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1 IntroductionIn an informative article [1], Lazer and McKenna proposed a modi�ed math-ematical model for the onset of large-amplitude oscillations in suspensionbridges by wind with speci�c velocities. The study was motivated by theinadequacy of older theories to explain the collapse of the Tacoma NarrowsBridge of Seattle in 1941.In the Lazer-McKenna model, the motion of the bridge is, as usual,governed by a system of di�erential equations, more speci�cally, semilinearelliptic di�erential equations, the complexity of which depends on the degreeof approximation and simpli�cations one is willing to accept. One of the newideas introduced is the asymmetry of the restoring force from a cable, withrespect to expansion and compression. The authors' basic assumption isthat the cable \strongly resists expansion, but does not resist compression."The study of elliptic equations involving a nonlinear restoring-force term ofthis type is still largely unexplored. In the same article, Lazer and McKennaposed many interesting open questions. Some of these have not been an-swered even in the one-dimensional case, when the elliptic equation becomesa second-order nonlinear ordinary di�erential equation. In an earlier arti-cle [5], we gave a counterexample to their Problem 4. In this article, wetake up another one of these questions (Problem 2) concerning a nonlinearfunction that grows very fast at in�nity.The boundary value problem we are interested in isu00(t) + f(u(t)) = s sin(t) + h(t); (1)u(0) = u(�) = 0; (2)where f(u) is a genuinely nonlinear continuously di�erentiable function on(�1;1), h(x) is any continuous function on [0; �], and s is a real parameter.We shall refer to a solution of (1){(2) as a D-solution and reserve the simplerterm solution for one that satis�es (1), but not necessarily the Dirichletboundary conditions. Our main objective is to determine upper and lowerbounds for the number of distinct D-solutions when f satis�es certain growthconditions.For the question we are studying, the conditions imposed on f are�1 < f 0(�1) < f 0(1) =1: (3)2



At the end of paper, we shall indicate how the second inequality can berelaxed.In [2], Lazer and McKenna proved that under the conditionf 0(�1) < 1 < n2 < f 0(1) <1; (4)there exist at least 2n D-solutions, for all su�ciently large s. Based onthis result, they conjectured that if the boundedness of f 0(1) is replacedby f 0(1) = 1, then for suitable choices of s, there can be any number ofD-solutions. Our purpose here is to con�rm this conjecture under condition(3). The �rst inequality in (3) di�ers from that of (4) by requiring thatf 0(�1) be bounded, but not necessarily by 1.Theorem 1 Under condition (3), for any positive integer N , there exists areal number sN such that for all s > sN , (1) has at least N D-solutions.The function sin(t) on the righthand side of (1) can be replaced by anynontrivial symmetric (with respect to t = �=2) function that is nondecreas-ing in [0; �=2].An important tool in the proof of Theorem 1 is the variation index of asolution, a concept we used successfully in [5]. A de�nition of the index wasrecently given by Clemons in [4]. Given a solution u(t), which may or maynot be a D-solution, we substitute it into the derivative of f to obtain thefunction g(t) = f 0(u(t)). Let w(t) be the solution of the linear initial valueproblem (treating g(t) as a known coe�cient of the linear term)w00(t) + g(t)w(t) = 0; t 2 (0; �) (5)w(0) = 0; and w0(0) = 1: (6)Suppose w(t) has k zeros in the open interval (0; �). We then say that thevariation index, or in short the index, of u(t) is k+. The + in the notationis added to emphasize that we are a little beyond the degenerate situationin which the kth zero falls exactly at the endpoint �. The signi�cance ofthe index in the study of the multiplicity of D-solutions is contained in thefollowing lemma; its special case with n = 1 was proved in Section 2 of [5].3



Lemma 1 Suppose (3) holds, and f 0(�1) < m2 for some positive inte-ger m. If there exists a D-solution u(t) with index k+, where k � 2m, thenthere are at least 2(k� 2m+ 2) distinct D-solutions (including u(t)).Thus, Theorem 1 is established if we can exhibit a D-solution with anarbitrarily large index. Instead of tackling directly the original equation (1),we shall work with the scaled equation, obtained by substituting u(t) = sy(t): y00(t) + 1sf(sy) = sin(t) + h(t)s : (7)In Section 2 we give the arguments in a heuristic manner, drawing onsome yet unproved assertions. In Section 3 we complete the job by sup-plying the necessary lemmas. The proof of Lemma 1 contains some of thetechniques used in the proofs of the other lemmas and is therefore given last.
