
A Comparative Study of Automatic VectorizingCompilersDavid Levine � David Callahan y Jack Dongarra zAbstract. We compare the capabilities of several commercially available, vectorizing Fortrancompilers using a test suite of Fortran loops. We present the results of compiling and executingthese loops on a variety of supercomputers, mini-supercomputers, and mainframes.1 IntroductionThis paper describes the use of a collection of Fortran loops to test the analysis capabilitiesof automatic vectorizing compilers. An automatic vectorizing compiler is one that takes codewritten in a serial language (usually Fortran) and translates it into vector instructions. Thevector instructions may be machine speci�c or in a source form such as the proposed Fortran 90array extensions or as subroutine calls to a vector library.Most of the loops in the test suite were written by people involved in the development ofvectorizing compilers, although several we wrote ourselves. All of the loops test a compilerfor a speci�c feature. These loops re
ect constructs whose vectorization ranges from easy tochallenging to extremely di�cult. We have collected the results from compiling and executingthese loops using commercially available, vectorizing Fortran compilers.The results reported here expand on our earlier work [3]. In that paper, we focused principallyon analyzing each compiler's output listing. For the present study, we ran the loops in bothscalar and vector modes. In addition, the set of loops has been expanded.The remainder of this paper is organized into eight sections. Section 2 describes our classi�-cation scheme for the loops used in the test. In Section 3 we describe the structure of the testprogram. In Section 4 we describe the methodology used to perform the test. Section 5 reportson the number of loops that vectorized according to the compiler's output listing. Section 6presents two aspects of the speedup results. In Section 7 we discuss our model of optimal vec-tor performance and present the results of comparing the actual performance with the model.Section 8 discusses several aspects of the test. In Section 9 we make some remarks about futurework.�Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4801. Thiswork was supported by the Applied Mathematical Sciences subprogram of the O�ce of Energy Research, U. S.Department of Energy, under Contract W-31-109-Eng-38.yTera Computer, 400 North 34th Street, Suite 300, Seattle, WA 98103zComputer Science Department, University of Tennessee, Knoxville, TN 37996-1301. This work was supportedin part by the Applied Mathematical Sciences Research Program, O�ce of Energy Research, U. S. Departmentof Energy, under Contract DE-AC05-84OR21400 and in part by NSF cooperative agreement CCR-8809615.1

2 Classi�cation of LoopsThe objective of the test suite is to test four broad areas of a vectorizing compiler: dependenceanalysis, vectorization, idiom recognition, and language completeness. All of the loops in thissuite are classi�ed into one of these categories.We de�ne all terms and transformation names but discuss dependence analysis and programtransformation only brie
y. Recent discussions of these topics can be found in Allen and Kennedy[2], Padua and Wolfe [11], and Wolfe [14]. For a practical exposition of the application of thesetechniques, see Levesque and Williamson [6].2.1 Dependence AnalysisDependence analysis comprises two areas: global data-
ow analysis and dependence testing.Global data-
ow analysis refers to the process of collecting information about array subscripts.Dependence testing refers to the process of testing for memory overlaps between pairs of variablesin the context of the global data-
ow information.Dependence analysis is the heart of vectorization, but it can be done with very di�erentlevels of sophistication ranging from simple pattern matching to complicated procedures thatsolve systems of linear equations. Many of the loops in this section test the aggressiveness ofthe compiler in normalizing subscript expressions into linear form for the purpose of enhanceddependence testing.1. Linear Dependence Testing. Given a pair of array references whose subscripts are lin-ear functions of the loop control variables that enclose the references, decide whether thetwo references ever access the same memory location. When the references do interact,additional information can be derived to establish the safety of loop restructuring trans-formations.2. Induction Variable Recognition. Recognize auxiliary induction variables (e.g., variablesde�ned by statements such as K=K+1 inside the loop). Once recognized, occurrences ofthe induction variable can be replaced with expressions involving loop control variablesand loop invariant expressions.3. Global Data-Flow Analysis. Collect global (entire subroutine) data-
ow information, suchas constant propagation or linear relationships among variables, to improve the precisionof dependence testing.4. Nonlinear Dependence Testing. Given a pair of array references whose subscripts are notlinear functions, test for the existence of data dependencies and other information.5. Interprocedural Data-Flow Analysis. Use the context of a subroutine in a particularprogram to improve vectorization. Possibilities include in-line expansion, summary in-formation (e.g., which variables may or must be modi�ed by an external routine), andinterprocedural constant propagation.6. Control Flow. Test to see whether certain vectorization hazards exist and whether thereare implied dependencies of a statement on statements that control its execution.2

7. Symbolics. Test to see whether subscripts are linear after certain symbolic information isfactored out or whether the results of dependence testing do not, in fact, depend on thevalue of symbolic variables.2.2 VectorizationA simple vectorizer would recognize single-statement Fortran DO loops that are equivalent tohardware vector instructions. When this strict syntactic requirement is not satis�ed, moresophisticated vectorizers can restructure programs so that it is. Here, program restructuringis divided into two categories: transformations to enhance vectorization and idiom recognition.The �rst is described here, and the other in the next section.1. Statement Reordering. Reorder statements in a loop body to allow vectorization.2. Loop Distribution. Split a loop into two or more loops to allow partial vectorization ormore e�ective vectorization.3. Loop Interchange. Change the order of loops in a loop nest to allow or improve vectoriza-tion. In particular, make a vectorizable outer loop the innermost in the loop nest.4. Node Splitting. Break up a statement within a loop to allow (partial) vectorization.5. Scalar and Array Expansion. Expand a scalar into an array or an array into a higher-dimensional array to allow vectorization and loop distribution.6. Scalar Renaming. Rename instances of a scalar variable. Scalar renaming eliminates someinteractions that exist only because of reuse of a temporary variable and allows moree�ective scalar expansion and loop distribution.7. Control Flow. Convert forward branching in a loop into masked vector operations; recog-nize loop invariant IF's (loop unswitching).8. Crossing Thresholds (Index Set Splitting). Allow vectorization by blocking into two sets.For example, vectorize the statement A(I) = A(N-I) by splitting iterations of the I loopinto iterations with I less than N/2 and iterations with I greater than N/2.9. Loop Peeling. Unroll the �rst or last iteration of a loop to eliminate anomalies in control
ow or attributes of scalar variables.10. Diagonals. Vectorize diagonal accesses (e.g., A(I,I)).11. Wavefronts. Vectorize two-dimensional loops with dependencies in both dimensions byrestructuring the loop for diagonal access.2.3 Idiom RecognitionIdiom recognition refers to the identi�cation of particular program forms that have (presumablyfaster) special implementations. 3

1. Reductions. Compute a scalar value or values from a vector, such as sum reductions,min/max reductions, dot products, and product reductions.2. Recurrences. Identify special �rst- and second-order recurrences that have logarithmicallyfaster solutions or hardware support.3. Search Loops. Search for the �rst or last instance of a condition, possibly saving indexvalue(s).4. Packing. Scatter or gather a sparse vector from or into a dense vector under the controlof a bit mask or an indirection vector.5. Loop Rerolling. Vectorize loops where the inner loop has been unrolled.2.4 Language CompletenessThis section tests how e�ectively the compilers understand the complete Fortran language.Simple vectorizers might limit analysis to DO loops containing only
oating point and integerassignments. More sophisticated compilers will analyze all loops and vectorize wherever possible.1. Loop Recognition. Recognize and vectorize loops formed by backward GO TO's.2. Storage Classes and Equivalencing. Understand the scope of local vs. common storage;correctly handle equivalencing.3. Parameters. Analyze symbolic named constants, and vectorize statements that refer tothem.4. Nonlogical IF's. Vectorize loops containing computed GO TO's and arithmetic IF's.5. Intrinsic Functions. Vectorize functions that have elemental (vector) versions such as SINand COS or known side e�ects.6. Call Statements. Vectorize statements in loops that contain CALL statements or externalfunction invocations.7. Nonlocal GO TO's. Branches out of loops, RETURN statements or STOP statementsinside of loops.8. Vector Semantics. Load before store, and preserve order of stores.9. Indirect Addressing. Vectorize subscripted subscript references (e.g, A(INDEX(I))) asGather/Scatter.10. Statement Functions. Vectorize statements that refer to Fortran statement functions.4

