 100year simulation is to be completed within a week. In practice, achieved resolutions may be even lower.These results have signi�cant consequences for designers of both physics parameterizations and parallelmodels.It is commonly believed that the spectral transform method is impractical for large-scale parallel mod-els because of its elevated computational and communication requirements. However, it is only at highresolutions that the cost of dynamics computations dominates the cost of physics computations. At theseresolutions, the cost of physics alone makes extended (100 year or more) simulations impractical, evenon Teraop computers. At lower resolutions, both dynamics costs and parallel e�ciency are reasonable.Thus, for long term climate simulations, we conclude that parallel e�ciency is not a reason to reject thespectral transform method as a basis for the implementation of parallel GCMs. In contrast, for short termsimulations where there is adequate computational power to handle the model physics at much higherresolution, the O(n3) time complexity of the spectral transform method will dominate the computationtime and the apparent parallel e�ciency will be due to the serial ine�ciency (relative to fast O(n2) orO(n2 logn) methods).Further analytic and empirical studies are required to re�ne the models and predictions presented inthis paper. In particular, we need to measure more accurately the communication performance of par-allel FFTs, the communication requirements of primitive equation models, and the e�ect of issues such23

as semi-Lagrangian transport, coupled models, and I/O on parallel performance. Also to be investigatedare methods that use parallel transpose operations with one-dimensional decompositions; these allow boththe FFT and the Legendre transform to be computed without any additional communication. The highcomputational requirements of parallel GCMs (for both dynamics and model physics) suggests that adap-tive re�nement methods and nested global/mesoscale models may also be promising avenues for furtherresearch.In summary, we note that the development of GCMs for massively parallel computers can be anexpensive exercise. The approach to performance analysis advocated in this paper can reduce the potentialfor serious error, by guiding our implementation e�orts, uncovering performance problems in software andhardware, and allowing us to evaluate intelligently alternatives in numerical methods, algorithms, andhardware. We believe that performance analysis should be an essential component of the design anddevelopment process for any parallel model.AcknowledgmentsThis research was supported by the Atmospheric and Climate Research Division and the Applied Mathe-matical Sciences subprogram of the O�ce of Energy Research, U.S. Department of Energy. We are gratefulto members of the CHAMMP Interagency Organization for Numerical Simulation, a collaboration involv-ing Argonne National Laboratory, the National Center for Atmospheric Research, and Oak Ridge NationalLaboratory, for sharing codes and results and for useful discussions.ReferencesAlpert, B., and Rokhlin, V., 1991: A fast algorithm for the evaluation of Legendre Expansions, SIAM J.Sci. Stat. Comp., 12(1), 158{179.Boyd, J. P., 1990: Multipole expansions and pseudospectral cardinal functions: a new generalization ofthe fast Fourier transform, Preprint, University of Michigan.Boyd, J. P., 1991: Sum-accelerated pseudospectral methods: the Euler-accelerated sinc algorithm, Appl.Num. Math. 7, 287{296.Bourke, W., 1972: An e�cient, one-level, primitive-equation spectral model, Mon. Wea. Rev. 102,687{701.Browning, G., Hack, J., and Swarztrauber, P., 1989: A comparison of three numerical methods for solvingdi�erential equations on the sphere, Mon. Wea. Rev., 117(5), 1058{1075.Dilts, G. A., 1985: Computation of spherical harmonic expansion coe�cients via FFTs, J. Comp. Phys.,57(3), 439{453.DOE, 1990: U.S. Department of Energy, Building an Advanced Climate Model: Program Plan for theCHAMMP Climate Modeling Program, Publication DOE/ER-0479T (available from National TechnicalInformation Service).Foster, I., and Gropp, W., 1991: Unpublished information.Gates, W., Potter, G., Phillips, T., and Cess, R., 1990: An overview of ongoing studies in climate modeldiagnosis and intercomparison, Energy Sciences Supercomputing 1990, UCRL 53916, DOE.Greengard, L., 1988: The rapid evaluation of potential �elds in particle systems, MIT Press, Cambridge.Gupta, A., and Kumar, V., 1990: The scalability of FFT on parallel computers, Tech. Report, Universityof Minnesota.Hack, J., 1990: Personal communication.Kauranne, T., 1990a: Asymptotic parallelism of weather models, in The Dawn of Massively ParallelProcessing in Meteorology, G.-R. Ho�man and D. K. Maretis, eds., Springer-Verlag, Berlin, 303-314.Kauranne, T., 1990b: An introduction to parallel processing in meteorology, in The Dawn of MassivelyParallel Processing in Meteorology, G.-R. Ho�man and D. K. Maretis, eds., Springer-Verlag, Berlin, 3{20.24

Michalakes, J., 1990: Analysis of workload and load balancing issues in NCAR Community Climate Model,Tech. Report ANL/MCS-TM-144, Argonne National Laboratory (available from the DOE O�ce of Scien-ti�c and Technical Information).Orszag, S. A., 1986: Fast eigenfunction transforms, in Science and Computers, Advances in MathematicsSupplementary Studies, G. C. Rota, ed., Academic Press, New York, 23-30.Pease, M., 1968: An adaptation of the fast Fourier transform for parallel processing, JACM, 15(2), 252{264.Simmons, A., 1990: Some computational aspects of numerical weather prediction, Europhysics ConferenceAbstracts, 14F, 21. (available from DOE O�ce of Scienti�c and Technical Information).Washington, W., and Parkinson, C., 1986: An Introduction to Three-Dimensional Climate Modeling, Uni-versity Science Books.Williamson, D., ed., 1990: CCM progress report | July 1990, NCAR Tech. Note 351.Williamson, D., and Rasch, P., 1989: Two-dimensional semi-Lagrangian transport with shape-preservinginterpolation, Mon. Wea. Rev. 117(1), 102{129.Worley, P., and Drake, J., 1991: Parallelizing the spectral transformmethod|Part I, Tech. Rep. ORNL/TM-11747, Oak Ridge National Laboratory, Oak Ridge, Tenn. (available from DOE O�ce of Scienti�c andTechnical Information).

25

List of Figures1 Spectral Transform Method Data Dependencies : 72 Spectral Transform Method : 83 Decomposition by Latitude : 114 Decomposition by Latitude and Longitude : 125 Mesh Organization : 136 Predicted (lines) and Observed (data points) Speedups : 157 DELTA Forecast: 2-D Decomposition : 168 SIGMA Forecast: 2-D Decomposition : 169 NCUBE-2 Forecast: 2-D Decomposition : 1710 Throughput vs. Truncation : 1811 Fitting GCM Performance Predictions. The solid line represents a �t to Ty for the threedata points, which have been normalized to a 8 Mop CPU. : : : : : : : : : : : : : : : : : : 2012 GCM Throughput vs. Truncation (I) : 2113 GCM Speedup on Intel DELTA : 2114 GCM Throughput vs. Truncation (II) : 2215 GCM Time Breakdown (SIGMA): D=dynamics, P=physics, O=overhead : : : : : : : : : : 22List of Tables1 Target Machine Characteristics (times in �sec) : 4

26