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2 The Heuristic ArgumentsThe formal and complete proof of our main result contains a lot of dry andtechnical estimations. For pedagogical purposes, we give in this section themain steps in outline form, appealing often to our intuition, and leavingcertain rigorous details till the next section.Recall that we are working with the scaled equation (7), with a su�-ciently large parameter s. A �rst simpli�cation, easily justi�ed by intuition,is obtained by ignoring the small term h(t)=s. In the rest of this section, weconsider the simpli�ed equationy00(t) + 1sf(sy) = sin(t): (1)As already pointed out in the Introduction, it su�ces to construct a D-solution with a large index. The �rst question to consider is what propertiesmust be present in the D-solution to guarantee a large index. A successfultechnique used in obtaining information on the index is the Sturm compar-ison principle; see, for instance, Co�man [3], McLeod and Serrin [10], Niand Nussbaum [11], and Kwong et al. [6]{[9]. The index is a measure of theamount of oscillation of the function w(t). The Sturm technique consists of�nding a comparison function v(t) with a suitable number of zeros. Substi-tuting v(t) for w(t) into the lefthand side of (5) gives a di�erential equation,a careful study of which via the classical Sturm comparison theorem canreveal information concerning whether v(t) oscillates faster or more slowlythan w(t). As a result, we obtain an upper or lower bound on the index ofu(t). In general, v(t) is constructed from u(t), its derivatives, and the inde-pendent variable t, in a manner that di�ers from one equation to another.Experience tells us that v(t) = y0(t) is often a good candidate to try. Itturns out to be just what we need here. The di�erential equation for v(t) isv00(t) + g(t)v(t) = cos(t): (2)Note that the righthand side is positive in (0; �=2) and negative in (�=2; �).The Sturm comparison theorem states that in any interval [
; �] in whichv(t) and the righthand side of (2) have the same sign, v(t) oscillates moreslowly than w(t) | more precisely, between any two zeros of v(t) in [
; �]there must be at least one zero of w(t). See, for example, Theorem 1 in [6].Suppose we can �nd a D-solution that oscillates wildly in [0; �=2], wherethere are many subintervals [
i; �i] � [0; �=2] in which y(t) is increasing,5



each 
i being a local maximum and each �i a local minimum. In otherwords, all the 
i and �i are zeros of v(t), and v(t) has the same sign as therighthand side of (2) in each [
i; �i]. The comparison principle implies nowthat w(t) has at least one zero within each [
i; �i], and so the index of u(t)is at least equal to the number of such subintervals. If the oscillations are in[�=2; �] instead, the arguments are modi�ed by using subintervals in whichy(t) is decreasing.Theorem 1 is, therefore, proved if we can construct a D-solution of (1)that has a large number of local maxima. The simpli�ed equation (1) issymmetric with respect to t = �=2. Even though not all D-solutions need tobe symmetric, we can simplify our construction by asking for a symmetricone. We then have to work with only half of the interval; we choose thesecond half [�=2; �]. We use the familiar shooting method. The di�erentialequation (1) is solved as an initial value problem, with t = �=2 as thestarting time, initial height �, and initial slope zero. The solution, denotedby y(t; �) is then a function of both t and �. Any � that makes y(�; �) = 0corresponds to a symmetric D-solution. It turns out that only negative �need be used.We next investigate what e�ect the nonlinear term has on a solution,for large values of s. The coe�cient f(sy)=s in (1) is derived from thefunction f(u) using two compressions, one horizontal and the other vertical.Geometrically, the graph of the former is obtained by shrinking the graph ofthe latter with respect to the origin in a scale of s to 1. Any given boundedportion of the graph of f(u) can be contracted to as small an area as weplease, by making s su�ciently large. As a consequence, the behavior off(u) for small u, as manifested by f(sy)=s, does not have any lasting e�ecton the solution. The predominant in