3 Test Program StructureThe test program consists of 122 loops that represent di�erent constructs intended to test theanalysis capabilities of a vectorizing compiler. Using the classi�cation scheme in Section 2, thereare 29 loops in the Dependence Analysis category, 41 loops in the Vectorization category, 24loops in the Idiom Recognition category, and 28 loops in the Language Completeness category.Also included are 13 additional \control" loops we expect all compilers to be able to vectorize.These allow us to measure the rates of certain basic operations for use with the model discussedin Section 7.The majority of the test loops operate on one-dimensional arrays; a small number operate ontwo-dimensional arrays. Most of the loops in the test are fairly short; many are a single statementand others usually no more than several statements. Many of the loops access memory witha stride of one. Each loop is contained in a separate subroutine. A driver routine calls eachsubroutine with vector lengths of 10, 100, and 1000.An example loop is shown in Figure 1. Relevant operands are initialized once at the start ofthe loop. An outer repetition loop is used to increase the granularity of the calculation, therebyavoiding problems with clock resolution. A call to a dummy subroutine is included in eachiteration of the repetition loop so that, in cases where the inner loop calculation is invariantwith respect to the repetition loop, the compiler is still required to execute each iteration ratherthan just recognizing that the calculation needs to be done only once.After execution of the loop is complete, a checksum is computed by using the result array(s).The checksum and the time used are then passed to a check subroutine. The check subroutineveri�es the checksum with a precomputed result and prints out the time to execute the loop.The time is calculated by calling a timer at the start of the loop and again at the end of theloop and taking the di�erence of these times minus the cost of the timing call and the cost ofthe multiple calls to the dummy subroutine.4 Test MethodologyThe test program is distributed in two �les: a driver program in one �le, and the test loops inthe other. The �les were distributed to interested vendors, who were asked to compile the loopswithout making any changes� using only the compiler options for automatic vectorization. Thus,the use of compiler directives or interactive compilation features to gain additional vectorizationwas not tested. Vendors were asked to make two separate runs of the test: one using scalaroptimizations only, and the other using the same scalar optimizations and, in addition, allautomatic vectorization options. Vendors with multiprocessor computers submitted uniprocessorresults only. Appendix A contains details of the exact machine con�gurations and versions ofthe software used.The rules require separate compilation of the two �les. The rules for compilation of the�One vendor was allowed to (1) separate a 135-way IF-THEN-ELSEIF-ELSE construct in order to overcome aself-imposed limit, and (2) include the array declarations in a common block in the driver program (only) in orderto overcome a self-imposed limit on memory allocation size. Neither modi�cation had any impact on performance.5

subroutine s111 (ntimes,ld,n,ctime,dtime,a,b,c,d,e,aa,bb,cc)integer ntimes, ld, n, i, nlreal a(n), b(n), c(n), d(n), e(n), aa(ld,n), bb(ld,n), cc(ld,n)real t1, t2, second, chksum, ctime, dtime, cs1dcall init(ld,n,a,b,c,d,e,aa,bb,cc,'s111 ')t1 = second()do 1 nl = 1,2*ntimesdo 10 i = 2,n,2a(i) = a(i-1) + b(i)10 continuecall dummy(ld,n,a,b,c,d,e,aa,bb,cc,1.)1 continuet2 = second() - t1 - ctime - (dtime * float(2*ntimes))chksum = cs1d(n,a)call check (chksum,2*ntimes*(n/2),n,t2,'s111 ')returnend Figure 1: Example loopdriver �le require that no compiler optimizations be used and that the �le not be analyzedinterprocedurally to gather information useful in optimizing the test loops.The �le containing the loops was compiled twice|once for the scalar run and once for thevector run. For the scalar run, global (scalar) optimizations were used. For the vector run,in addition to the same global optimizations speci�ed in the scalar run, vectorization and |if available | automatic call generation to optimized library routines, function inlining, andinterprocedural analysis were used.All �les were compiled to use 64-bit arithmetic. Most runs were made on standalone systems.�For virtual memory computers, the runs were made with a physical memory and working-setsize large enough that any performance degradation from page faults was negligible. In all casesthe times reported to us were user CPU time.After compiling and executing the loops, the vendors sent back the compiler's output listing(source echo, diagnostics, and messages) and the output of both the scalar and vector runs.We then examined the compiler's output listings to see which loops had been vectorized, andanalyzed the scalar and vector results. In addition to measuring the execution time of the loops,we checked the numerical result in order to verify correctness. However, the check was strictlyfor correctness of the numerical result; no attempt was made to see whether possibly unsafetransformations had been used.�The Cray Computer and Hitachi runs were not. 6

5 Number of Loops VectorizedIn this section we discuss the number of loops that were vectorized, as reported by the compiler'soutput listing. All of the loops in our test are amenable to some degree of vectorization. Forsome loops, this may only be partial vectorization; for others, vectorization may require the useof optimized library routines or special hardware.5.1 De�nition of VectorizationWe de�ne a statement as vectorizable if one or more of the expressions in the statement involvearray references or may be converted to that form. We de�ne three possible results for a compilerattempting to vectorize a loop. A loop is vectorized if the compiler generates vector instructionsfor all vectorizable statements in the loop. A loop is partially vectorized if the compiler generatesvector instructions for some, but not all, vectorizable statements in the loop. No threshold isde�ned for what percentage of a loop needs to be vectorized to be listed in this category, onlythat some expression in a statement in the loop is vectorized. A loop is not vectorized if thecompiler does not generate vector instructions for any vectorizable statements within the loop.For some loops the Cray Research, FPS Computing, IBM, and NEC compilers generated aruntime IF-THEN-ELSE test which executed either a scalar loop or a vectorized loop. Theseloops have been scored as either vectorized or not vectorized according to whether or notvectorized code was actually executed at runtime.The Cray Computer compiler \conditionally vectorized" certain loops. That is, for loopswith ambiguous subscripts, a runtime test was compiled that selected a safe vector length.�These loops have been scored as either vectorized if the safe vector length was greater than one,otherwise not vectorized.For a number of loops, the Fujitsu compiler generated scalar code even though the compilerindicated that partial vector code could be generated. In these cases, the compiler listingcontained the message \Partial vectorization overhead is too large," indicating that althoughpartial vectorization was possible, for these loops the compiler considered scalar code moree�cient. These loops have been scored as partially vectorized.Our de�nition of vectorization counts as vectorized those loops that are recognized by thecompiler and automatically replaced by calls to optimized library routines. In some cases acompiler may generate a call to an optimized library routine rather than explicitly generatingvector code. Typical examples are for certain reduction and recurrence loops. Often the libraryroutines use a mix of scalar and vector instructions; while perhaps not as fast as pure vectorloops, since the construct itself is not fully parallel, they are usually faster than scalar execution.In all cases where the compiler automatically generated a call to a library routine, we have scoredthe loop as vectorized.�A safe vector length is one that allows the compiler to execute vector instructions and still produce thecorrect result. For example, the statement A(I)=A(I-7) with loop increment one may be executed in vector modewith any vector length less than or equal to 7. 7

Table 1: Full Vectorization (122 loops)Computer V P NCONVEX C210 68.0 (83) 10.7 (13) 21.3 (26)CCC CRAY-2 60.7 (74) 1.6 (2) 37.7 (46)CRI CRAY Y-MP 77.9 (95) 8.2 (10) 13.9 (17)DEC VAX 9000-210 60.7 (74) 3.3 (4) 36.1 (44)FPS M511EA-2 72.1 (88) 4.9 (6) 23.0 (28)Fujitsu VP2600/10 71.3 (87) 16.4 (20) 12.3 (15)Hitachi S-820/80 71.3 (87) 7.4 (9) 21.3 (26)IBM 3090-600J 77.9 (95) 4.9 (6) 17.2 (21)NEC SX-X/14 72.1 (88) 5.7 (7) 22.1 (27)Average 70.2 (85) 7.0 (8) 22.8 (27)V { vectorizedP { partially vectorizedN { not vectorizedV/P { fully or partially vectorizedFigure 2: Key to symbols for Tables 1{8, 12{135.2 ResultsTables 1{6 list the results of analyzing the compilers' listings. Each table contains the percentageof loops in each column, followed by the actual number in parentheses. Table 1 summarizes theresults for all 122 loops. Table 2 is also a summary of all the loops; here, however, the columnV/P counts the loops that were either fully or partially vectorized. Tables 3{6 contain resultsby category as de�ned in Section 2.Table 2: Full and Partial Vectorization (122 loops)Computer V/P NCONVEX C210 78.7 (96) 21.3 (26)CCC CRAY-2 62.3 (76) 37.7 (46)CRI CRAY Y-MP 86.1 (105) 13.9 (17)DEC VAX 9000-210 63.9 (78) 36.1 (44)FPS M511EA-2 77.0 (94) 23.0 (28)Fujitsu VP2600/10 87.7 (107) 12.3 (15)Hitachi S-820/80 78.7 (96) 21.3 (26)IBM 3090-600J 82.8 (101) 17.2 (21)NEC SX-X/14 77.9 (95) 22.1 (27)Average 77.2 (94) 22.8 (27)8

Table 3: Dependence Analysis (29 loops)Computer V P NCONVEX C210 65.5 (19) 17.2 (5) 17.2 (5)CCC CRAY-2 69.0 (20) 0.0 (0) 31.0 (9)CRI CRAY Y-MP 86.2 (25) 0.0 (0) 13.8 (4)DEC VAX 9000-210 69.0 (20) 0.0 (0) 31.0 (9)FPS M511EA-2 82.8 (24) 0.0 (0) 17.2 (5)Fujitsu VP2600/10 65.5 (19) 24.1 (7) 10.3 (3)Hitachi S-820/80 55.2 (16) 10.3 (3) 34.5 (10)IBM 3090-600J 86.2 (25) 0.0 (0) 13.8 (4)NEC SX-X/14 75.9 (22) 6.9 (2) 17.2 (5)Average 72.8 (21) 6.5 (1) 20.7 (6)Table 4: Vectorization (41 loops)Computer V P NCONVEX C210 73.2 (30) 14.6 (6) 12.2 (5)CCC CRAY-2 34.1 (14) 4.9 (2) 61.0 (25)CRI CRAY Y-MP 56.1 (23) 22.0 (9) 22.0 (9)DEC VAX 9000-210 58.5 (24) 7.3 (3) 34.1 (14)FPS M511EA-2 61.0 (25) 14.6 (6) 24.4 (10)Fujitsu VP2600/10 68.3 (28) 24.4 (10) 7.3 (3)Hitachi S-820/80 78.0 (32) 9.8 (4) 12.2 (5)IBM 3090-600J 75.6 (31) 12.2 (5) 12.2 (5)NEC SX-X/14 65.9 (27) 12.2 (5) 22.0 (9)Average 63.4 (26) 13.6 (5) 23.0 (9)Table 5: Idiom Recognition (24 loops)Computer V P NCONVEX C210 66.7 (16) 4.2 (1) 29.2 (7)CCC CRAY-2 70.8 (17) 0.0 (0) 29.2 (7)CRI CRAY Y-MP 87.5 (21) 4.2 (1) 8.3 (2)DEC VAX 9000-210 54.2 (13) 4.2 (1) 41.7 (10)FPS M511EA-2 70.8 (17) 0.0 (0) 29.2 (7)Fujitsu VP2600/10 87.5 (21) 8.3 (2) 4.2 (1)Hitachi S-820/80 91.7 (22) 4.2 (1) 4.2 (1)IBM 3090-600J 58.3 (14) 0.0 (0) 41.7 (10)NEC SX-X/14 87.5 (21) 0.0 (0) 12.5 (3)Average 75.0 (18) 2.8 (0) 22.2 (5)9

Table 6: Language Completeness (28 loops)Computer V P NCONVEX C210 64.3 (18) 3.6 (1) 32.1 (9)CCC CRAY-2 82.1 (23) 0.0 (0) 17.9 (5)CRI CRAY Y-MP 92.9 (26) 0.0 (0) 7.1 (2)DEC VAX 9000-210 60.7 (17) 0.0 (0) 39.3 (11)FPS M511EA-2 78.6 (22) 0.0 (0) 21.4 (6)Fujitsu VP2600/10 67.9 (19) 3.6 (1) 28.6 (8)Hitachi S-820/80 60.7 (17) 3.6 (1) 35.7 (10)IBM 3090-600J 89.3 (25) 3.6 (1) 7.1 (2)NEC SX-X/14 64.3 (18) 0.0 (0) 35.7 (10)Average 73.4 (20) 1.6 (0) 25.0 (7)5.3 Analysis of ResultsThe average number of loops vectorized was 70%, and vectorized or partially vectorized was77%. The best results were 78% and 88%, respectively. Of the 122 loops, only two were notvectorized or partially vectorized by any of the compilers; both loops are vectorizable. There isprobably no signi�cant di�erence between compilers within a few percent of each other. Slightdi�erences may be due to di�erent hardware, the availability of special software libraries, thearchitecture of a machine being better suited to executing scalar or parallel code for certainconstructs, or the makeup of the loops used in our test.From Table 1 we see that the Cray Research and IBM compilers vectorized the most loops. Alarge number of other compilers are grouped closely together and only a few loops behind thesetwo. Comparing Table 1 to Table 2, we see that counting partially vectorized loops in the totalsallows the Fujitsu compiler to vectorize the most loops. It is interesting to note, however, thatof the 20 loops we counted as partially vectorized by the Fujitsu compiler, only two actuallyresulted in (partial) vector code being executed at runtime. For the other 18 loops the Fujitsucompiler made the decision that it would not be cost e�ective to partially vectorize them. TheConvex compiler also did a signi�cant amount of partial vectorization.Tables 3{6 show that some compilers did particularly well in certain categories. The CrayResearch, FPS Computing, and IBM compilers had the best results in the Dependence Analysiscategory. The Convex, Hitachi, and IBM compilers had the best results in the Vectorizationcategory. The Cray Research, Fujitsu, Hitachi, and NEC compilers had the best results in theIdiom Recognition category. In the Language Completeness category the Cray Research andIBM compilers had the best results. The Vectorization category seemed the most di�cult, withapproximately 10% fewer loops vectorized overall than for the other sections.Certain sections seemed fairly easy, with most vendors vectorizing or partially vectorizingalmost all of the loops. Using the classi�cation scheme of Section 2 these sections were lineardependence testing, global data-
ow analysis, statement reordering, loop distribution, nodesplitting, scalar renaming, control
ow, diagonals, loop rerolling, parameters, intrinsic functions,indirect addressing, and statement functions.In some sections, while many vendors vectorized or partially vectorized most loops, various10

individual vendors did not do particularly well. These sections were induction variable recog-nition, interprocedural data-
ow analysis, symbolics, scalar and array expansion, reductions,search loops, packing, and nonlogical IF'S.Some sections were di�cult for many compilers. Typically, at least half the vendors missedat least some, and sometimes most, of the loops in these sections. These sections were control
ow, loop interchange, index set splitting, loop peeling, recurrences, loop recognition, storageclasses and equivalencing, and nonlocal GO TO's.A few sections were particularly di�cult, with only one or two compilers doing any vectoriza-tion at all. These sections were nonlinear dependence testing, wavefronts, and call statements.We found that some vendors with approximately equal results did much better in one sectionthan another. Certain induction variable tests, interprocedural data-
ow analysis, loop inter-change, recurrences, loop recognition, storage classes and equivalence statements, and loopswith exits were the sections that showed the greatest variation. We conclude that the compilervendors have focused their e�orts on particular subsets of the features tested by the suite. Pos-sible reasons might include hardware di�erences or (self-imposed) limits on compilation time,compilation memory use, or the size of the generated code.Individual results, on a loop-by-loop basis, may be found in Appendix B.6 SpeedupThe goal of vectorization is for the vectorized program to execute in less time than the unvec-torized program. The metric used is the speedup, sp, de�ned as sp = ts=tv , where ts is the scalartime and tv is the vector time. In this section we look at two aspects of speedup. First, doesthe vector code run slower than the corresponding scalar code? Second, how large a speedupcan be gained with vectorization?6.1 Vectorized Loops RevistedIdeally the speedup from vectorization (or partial vectorization) should be as large as possible.At a minimum, though the vector code should run at least as fast as the scalar code. However,this minimum is not always achieved, particularly at short vector lengths where there may notbe enough work in the loop to overcome the vector startup cost.Tables 7 and 8 revisit the results in Table 1. The number of loops in each of the di�erentcategories is again taken from the compiler listing. In Tables 7 and 8 however, we have notcounted as vectorized or partially vectorized any loops where sp < .95.� The results in Table 7are for vector length 100, and the results in Table 8 are for vector length 1000. We have notpresented these results for vector length ten since almost all vendors su�er some performancedegradation for short vectors.The results in Tables 7 and 8 are mostly consistent with Table 1. Four of the compilers show�We use .95 instead of 1 to allow for the possibility of measurement error.11