uence of f(sy)=s on a solution is thusdetermined by the behavior of f(u) as u ! 1. In the extreme limit, whens ! 1, f(sy)=s is indistinguishable from f 0(�1)y for y < 0 and f 0(1)yfor y > 0. That f 0(1)y =1 necessitates further interpretation.To emphasize the special nature of this extreme limiting situation, wedenote the corresponding limiting solution, lims!1 y(t), by z(t). For z < 0,the limiting function f 0(�1)z can be interpreted as the restoring force ex-erted by a spring with Hooke's constant f 0(�1) on a moving particle. Theextremely large restoring force f 0(1)z for z > 0 means that at z = 0, theparticle encounters a hard, perfectly elastic wall. Upon impact, the motionis reversed, and the particle bounces back with speed equal to, but opposite6



in direction from, the incoming speed. This interpretation will be backedup by lemmas proved in Section 3.To avoid technical details, we discuss here only the simplest case whenf(�1) = 0; the general case requires only more computation. In the regionz < 0, the particle now moves without being attached to a spring, but underthe action of an external force sin(t) in a direction towards the wall. Since thewall is impenetrable, z(t) is never positive. One can 
ip the geometry upsidedown and imagine a bouncing ball. The magnitude of the solution describesthe position of a ball dropped at time t = �=2, with an initial height j�j.The gravitational force sin(t) is not a constant but decreases in time. Thisproperty has the e�ect of causing the ball to bounce higher and higher.When the ball hits the ground, z(t) = 0, it bounces upwards. Gravity canbring it down again at a later time; the bouncing is then repeated until thetime is up.The number of bounces depends on the initial height. If j�j is too large,the ball takes longer than the allotted time to reach the ground, and thusno bounces occur within [�=2; �]. On the other hand, if j�j is small, theball can reach the ground quickly. A simple computation will convince onethat by making j�j small enough, any number of bounces can be attained.By �nely tuning j�j, we can even arrange to have the ball hit the groundexactly at the �nal time t = �. We then have a D-solution.The extreme limiting case described above is, of course, not attainablefor any �nite s. It serves, however, as a good approximation when s issu�ciently large. In particular, there exist D-solutions that bounce at leastas often as prescribed. For such solutions, the region y > 0 is no longerimpenetrable. Instead, after y(t) reaches 0, it becomes positive for a shortwhile and then is de
ected back. Furthermore, y0(t) is not discontinuous asin the limiting case, a fact needed to validate the Sturm comparison process.
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3 LemmasThe arguments given in Section 2 are now substantiated by a sequence oflemmas. Straightforward reasoning involving routine computation or well-known and elementary arguments are omitted. Computations involving theinhomogeneous term sin(t) are often simpli�ed by replacing the functionwith its lower and upper bounds, �1 and 1, to yield estimations. Indeed, nospeci�c properties of the inhomogeneous term, other than its boundednessand monotonicity, are needed.To start, we assume that h(t) = 0; hence, we are dealing with equation(1) on the half-interval I = [�=2; �]. De�neq(y; s) = f(sy)sy : (1)With this notation we rewrite (1) asy00(t) + q(y; s)y(t) = sin(t): (2)The solution y(t; �) satis�es the initial conditionsy(�=2; �) = �; and y0(�=2; �) = 0: (3)In reality, y(t; �) depends also on the choice of s, but since there is no riskof confusion, the dependence is not explicitly acknowledged in the notation.We always assume that � < 0. The statement \j�j is large" is thus anotherway of saying that \� is very negative."For convenience, we adopt the following convention. All � that appear ininequalities refer to any given, arbitrarily small, positive constant. The con-stant can di�er from one inequality to another. Two quantities are \close"if their di�erence is less than �, understood in the above sense. The phrase\for su�ciently large s" means \there exists some number s1 that dependson �, such that for all s > s1." The various s1 can be assumed equal, simplyby increasing all of them if necessary.Lemma 2 For su�ciently large s,��q(y; s)� f 0(�1)�� < �; for y < ��; (4)8