Table 7: Loops Vectorized (sp > :95, Vector length = 100, 122 loops)Computer V P NCONVEX C210 68.0 (83) 9.0 (11) 23.0 (28)CCC CRAY-2 60.7 (74) 0.8 (1) 38.5 (47)CRI CRAY Y-MP 77.9 (95) 7.4 (9) 14.8 (18)DEC VAX 9000-210 49.2 (60) 2.5 (3) 48.4 (59)FPS M511EA-2 71.3 (87) 3.3 (4) 25.4 (31)Fujitsu VP2600/10 68.9 (84) 13.1 (16) 18.0 (22)Hitachi S-820/80 69.7 (85) 1.6 (2) 28.7 (35)IBM 3090-600J 71.3 (87) 4.1 (5) 24.6 (30)NEC SX-X/14 72.1 (88) 2.5 (3) 25.4 (31)Average 67.7 (82) 4.9 (6) 27.4 (33)Table 8: Loops Vectorized (sp > :95, Vector length = 1000, 122 loops)Computer V P NCONVEX C210 68.0 (83) 8.2 (10) 23.8 (29)CCC CRAY-2 60.7 (74) 0.8 (1) 38.5 (47)CRI CRAY Y-MP 77.9 (95) 7.4 (9) 14.8 (18)DEC VAX 9000-210 54.9 (67) 2.5 (3) 42.6 (52)FPS M511EA-2 71.3 (87) 4.1 (5) 24.6 (30)Fujitsu VP2600/10 69.7 (85) 15.6 (19) 14.8 (18)Hitachi S-820/80 70.5 (86) 1.6 (2) 27.9 (34)IBM 3090-600J 73.0 (89) 4.1 (5) 23.0 (28)NEC SX-X/14 72.1 (88) 2.5 (3) 25.4 (31)Average 68.7 (83) 5.2 (6) 26.1 (31)no degradation on any of the vectorized loops. Three others show a degradation on only oneor two loops. Only two compilers show a degradation on any signi�cant number of loops. Theresults for partial vectorization are also fairly consistent with Table 1, with only one compilershowing any serious number of loops being degraded. There is a large variance in the test suiteas to which loops have degraded performance. No particular trend is obvious.Two compilers also su�ered noticeable performance degradations (below 90%) for a signi�cantnumber of loops (10 or more) that were not vectorized. We believe somehow that the attemptto vectorize interfered with the generation of good scalar code. We view this as a performancebug and have advised the vendors. Other than these cases, the vectorizers rarely generated codethat was inferior to the scalar code on vector lengths of 100 or more. An exception is the nineloops the CRAY-2 compiler-generated vector code for with a safe vector length of one. Theseloops, although scored as not vectorized, had vector execution times that were frequently twicethe scalar execution times.6.2 Aggregate Speedup ResultsThe speedup that can be achieved on a particular vector computer depends on several factors:the speed of the vector hardware relative to the speed of the scalar hardware, the inherent12

Table 9: Aggregate Speedup Results by Section (122 loops)Section 10 100 1000 All VLData Dependence 1.44 0.90 5.09 1.87 12.25 2.15 6.26 1.42Vectorization 1.37 0.97 5.11 1.74 21.32 1.91 9.27 1.41Idiom Recognition 0.95 0.73 3.66 1.73 11.52 2.29 5.38 1.26Language Completeness 1.55 1.07 4.72 1.90 9.63 2.13 5.30 1.55All Sections 1.35 0.92 4.73 1.80 14.55 2.08 8.61 1.41Table 10: Aggregate Speedup Results by Type of VectorizationVectorization Level 10 100 1000 All VLFull Vectorization 1.54 0.96 6.29 3.11 20.20 4.48 9.34 1.90Full or Partial Vectorization 1.47 0.93 5.85 2.61 18.56 3.48 8.63 1.72Partial Vectorization 0.83 0.68 1.41 1.00 2.21 1.07 1.49 0.88vector parallelism in the code of interest, and the sophistication of the compiler in detectingopportunities to generate code to run on the vector hardware. From the perspective of ourtest, we would like to measure the speedup achieved just from the compiler's vectorizationcapabilities. However, speedups are too strongly in
uenced by architecture and implementationto be meaningful indicators of compiler performance. Therefore, we prefer not to give speedupresults for individual vendors which may be misinterpreted as representing compiler performanceonly. Instead, we present speedup statistics using the aggregate results from all vendors.Table 9 presents a summary of the speedup results of all vendors. The �rst four rows presentresults according to the classi�cation scheme in Section 2. Results are given for vector lengthsof 10, 100, and 1000 and, in the last column, the sum over all three vector lengths. Each columncontains the arithmetic and harmonic means of the speedups for the loops in that section. Theresults in the last row are summed over all four sections.Table 10 contains aggregate statistics for three di�erent levels of vectorization. The formatof the table is similar to Table 9. The �rst row contains speedup statistics for the 771 loopsscored as fully vectorized. The second row contains speedup statistics for the 848 loops scoredas either fully or partially vectorized. The last row contains speedup statistics for the 77 loopsthat were partially vectorized.6.3 Discussion of SpeedupAs might be expected, at the relatively short vector length of 10, the speedups were not verylarge. This is particularly true of the Idiom Recognition section, where the methods used tovectorize some of the loops are not amenable to the full speedup that can be provided by thehardware. At vector length 100 most speedups were between three and six. At the longest vectorlength, 1000, the individual speedups were slightly higher for most. Three vendors however, hadvery large average speedups (29.4, 33.2, and 39.8) over the scalar speed.The choice of mean clearly a�ects the results. In the Vectorization section, the arithmeticmean at vector length 1000 is 21.32, while the harmonic mean is only 1.91. These resultsshow that a relatively small number of large speedups can greatly a�ect the arithmetic mean.13

McMahon [10] and Smith [12] discuss the di�erent means.If we compare the last row of Table 9 with the �rst two rows in Table 10, we see betterspeedups at all vector lengths when we consider only the loops fully or partially vectorized. Ofcourse which loops were included, and how many, varies for each vendor.In several loops in the test suite, not all statements can be vectorized. A compiler can stillimprove performance by partial vectorization | vectorizing some, but not all, of the statements.As Table 10 shows, the speedups from partial vectorization are signi�cantly less than thosefrom full vectorization. There are several reasons for this result. First, since by de�nitionpartial vectorization vectorizes only some of the statements in a loop, others still run at scalarspeeds. Second, our de�nition of partial vectorization classi�es as such a loop that uses anyvector instructions, no matter how much of the loop is executed in scalar mode. Finally, manytechniques for partial vectorization introduce extra work, such as extra loads and stores andadditional loop overhead, which is not required in the original loop.Even with these caveats we see from the last row in Table 10 that there is still a bene�t tobe gained from partial vectorization, but primarily at the longer vector lengths. Even moreso than with full vectorization, partial vectorization | at least on the test loops | degradesperformance at vector length of ten.7 Percent VectorizationIn this section we focus on the performance of the compiler independent of the computer arch-tecture. We do this by developing a machine-speci�c model of what optimal vector performanceis for each of the loops in our test suite. We then compare the optimal performance predictedby this model with the actual vector execution results to determine the percent of the optimalvector performance actually achieved.7.1 A Model of Compiler PerformanceA simple model of vector performance as a function of vector length is given by the formula [8]t = to + nte; (1)where t is the time to execute a vector loop of length n, to is the vector startup time, and te isthe time to execute a particular vector element. Equivalent to (1) is the well-known model ofHockney (see Hockney and Jesshope [5]),t = r�11 (n+ n1=2); (2)where r1 is the asymptotic performance rate and n1=2 is the vector length necessary to achieveone half the asymptotic rate. Equations (1) and (2) can be shown to be equivalent if we use thede�nitions r1 = t�1e and n1=2 = to=te [5].As Lubeck [7] points out, neither equation models the stripmining process used by compilerson register-to-register vector computers. Also, (1) and (2) may not re
ect the behavior of cache-14

Table 11: Basic Operation ClassesClass Operation0 Load0 Gather (Load indirect)1 Store1 Scatter (Store indirect)2 Arithmetic (Add, Multiply)2 Reductionsbased machines under increasing vector lengths (see, for example [1]). Nevertheless, for thepurposes of our model we believe (1) and (2) to be su�cient.By analogy with r1, for each loop, we de�ne three rates: rs for the optimized scalar code,rv for the vector code, and ro for optimal vector code for the target machine. These rates arede�ned in units of the number of iterations per second of the loop. We assume rs < ro, and weexpect rs � rv � ro, although (as the previous section indicated) it is possible to have rv < rs.Using the scalar and vector data collected, we can solve (2), for each loop, for rs and rv,respectively. Since we cannot necessarily assume rv = ro, we must estimate ro. To do this, weassume that the execution time of a loop is determined by the basic operations in the loop. Todetermine the rate at which basic operations (e.g., addition or load) can be performed, we usethe control loops, which we assume can be optimally vectorized.We divide the basic operations into classes. Each class contains operations that utilize aspeci�c functional unit. For example, Table 11 lists the basic operations in each class for ageneric computer with separate load and store pipes.�The list of which operations belong to which classes varies by vendor, primarily with respectto the memory operations. For example, on a machine with separate load and store pipes, theload and gather operations are in one class (they compete for the load pipe), and the store andscatter operations are in another class (they compete for the store pipe). For machines withonly one pipe for all memory accesses the four memory operations are all in the same class.Even though these operations all have their own execution rates, when they compete for thesame resources they are in the same class.To model control
ow, we assume an \execute under mask" model in which every operationis assumed to be executed in vector mode, and the results of various control paths are mergedtogether. Alternative strategies are possible, such as using compress and expand to performarithmetic only where selected, but we found that execute under mask was su�cient for ourpurposes.On each computer, and for each loop L, we estimate its optimal execution rate ro, using�This table could be extended by subdividing classes into special cases. For example, the arithmetic classcould be divided into separate addition and multiplication classes. For machines that can execute adds andmultiplies concurrently | all machines in this study | these multiple functional units are modeled as simply ahigher arithmetic-processing rate. The di�erence in execution times between computing the elementwise sum ofthree vectors and the elementwise product was insigni�cant for all computers. This fact is not surprising, sincethe rate limiting step for almost all loops in the suite is memory references, and so this distinction would notchange our results signi�cantly. 15

maxtime 0foreach c 2 C occuring in Ltime 0foreach o 2 ctime time+No=Roendformaxtime max(time;maxtime)endforro 1=maxtimeFigure 3: Algorithm for Estimating Optimal Execution Ratethe algorithm shown in Figure 3. Here C represents the set of classes de�ned for a particularcomputer, o the operations in a class, No the number of instances of o in L, and Ro the rate foroperation o (in units of operations per second) measured with the control loops. The algorithmassumes that operations in di�erent classes execute concurrently while operations in the sameclass execute sequentially.This model is based on the notion of a resource limit, similar to the model used to calculateperformance bounds in [9, 13]. We assume that for each loop there exists a particular classof operations that use the same function unit and that the time to execute these operationsprovides a lower bound on the time to execute the loop. The algorithm in Figure 3 calculatesthat bound, and we use its reciprocal as ro.In addition to measuring the basic vector operation rates, we also measure the basic scalaroperation rates. For each loop, we then determine which operations can be executed in vectormode and which must be executed in scalar mode. We then modify the algorithm in Figure 3to use the appropriate rate (vector or scalar) for Ro for each operation.For each loop and each vendor, we have now determined the three execution rates: ro usingthe algorithm given in Figure 3, and rs and rv using (2). All three rates were computed byusing the data for vector lengths of 100 and 1000. We now de�ne percent vectorization, pv, bythe formula pv = rv � rsro � rs : (3)With this de�nition, if a loop's vector execution rate is the same as the scalar rate, pv = 0%, andif a loop's vector execution rate is the same as the optimal vector execution rate, pv = 100%.We can now classify a loop as vectorized, partially vectorized, or not vectorized according to thevalue of pv . We do this according to the ruleResult = 8><>: n pv < 10%p 10% � pv < 50%v 50% � pv : (4)16

7.2 ExampleIn this section we show an example of the computation of pv for two computers, C1 and C2.We assume that C1 has two load pipes and a store pipe and that C2 has one pipe used for bothloads and stores.The example used is the loop shown in Figure 1. For this loop we have the following pro�leof basic operations,� No:Load Store Gather Scatter Arithmetic Reductions0 2 0 1 0 0 0 0 0 1 0 0The �rst number in each pair is the number of scalar operations, and the second is the numberof vectorizable operations. In this example, executing the loop requires two vector loads, onevector store, and a vector addition. No scalar operations are required (our model takes intoaccount scalar operations that occur within the loop body, but not scalar operations, such asincrementing the loop control variable or testing for loop termination, that have to do with theloop control itself).Using the results of the control loops, we have calculated the following basic vector operationrates. The units are in million of operations per second.Computer Load Store ArithmeticC1 227 150 269C2 186 207 286Using these values and the loop pro�le above, we can estimate ro with the algorithm shownin Figure 3. The result of these calculations is that, for C1, the optimal vector execution rate is114 million iterations per second, and for C2 it is 64 million iterations per second.Using the scalar and vector results for vector lengths 100 and 1000, we determined the follwingresults for rs and rv by solving (2): Computer rs rvC1 12.3 115.C2 10.7 19.8Substituting the appropriate values for rs; rv, and ro, into (3), we calculated pv = 100% for C1and pv = 17% for C2. Applying (4), we determined that C1 fully vectorizes this loop and thatC2 partially vectorizes this loop.7.3 ResultsTable 12 is similar to Table 1, except here the number of loops vectorized or partially vectorizedhas been determined by applying (3) and (4) as opposed to analyzing the compiler's output�From Appendix C. 17

Table 12: Full Vectorization according to (3) and (4) (122 loops)Computer V P NCONVEX C210 51.6 (63) 14.8 (18) 33.6 (41)CCC CRAY-2 36.1 (44) 24.6 (30) 39.3 (48)CRI CRAY Y-MP 54.1 (66) 25.4 (31) 20.5 (25)DEC VAX 9000-210 45.1 (55) 8.2 (10) 46.7 (57)FPS M511EA-2 52.5 (64) 18.0 (22) 29.5 (36)Fujitsu VP2600/10 53.3 (65) 13.1 (16) 33.6 (41)Hitachi S-820/80 52.5 (64) 15.6 (19) 32.0 (39)IBM 3090-600J 51.6 (63) 18.9 (23) 29.5 (36)NEC SX-X/14 46.7 (57) 21.3 (26) 32.0 (39)Average 49.3 (60) 17.8 (21) 33.0 (40)listing.In comparing Table 12 to Table 1 we observe that the results are mostly consistent with Table1, with a somewhat tighter grouping among vendors with the most loops vectorized. Mostcompilers vectorized between 20 and 30 loops which did not acheive full vector performance(pv � 50%). Appendix B contains complete results.Casual inspection of the data indicates that there are a number of loops for which at mostone vendor successully achieved vector performance and all other vendors that vectorized didnot. Approximately 23 loops account for most of the di�erences between the two measures ofvectorization. For the most part, these loops are scattered across categories but they includemost of the scalar expansion loops, the search loops, the packing loops, and the loops withmultiway branching.Factors other than simple detection of vectorizablility are re
ected in the computation of vec-torization percentages. In particular, traditional optimizations such as common subexpressionelimination, register allocation, and instruction scheduling will all in
uence the quality of thegenerated code and hence the percentage of vectorization. In this sense, the percentage is morea measure of the overall quality of the compiler generated code.Optimal code generation and, in particular, instruction scheduling for very simple loops areextremely di�cult. For loops with large bodies, heuristic algorithms will usually get within asmall number of instructions of what is optimal. When the loop body contains only �ve or teninstructions, however, being o� by a \small" number could cost 25% of achievable performance.Thus, since almost all of the loops in the suite are very simple, the compilers may performsubstantially better on \real" codes than is suggested by Table 12.That the measured execution rates are lower than what might be expected from \vector" codemay be due to model limitations. For example, the model treats unit and nonunit stride vectoraccesses as equal in cost: there was no convincing evidence that nonunit stride was a factorworth adding to the operation classes listed in Table 11. The other major factor not modeled isthe presence of a data cache, its size and its organization. This is discussed in Section 8.3.1.One issue that biases the results presented here is that we use the measured performance onsimple loops to calibrate the model. Thus our \optimal rates" may be signi�cantly below \ma-18

chine peaks" since those peaks may be achievable only assuming optimal compilation. Further, ifthe code generation capabilities of one compiler are generally poor compared with another, thenits ability to vectorize may appear in
ated, since our estimate of optimal execution rate may betoo low. This situation can be corrected by replacing the control loops with numbers derivedfrom hand-crafted assembly routines that would provide estimates of \achievable peaks." Wedid not have the resources to generate these numbers for each machine.8 Discussion8.1 Validity of the Test SuiteHow good is this test suite? The question can be answered in several ways, but we will addressthree speci�c areas: coverage, stress, and accuracy.8.1.1 CoverageBy \coverage" we refer to how well the test suite represents typical, common, or importantFortran programming practices. We would like to assert that high e�ectiveness on the testsuite will correspond to high e�ectiveness in general. Unfortunately, there is no accepted suiteof Fortran programs that can be called representative, and so we have no quantitative way ofdetermining the coverage of our suite. We believe, however, that the method used to select thetests has yielded reasonable coverage. This method consisted of two phases.In the �rst phase, a large number of loops were collected from several vendors and interestedparties. This gave a diverse set of viewpoints, each with a di�erent machine architecture andhence somewhat di�erent priorities. In some cases the loops represented \real" code from pro-grams that had been benchmarked. The majority, however, were speci�cally written to test avectorizing compiler for a particular feature. Independently, the categorization scheme used inSection 2 was developed based on experience and on published literature about vectorization.In the second phase, the test suite was culled from the collected loops by classifying each loopinto one or more categories and then selecting a few representative loops from each category.Our interest was in coverage; and since \representative" is not well de�ned, we made no attemptto weight some of the subcategories more than others by changing the number of loops. Wherewe felt that testing a subcategory required a range of situations, we included several loops; inother cases we felt that one or two loops su�ced. There is signi�cant weighting between majorcategories. For example, the test suite places greater emphasis on basic vectorization (41 loops)than on idiom recognition (24 loops). This weighting was an artifact of the selected categoriesand was re
ected in the original collection of samples. We felt that this weighting was reasonableand made no attempt to adjust it. 19