and q(y; s) > 1� ; for y > �: (5)Furthermore, the function q(y; s) is uniformly bounded from below.Proof. It is well known that for a function �(x), limx!1 �(x)! A impliesthat the mean R u0 �(x) dx=u converges to the same limit A as u!1. Hence,f(u)=u = R u0 f 0(x) dx=u ! f 0(�1) as u ! �1. The conclusion followseasily.Lemma 2 is the basis for using the bouncing ball solution to approximatey(t; �).De�nition. Let [�=2; �1] � [�=2; �] be the maximal interval for the exis-tence of a nonpositive solution of the di�erential equationz00 + f 0(�1)z = sin(t); (6)with initial conditions z(�=2; �) = � and z0(�=2; �) = 0. De�ne z(t; �) tobe this solution in [�=2; �1]. If �1 < �, then z(�1; �) = 0. For t > �1,continue z(t; �) to be the solution of (6) with initial conditions z(�1; �) = 0and z0(�1+; �) = �z0(�1�; �). If z(t; �) hits the t axis again, the process isrepeated until z(t; �) is de�ned up to t = �. The points �1; �2; � � � at whichthe solution crosses the t axis are called the zeros of z(t; �).That z(t; �) can be successfully continued beyond each zero is justi�edby the following lemma, which can be veri�ed by direct computation.Lemma 3 At each �i where z(�i; �) = 0, z0(�i; �) 6= 0.It is easy to see that z(t; �) depends continuously on the initial height �.However, because of the discontinuity of z0 at each zero, the continuousdependence of z0(t; �) holds only in subsets of [�=2; �] not containing anyzeros of z(t; �), for all the � under consideration. The awkwardness of havingto exclude the zeros from the domain of continuous dependce can be avoidedby noting that z(t; �) = �j (t; �)j, where  (t; �) is the C1 solution of theinitial value problem 00 + f 0(�1) = sign ( ) sin(t);  (�=2; �) = �;  0(�=2; �) = 0: (7)9



Lemma 4 There exists an in�nite sequence �0 < �1 < �2 < � � � < 0 suchthat z(t; �n) has exactly n zeros in the open interval I and the right end-point � is also a zero.Proof. When f 0(�1) = 0, the lemma is obvious. Furthermore, z(t; �)has n zeros for � 2 (�n�1; �n). In the general case with f 0(�1) 6= 0, if wechoose a su�ciently small �, z will remain small. As a result, the linear termf 0(�1)z can be ignored in comparison to the righthand side. Thus, z(t; �)is close to the solution for the case f 0(1) = 0, and so has an arbitrarily largenumber of zeros. A shooting argument gives us the desired D-solutions.We now choose a �x �n from the sequence and consider a su�cientlysmall neighborhood (�n � �; �n + �), which does not contain any other �i.All subsequent estimates are understood to be uniform for � in this neigh-borhood and for all su�ciently large s. Uniformity with respect to � usuallyfollows from the relative compactness of the neighborhood. Showing unifor-mity with respect to s often requires more work.Lemma 5 For all � 2 (�n � �; �n), z(t; �) has n zeros in (�=2; �). For all� 2 (�n; �n + �), z(t; �) has n + 1 zeros in (�=2; �), and the last zero �n+1is very close to �. Furthermore, if �, and � is chosen su�ciently small, nozeros of the solutions will fall within [� � 2�; � � �].Our next step is to substantiate the claim that z(t; �) is close to y(t; �).From the way z(t; �) is de�ned in steps over the subintervals between suc-cessive zeros, it is only natural to expect that the estimation of y(t; �) isdone in the same piecewise maner.Let �1 be the �rst zero of y(t; �), or � if there is no zero. Then inJ = [�=2; �1] \ [�=2; �1], the inequality (4) is valid, for large s. Standardperturbation arguments show that y(t; �) is close to z(t; �) in J . If �1 > �1,then y(t1; �) is close to z(t1; �) and y0(t1; �) is close to z0(t1; �). It followsthat y(t; �) has to cross the t axis soon after t1. Hence �1 is a zero closeto �1. Similarly, if �1 < �1, the two zeros must also be close. Furthermore,in all cases, y0(�1�; �) � z0(�1�; �).After �1, y(t; �) becomes positive until the next zero �1. In (�1; �1),y(t; �) can no longer be approximated by z(t; �); the coe�cient q(y; s) has10