Table 13: Loops Sorted by Di�culty
Table 14: Loops Sorted by Di�culty, from [3]8.1.2 StressBy \stress" we refer to how e�ectively the test suite tests the limits of the compilers. We wishthe test to be di�cult but not impossible. Again there is no absolute metric against which wecan measure the test suite, but we can use the performance of the compilers as a measure. Table13 lists the results for the various compilers. In this table, each row corresponds to a particularcompiler. Rows are sorted in order of decreasing full and partial vectorization (see Table 2).Each column corresponds to a particular loop, and the columns are sorted in order of increasingdi�culty.The loop scores at the bottom of Table 13 are based on the number of compilers that vectorizedor partially vectorized the loop. Many of the loops are inherently only partially vectorizable,and so we have not attempted to weight full versus partial vectorization. We interpret a lowscore as an indication of a di�cult test. From the table we observe a skewed distribution ofresults, with many of the loops \easy" (everyone vectorizes) and only a few \di�cult" (only oneor two vendors even partially vectorizes).Viewed from a historical perspective, the test appears less stressful now than it did originally.We can see this qualitatively from Table 14, which is reprinted from [3]. Here there seems to be20

a more balanced distribution of tests between \easy" and \di�cult" when compared to Table13. Statistics also support this view. In [3] the average number of loops vectorized was 55%, andvectorized or partially vectorized was 61%. Even if we restrict ourselves to just the eight vendorsalso participating in this test, the previous results are still only 59% and 64%, respectively. Inthis test the average number of loops vectorized was 70%, and vectorized or partially vectorizedwas 77%, an improvement of about 15%Several factors may be at work. First, compilers have evolved and improved over time. Second,specialized third-party compiler technology is now readily available to interested vendors. Third,for various reasons approximately half the vendors who participated in the previous test did notparticipate this time. While those who did not participate span the spectrum of previous results,most had results in the lower or middle part of the previous test. While we added new loops tothis test (and also deleted a small number), this does not seem to have provided adequate stress.Since one valid use of this test suite is for compiler writers to diagnose system de�ciencies, weexpect over time that the test will lose its e�ectiveness to stress compilers.8.1.3 AccuracyBy \accuracy" we refer to how well the test can measure the quality of a vectorizing compiler.Since the di�culty of the tests was determined by the performance of the compilers, it would becircular now to judge the absolute quality of the compilers by their performance on this suite.What about relative performance? It is tempting to distill the results for each compiler intoa single number and use that to compare the systems. Such an approach, however, is clearlyincorrect, since these compilers cannot be compared in isolation from the machine environmentand target application area for which they were designed.We conclude that the suite represents reasonable coverage, that the stress may no longer beadequate, and that we cannot determine the accuracy of the suite.8.2 Beating the TestSome of the loops were vectorized in ways that defeated the intent of the test. One example isthe use of a runtime test. If the compiler cannot determine at compile time whether a loop is safeto vectorize, because of, say, an unknown parameter value, it must either not vectorize the loopor else generate an alternative code runtime test. At runtime, based on the value of the unknownparameter, the test executes either a scalar or a vector version of the loop, as appropriate. Ingeneral, we view runtime testing as a good thing to do. It allows vectorization of loops thatwould not otherwise be vectorized and allows cost-e�ectiveness decisions to be deferred untilruntime. However, it has a negative side. First, the cost of the test is incurred each time theloop is executed. Second, for large loop nests, it is possible to have a combinatorial explosionin the number of tests generated. All of the loops in our test suite can be determined to bevectorizable at compile time, and thus runtime testing is not necessary. The Cray Research,FPS, IBM, and NEC compilers, however, can generate runtime tests and in a few cases wereable to \beat the test" this way.A technique similar to runtime testing is conditional vectorization, which was used by the21

Cray Computer compiler. With conditional vectorization, a safe vector length� is calculated atruntime. While conditional vectorization is also good for a compiler to be able to do, it alsohas a negative side. First, there is the overhead involved in calculating the safe vector length atruntime. Second, if the calculated safe vector length is one, it is more e�cient to execute a scalarinstruction rather than a vector instruction. None of the loops in our test require conditionalvectorization. Nevertheless, the Cray Computer compiler conditionally vectorized 20 loops, 11of which resulted in a safe vector length greater than one.Another way compilers defeated the intent of the test was by their ability to vectorize recur-rences, using either library routines or special hardware. Several of the tests call for the compilerto split up a loop (loop distribution, node splitting) or change the order of a loop nest (loopinterchange) in order to vectorize a loop containing an \unvectorizable" recurrence. Several ofthe compilers { notably those from Fujitsu, Hitachi, and NEC { were able to directly vectorizesome of these loops.We emphasize that \beating the test" is not a bad thing. While there may be more e�cientways to vectorize the loops, the techniques above are bene�cial.8.3 CaveatsWe caution that the results presented here test only one aspect of a compiler and should in noway be used to judge the overall performance of a vectorizing compiler or computer system. Theresults re
ect only a limited spectrum of Fortran constructs. We do not claim these loops arerepresentative of a \real" workload, just that they make an interesting test. Some additionalfactors are discussed below.8.3.1 Cache E�ectsTwo issues may impact machines with data caches. First, to ensure a large enough granularityfor timing purposes, we included a repetition loop around the loop of interest. While considereda necessary evil for test purposes, this arti�cial repetition raises an important question aboutdata locality. The concern is that a cache machine will bene�t from the reuse of data loadedinto cache on the �rst trip through the repetition loop and that additional references to mainmemory will not be necessary.The second issue concerns the data set size relative to the cache size. A small data set willalways �t in the cache. A large data set may not �t in the cache and will cause many performance-degrading cache misses to occur. The paper by Abu-Sufah and Maloney [1] contains a discussionof this issue and its impact on performance. Their uniprocessor performance results on an AlliantFX/8 show that there is only a narrow range of vector lengths for which optimal performancewas achieved. Our choice of 10, 100, and 1000 as the vector lengths was somewhat intuitive andwas not made with any particular cache size in mind.�See Section 5.1 22

do i = 2,n do vector i = 2,na(i) = a(i) + b(i) a(i) = a(i) + b(i)b(i) = b(i-1)*b(i-1)*a(i) enddoa(i) = a(i) - b(i) do i = 2,nenddo b(i) = b(i-1)*b(i-1)*a(i)enddodo vector i = 2,na(i) = a(i) - b(i)enddoFigure 4:8.3.2 Loop GranularityBecause of the small granularity of our loops (at most a few statements) the speedups achievablewith a certain technique may not achievable on our particular loops. As an example, vectorizingthe loop shown on the left in Figure 4 requires splitting the loop into two vectorizable loops andone scalar loop containing the nonlinear recurrence as shown on the right.For this transformation to be successful, there needs to be enough work in the loop to justifythe two additional loop overheads introduced and the extra loads and stores which are notrequired in the original loop. For this loop, inspection of the compiler listing showed that eightof the nine compilers had partially vectorized the loop, but only three achieved more than 15%of the estimated optimal performance, and only one achieved more than 50%.8.3.3 Hardware and SoftwareSome of the loops are really tests of the underlying hardware and may not accurately re
ectthe ability of the compiler itself. For example, in the statement A(I)=B(INDEX(I)) a compilermay detect the indirect addressing of array B but not generate vector instructions because thecomputer does not have hardware support for array references of this form. Other examples areloops containing IF tests that may require mask registers, or recurrences that require speciallibrary routines.Several of the computers tested are multiprocessors whose compilers support the generation ofboth parallel and vector code. Our test involved strictly uniprocessors and may have penalizedvendors who have put considerable e�ort into parallel execution. On some of these machines,parallel execution may be more e�cient than vectorization for certain loops.Another example where the computer architecture may in
uence the compiler is on machinesthat have a data cache. Compilers for such machines may concentrate on loop transformationsthat improve data locality at the expense of adding \simple" vectorization capabilities.Several vendors have sophisticated tools to aid the user in vectorization. For example, bothFujitsu and NEC o�er vectorization tools that interactively assist the user in vectorizing aprogram. Another example is an interprocedural analysis compiler from Convex, which analyzes23

an entire program at once. While all are very sophisticated tools, their use was against our rules.9 Conclusions and Future WorkOur results indicate that most of the compilers tested are fairly sophisticated, able to use a widevariety of vectorization techniques and transformations. Loops that were considered challengingseveral years ago, such as indirect addressing or vectorizing loops containing multiple IF tests,now seem routine. While there are still various vectorization challenges left to be met, we arenot sure how much they will be addressed in the future. Our perception is that most currentcompiler work is going into memory hiearchy management, parallel loop generation, highlypipelined scalar processors, and interactive and interprocedural tools. We may well be nearing aplateau as far as how much additional work vendors will put into vectorization techniques alone.Our test suite continues to evolve from simple inspection of the compiler's output listing totrying to judge the quality of the execution results. To make the test more meaningful, weplan to add the types of \real" loops found in applications. Real loops present combinations ofvectorization problems rather than individual challenges. It will then be interesting to compareresults on the \simple" loops with those on the real loops.A copy of the source code used in the test is available from the NETLIB electronic mail facility[4] at Oak Ridge National Laboratory. To receive a copy of the code, send electronic mail tonetlib@ornl.gov. In the mail message, type send vectors from benchmark or send vectord frombenchmark to get either the REAL or DOUBLE PRECISION versions, respectively.AcknowledgmentsWe thank John Lesvesque, Murray Richman, Steve Wallach, Joel Williamson, and MichaelWolfe for providing many of the loops used in this test. Thanks also to the many people involvedin running this test, providing results and constructive feedback on earlier versions.References[1] W. Abu-Sufah and A. Malony. Vector processing on the Alliant FX/8 multiprocessor. InProceedings of the 1986 International Conference on Parallel Processing, pages 559{566,1986.[2] J. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form.TOPLAS, 9(4):491{542, 1987.[3] D. Callahan, J. Dongarra, and D. Levine. Vectorizing compilers: A test suite and results.In Proceedings of Supercomputing '88, pages 98{105, 1988.[4] J. Dongarra and E. Grosse. Distribution of mathematical software via electronic mail.Communications of the ACM, 30(5):403{407, July 1987.[5] R. Hockney and C. Jesshope. Parallel Computers: Architecture, Programming and Algo-rithms. Adam Hilger, Ltd., Bristol, United Kingdom, 1981.24

[6] J. Levesque and J. Williamson. A Guidebook to Fortran on Supercomputers. AcademicPress, New York, New York, 1988.[7] O. Lubeck. Supercomputer performance: The theory, practice, and results. TechnicalReport LA-11204-MS, Los Alamos National Laboratory, 1988.[8] O. Lubeck, J. Moore, and R. Mendez. A benchmark comparison of three supercomputers:Fujitsu VP-200, Hitachi S810/20, and Cray X-MP/2. IEEE Computer, 18(12):10{23, 1985.[9] W. Mangione-Smith, S. Abraham, and E. Davidson. A performance comparison of the IBMRS/6000 and the Astronautics ZS-1. IEEE Computer, 24(1):39{46, 1991.[10] F. McMahon. The Livermore Fortran kernels: A computer test of the numercial range.Technical Report UCRL-53745, Lawrence Livermore National Laboratory, 1986.[11] D. Padua and M. Wolfe. Advanced compiler optimizations for supercomputers. Communi-cations of the ACM, 29(12):1184{1201, 1986.[12] J. Smith. Characterizing computer performance with a single number. Communications ofthe ACM, 31(10):1202{1206, 1988.[13] J. Tang and E. Davidson. An evaluation of Cray-1 and Cray X-MP performance on vector-izable Livermore Fortran kernels. In Proceedings of the 1988 International Conference onSupercomputing, pages 510{518, St. Malo, France, 1988.[14] M. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cambridge,Massachusetts, 1989.

25

Appendix ATable 15: Hardware and Software used in this test.Company Compiler Version OS VersionComputer Compiler Options Main/Cache MemoryCONVEX Computer Corp. fc 6.1 OS 9.0CONVEX C210 -O2 -uo -is 512MB/NoneCray Computer Corp. cft77 4.0.1.1 UNICOS 6.0CRAY-2 Defaults 1GB/NoneCray Research, Inc. CF77 4.0 UNICOS 5.1CRAY Y-MP -Wd"-e78b" 1GB/NoneDigital Equipment Corp. FORTRAN V5.5, HPO V1.0 VMS 5.4VAXvector 9000-210 /HPO/VECTOR/BLAS=(INLINE, 512MB/128KBMAPPED)/ASSUME=NOACC/OPTFPS Computing f77 4.3 FPX, 4.3.2FPS M511EA-2 -u -O -Oc inl+ -Oc vec+ -Oc pi+ 256MB/64KBFujitsu Fortran77EX/VP V11L10 OSIV/MSP AFII &,VP2600/10 VP(2600),OPT(F),INLINE(EXT(S151S)) VPCF V10L10VMSG(DETAIL) 1GB/NoneHitachi fort77/hap V24-0f vos3/as jss4 01-02S-820/80 sopt,xfunc(xfr), 512MB/256KBhap(model80,vist),uinlineIBM Corp. VS FORTRAN 2.4.0, VAST-2 R2 MVS/ESA SP3.1.0EIBM 3090-600J vopt(opton=r8 inline=s151s,s152s) JES2 SP3.1.1copt(opt(3) vec(rep(xlist))) 256MB/256KB512MB Extended MemoryNEC Corp. f77sx 010 SUPER-UX R1.11SX-X/14 -pi *:s151s *:s152s 1GB/64KB
26

Appendix BThe tables below contain the results, on a loop-by-loop basis, for the 122 loops in the testsuite. For each loop three columns of data are given. The �rst column is the result according tothe compiler listing: vectorized (v), partially vectorized (p), or not vectorized (n), as describedin Section 5.The second and third columns were calculated with the model described in Section 7. Thesecond column was calculated by applying (4) to pv. The third column (enclosed in parentheses)is pv, the percentage of vectorization, calculated with equation (3). An entry of \(D)" indicatesthat the vector execution rate was less than the scalar execution rate. Occasionally, the pv valuewill be higher than 100%. Some of these loops | notably s176, s352, and s4116 | seem to haveuniformly higher values, while most of the others are scattered throughout the test suite. Wehave no general explanation for these cases. Two possibilities are limitations of the model ormeasurement error.�Computer s111 s112 s113 s114 s115CONVEX C-210 v v (100) v v (99) v v (93) v p (22) v v (88)CCC CRAY-2 v p (17) v v (73) v v (56) n n (0) va v (66)CRI CRAY Y-MP v v (103) v v (79) v v (100) v v (50) v v (107)DEC VAX 9000-210 v v (97) v v (181) v v (147) v n (5) v v (83)FPS M511EA-2 v p (49) v v (86) v v (65) v p (31) v v (86)Fujitsu VP2600/10 v p (33) v v (104) v v (121) v p (41) v v (84)Hitachi S-820/80 v v (113) v v (102) v v (105) v p (32) v v (108)IBM 3090-600J v v (92) v v (103) v v (97) v n (7) v v (84)NEC SX-X/14 v v (74) v v (75) v v (69) v p (43) v v (61)Computer s116 s118 s119 s121 s122CONVEX C-210 v v (92) v p (16) v v (81) v v (100) v v (98)CCC CRAY-2 n n (0) n n (0) va v (67) v v (97) v v (77)CRI CRAY Y-MP v v (55) v v (84) v v (81) v v (73) v v (76)DEC VAX 9000-210 v n (D) v n (3) v v (59) v v (60) v v (110)FPS M511EA-2 v p (42) v p (29) v v (100) v v (86) v v (86)Fujitsu VP2600/10 v p (17) v p (35) v v (104) v v (105) v v (92)Hitachi S-820/80 v v (85) v p (18) v v (99) v v (104) n n (D)IBM 3090-600J v v (53) v n (8) v v (55) v v (100) v v (101)NEC SX-X/14 v v (189) v p (37) v v (87) v v (84) v v (75)a These loops were conditionally vectorized. For loops with ambiguous subscripts, a runtimetest was compiled which selected a safe vector length.b These loops were executed in scalar mode. The compiler indicated that partial vectorizationwas possible but that the overhead was too large.c For these loops a runtime IF-THEN-ELSE test was compiled which executed either a scalarloop or a vectorized loop.� We estimate slightly less than two decimal digits of signi�cance in the timing information collected. Hence,the percentage of vectorization calculations may have error terms of approximately 10% to 15%.27