changed radically, now that y becomes positive. The next lemma, however,shows that the duration of positivity is short.Lemma 6 Let � and � be two successive zeros of y(t; �) and y(t; �) > 0 in(�; �). Then for su�ciently large s,� � � < � (8)and y0(�; �) � �y0(�; �) � y0(�; �) + �: (9)Proof. First we claim that y0(�; �) is uniformly bounded, in both � and �.This is true if � = �1 is the �rst zero, since y0(�1; �) is close to z0(�1; �), whichis uniformly bounded in � (z(t; �) does not depend on s at all). The sameargument goes through by induction for subsequent zeros �i; we anticipatethe fact that y0(�i; �) is still close to z0(�i; �).Lemma 3 implies that z0(�i; �) is uniformly bounded away from zero forall � 2 (�n � �; �n + �); more precisely, there exists a � such that z0(�; �) >� > 0. The same argument used to prove the �rst claim shows that y0(�; �)is uniformly bounded away from zero, for all � and s under consideration.Inequality (5) tells us that the coe�cient q(y), which measures the ten-dency to de
ect y(t; �), can be assumed arbitrarily large except for verysmall values of y. Since y0(�; �) > 0 is bounded away from zero, the dura-tion for which y(t; �) is small is arbitrarily short. Furthermore, the sign ofy0(t; �) can be shown to remain positive. Once y(t; �) becomes larger than�, it is subjected to a large spring coe�cient of at least 1=�. By making thiscoe�cient su�ciently large, we know that before long, y(t; �) will start todecrease, say, at the point �. We have seen that � � � is small and that in[�; �), y0(t; �) > 0.We now compare the two portions of the solution y(t; �) in the twosubintervals [�; �] and [�; �]. Roughly speaking, y descends in [�; �] at afaster rate than it ascends in [�; �]. More precisely, for any two pointst1 2 [�; �] and t2 2 [�; �], at which y(t1; �) = y(t2; �),y0(t1; �) � �y0(t2; �): (10)To prove this, we make use of the familiar energy functional�(t) = y022 +Q(y)� sin(t)y; (11)11



where Q(y) = Z y0 q(y; s) dy: (12)For convenience, the dependence of Q on s is not explicitly shown in thenotation. As usual, the energy is di�erentiated along the solution curve, andwe have �0(t) = �y cos(t): (13)Since y > 0; and cos(t) < 0, �(t) is an increasing function of t in [�; �].Inequality (10) now follows from the inequality �(t1) � f(t2).The �rst inequality in (9) follows from (10) by taking t1 = � and t2 = �.Another consequence of (10) is that � � � � � � �, from which (8) follows.The uniform boundedness of y0(�; �) and the boundedness from belowof q(y; s) imply the uniform boundedness of y0(t; �) throughout the entireinterval, which in turn implies the uniform boundedness of y(t; �), which inturn implies the boundedness of f 0(t), by (13). The second inequality in (9)now follows from integrating (13) over the arbitrarily short interval [�; �].We now continue our task of establishing z(t; �) as an approximationof y(t; �). The functions are not to be compared in the usual way, at thesame values of t. A translation is made to shift the graph of y(t; �) until �1coincides with �1. The shifted copy of y(t; �) is then compared with z(t; �)between �1 and the next zero �2 or �2, whichever occurs �rst. The translationmeans also that the inhomogeneous driving forces for y(t; �) and z(t; �),respectively, will no longer be the same at the corresponding (but in generaldistinct) points where the comparison is made. But since the translationis arbitrarily small, the di�erence introduced will also be arbitrarily small.The process of translation and comparison is then repeated for the rest ofthe interval. Since n is �xed, the number of translations required is �xed;we therefore have control over the total amount of error introduced.Our next step is the shooting argument. We investigate the deformationof y(t; �) as � varies from �n� � to �n+ �. For s su�ciently large, y(t; �) isclose to z(t; �) in the sense explained above. Since z(t; �n � �) has no zerosin [��2�], where � is as in Lemma 5, by choosing the appropriate � suitablysmall, we can guarantee that y(t; �n � �) has no zero in the same interval.Similarly, y(t; �) (for all �), just like z(t; �) as asserted in Lemma 5, has nozero in [�� 2�; �� �]. On the other hand, y(t; �n+ �) has a zero close to the12



n+1st zero of z(t; �n+�). This zero must be in (���; �]. Thus, as � is variedfrom �n�� to �n+�, there is a net gain of one (or perhaps more) zero in theinterval [� � 2�; �]. Such a gain can occur only in one of three ways: somey(t; �) touches the t axis and the tangent point later develops into two zeros;some zero slides continuously in from the left endpoint �� 2�; or some newzero appears at � and slides continuously to the left. The �rst possibility isruled out by the fact that at any zero �, y0(�; �) is uniformly bounded awayfrom zero, as established in the proof of Lemma 6. The second possibility isruled out by the fact that no zeros can occur in [��2�; ���]. The third casefurnishes a D-solution for some intermediate value of �. As is wellknown,the shooting argument can be put into a rigorous basis by using the implicitfunction theorem.Lemma 7 The D-solution obtained above has index at least 2n+.Proof. The basis of the proof has already been expounded in Section 2.First the solution has n zeros in (�=2; �) close to the n zeros of z(t; �). Bysymmetry, there are at least 2n zeros in (0; �). Each zero is associated withan interval of positivity [�; �], as in Lemma 6, and each interval contains alocal maximum. Between any two successive local maxima, there is a localminimum. Hence, there are at least n subintervals of [0; �=2] in which y0(t; �)is positive, and another n subintervals of [�=2; �] in which y0(t; �) is negative,with y0(t; �) = 0 at the endpoints of all 2n subintervals. As explained inSection 2, the Sturm comparison theorem gives at least one zero of w(t), thesolution of the variational equation (5), in each subinterval, and the lemmais proved.Proof of Lemma 1. Let the D-solution with index k+ in the hypothesisbe denoted by u(t; �). As shown in Section 2 of [5], the number of intersec-tion points in (0; �) between u(t; �) and a nearby solution u(t; �), a � b, isk. We claim that if � is decreased to a su�ciently negative value, then thenumber of intersection points between u(t; �) and u(t; �) becomes 2m � 2,and if � is increased to a su�ciently large positive value, then the numberof intersection points becomes 2m� 1. As explained in [5], the shooting ar-gument, by tracking the number of zeros lost when � is varied continuously,gives k � 2m + 2 D-solutions for � < �, and k � 2m + 1 D-solutions for� > �. The lemma is thus proved. 13



The number of intersection points is the number of zeros in (0; �) of thefunction Z(t; �) = u(t; �)� u(t; �), which satis�es the di�erential equationZ00 + f(u(t; �))� f(u(t; �))u(t; �)� u(t; �) Z = 0: (14)When, � is close to �1, the fraction in the equation is close to f 0(= �1).Without going into detail, we just point out that the dynamics of the limitingZ (as � ! �1) is similar to that of the \bounding ball" solution, exceptthat the ball is now moving under a spring with constant f 0(�1) and nogravitational force (equation (14) has a zero righthand side). The numberof times that Z hits the ground is thus m � 1. Each of these correspondsto two zeros of Z(t; �) for �nite �. That there is one more zero for largepositive values of � is due to the fact that Z(t; �) starts out being positive,increases rapidly for t near 0, and is quickly de
ected to give a �rst zero.This is not the case when � is su�ciently negative.To complete the proof of the main theorem, it remains to consider thegeneral situation in which h(t) is nontrivial. Standard perturbation tech-niques are more than enough for the purpose.Examining the proof of our main result reveals that the assumptionf 0(1) = 1 is needed only in Lemma 6 to show that the duration [�; �] inwhich y(t; �) is positive and increasing is arbitrarily short. In [�; �], y(t; �)satis�es the di�erential inequalityy00 + f(sy)s � 1: (15)The usual trick of multiplying the inequality by y0 and integrating will fur-nish a bound on y02, from which a bound on ��� can be derived in terms ofthe inde�nite integral of the function f(u). Roughly speaking, Theorem 1still holds if the integral of f(u) grows fast enough.
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