Computer s123 s124 s125 s126 s127CONVEX C-210 p n (2) p n (2) v v (95) p n (0) v v (99)CCC CRAY-2 n n (0) n n (0) v v (99) na n (D) v v (56)CRI CRAY Y-MP n n (0) v p (37) v v (122) v v (64) v v (76)DEC VAX 9000-210 n n (D) n n (D) v p (45) n n (0) v v (119)FPS M511EA-2 n n (0) v v (68) v v (111) v p (41) v v (88)Fujitsu VP2600/10 pb n (0) pb n (0) v v (102) pb n (D) pb n (0)Hitachi S-820/80 n n (D) n n (D) v v (100) v p (13) v v (51)IBM 3090-600J n n (0) v p (46) v v (58) v v (55) v v (74)NEC SX-X/14 n n (0) n n (0) v v (103) v n (5) n n (0)Computer s128 s131 s132 s141 s151CONVEX C-210 v v (100) v v (100) v v (91) n n (0) n n (D)CCC CRAY-2 v p (35) v v (98) va v (66) n n (0) va v (68)CRI CRAY Y-MP v v (74) v v (76) v v (110) n n (0) v v (78)DEC VAX 9000-210 v v (53) v v (110) v v (108) n n (1) n n (4)FPS M511EA-2 n n (0) v v (86) v v (86) n n (0) v v (86)Fujitsu VP2600/10 pb n (0) v v (105) v v (106) p n (0) v v (106)Hitachi S-820/80 p n (D) v v (104) v v (103) p n (D) n n (D)IBM 3090-600J n n (0) v v (101) v v (95) n n (1) v v (101)NEC SX-X/14 p n (D) vc v (83) vc v (79) p n (0) v v (84)Computer s152 s161 s162 s171 s172CONVEX C-210 v v (99) p n (4) p n (4) v v (98) v v (99)CCC CRAY-2 n n (0) n n (0) va v (73) v v (78) v v (79)CRI CRAY Y-MP v v (118) n n (0) nc n (D) v v (104) v v (104)DEC VAX 9000-210 n n (D) v v (127) v v (100) n n (0) v v (110)FPS M511EA-2 v v (96) n n (0) nc n (0) v v (85) v v (86)Fujitsu VP2600/10 n n (0) v v (147) pb n (0) v v (102) v v (105)Hitachi S-820/80 v v (114) n n (D) p n (D) n n (D) n n (D)IBM 3090-600J v v (100) v v (78) nc n (0) v v (100) v v (100)NEC SX-X/14 v v (79) n n (0) vc v (98) vc v (64) v v (84)Computer s173 s174 s175 s176 s211CONVEX C-210 n n (0) n n (0) n n (8) v v (200) v v (98)CCC CRAY-2 va v (68) va v (68) va v (68) va v (57) n n (0)CRI CRAY Y-MP vc v (83) v v (84) v v (81) v v (106) v v (94)DEC VAX 9000-210 n p (12) v v (118) n n (1) v v (207) v v (132)FPS M511EA-2 vc v (85) v v (86) v v (86) v v (121) v v (93)Fujitsu VP2600/10 n n (0) n n (0) v v (104) v v (187) v v (128)Hitachi S-820/80 n n (D) n n (D) n n (D) v v (175) v v (91)IBM 3090-600J vc v (102) v v (107) v v (100) v v (58) v v (81)NEC SX-X/14 vc v (96) n n (0) v v (82) v v (106) v v (64)28

Computer s212 s221 s222 s231 s232CONVEX C-210 v v (98) p p (11) p n (6) v v (85) n n (0)CCC CRAY-2 n n (0) n n (0) n n (0) na n (D) na n (D)CRI CRAY Y-MP v v (92) p p (38) p v (65) v v (80) n n (0)DEC VAX 9000-210 v v (132) p n (5) p n (D) v v (65) n n (0)FPS M511EA-2 v v (107) v v (72) p p (38) v v (87) n n (0)Fujitsu VP2600/10 v v (107) v v (62) p n (0) v v (132) n n (0)Hitachi S-820/80 v v (98) v v (160) p n (8) v v (98) n n (D)IBM 3090-600J v v (100) p p (16) p p (47) v v (65) n n (2)NEC SX-X/14 v v (81) v p (29) p n (10) v v (87) n n (0)Computer s233 s234 s235 s241 s242CONVEX C-210 v p (39) n n (0) v v (114) v v (99) p n (5)CCC CRAY-2 pa n (D) na n (D) na n (D) n n (0) n n (0)CRI CRAY Y-MP p n (4) n n (2) v v (78) v v (52) p p (39)DEC VAX 9000-210 v n (3) n n (0) v v (78) v v (81) n n (0)FPS M511EA-2 p n (2) n n (0) v v (128) v v (65) v v (96)Fujitsu VP2600/10 p n (0) n n (0) v v (197) v v (107) v v (64)Hitachi S-820/80 v p (15) n n (0) v v (99) v v (71) v v (165)IBM 3090-600J p n (D) v v (66) v v (89) v v (67) p p (25)NEC SX-X/14 v p (30) n n (0) v v (104) v p (32) v p (30)Computer s243 s244 s251 s252 s253CONVEX C-210 v v (98) v v (81) v v (95) v p (50) v v (98)CCC CRAY-2 n n (0) n n (0) v v (94) n n (0) v p (22)CRI CRAY Y-MP v v (67) p n (4) v v (79) p n (8) v p (24)DEC VAX 9000-210 v p (48) v v (51) v v (117) n n (1) v v (71)FPS M511EA-2 v v (66) p n (D) v v (82) p n (0) v v (62)Fujitsu VP2600/10 v v (104) v v (105) v v (153) pb n (0) v v (84)Hitachi S-820/80 v v (87) p n (D) v v (93) v p (41) v v (92)IBM 3090-600J v v (52) v p (29) v v (74) v p (12) v v (80)NEC SX-X/14 v v (54) n n (0) v v (95) p n (D) v p (35)Computer s254 s255 s256 s257 s258CONVEX C-210 v p (42) v p (24) n n (D) v n (1) p n (8)CCC CRAY-2 n n (0) n n (0) n n (0) v p (13) n n (0)CRI CRAY Y-MP n n (0) n n (0) n n (0) v p (37) p n (3)DEC VAX 9000-210 n n (0) n n (1) p n (0) n n (0) n n (D)FPS M511EA-2 n n (0) n n (0) n n (0) v p (11) p n (4)Fujitsu VP2600/10 pb n (0) pb n (0) v n (5) v p (16) pb n (0)Hitachi S-820/80 v p (36) v p (25) v n (5) v p (14) n n (D)IBM 3090-600J v p (27) v p (12) n n (0) v n (D) p n (9)NEC SX-X/14 n n (0) n n (0) v n (3) n n (0) n n (0)29

Computer s261 s271 s272 s273 s274CONVEX C-210 v v (98) v v (100) v v (99) v v (98) v v (95)CCC CRAY-2 n n (0) v p (18) v p (31) v v (68) v p (36)CRI CRAY Y-MP v v (118) v p (23) v p (42) v v (84) v p (34)DEC VAX 9000-210 v v (166) v v (71) v v (129) v v (60) v p (42)FPS M511EA-2 v v (93) v v (58) v v (61) v v (112) v v (74)Fujitsu VP2600/10 v v (96) v v (101) v v (132) v v (113) v v (121)Hitachi S-820/80 v v (96) v v (108) v v (93) v v (108) v v (91)IBM 3090-600J v v (99) v v (70) v v (81) v v (61) v v (67)NEC SX-X/14 p n (D) v v (82) v v (72) v v (54) v p (45)Computer s275 s276 s277 s278 s279CONVEX C-210 p n (0) v p (49) v v (83) v v (96) v v (61)CCC CRAY-2 na n (D) v p (21) n n (D) v p (42) v p (39)CRI CRAY Y-MP n n (0) v p (22) n n (0) v p (30) v p (30)DEC VAX 9000-210 n n (0) v n (1) v n (D) v p (31) v n (D)FPS M511EA-2 n n (0) v p (18) n n (0) v v (54) v p (39)Fujitsu VP2600/10 pb n (0) v v (59) v v (105) v v (90) v v (60)Hitachi S-820/80 p p (13) v p (47) n n (D) v v (76) v v (62)IBM 3090-600J n n (D) v p (19) v n (D) v p (35) v n (1)NEC SX-X/14 p n (6) v p (30) n n (0) v v (57) v p (34)Computer s2710 s2711 s2712 s281 s291CONVEX C-210 v p (35) v v (100) v v (98) p n (D) v p (39)CCC CRAY-2 v p (30) v p (19) v p (17) n n (0) n n (0)CRI CRAY Y-MP v p (23) v p (20) v p (19) v p (25) p n (5)DEC VAX 9000-210 v n (D) v v (70) v v (53) n n (0) n n (0)FPS M511EA-2 v p (27) v v (100) v p (49) v p (22) p n (1)Fujitsu VP2600/10 v p (17) v v (102) v v (101) pb n (0) pb n (0)Hitachi S-820/80 v v (84) v v (108) v v (103) p n (D) v v (108)IBM 3090-600J v n (D) v v (100) v v (72) v p (27) v n (8)NEC SX-X/14 v p (31) v v (82) v v (86) p n (D) v v (63)Computer s292 s293 s2101 s2102 s2111CONVEX C-210 v p (35) n n (2) v n (1) v v (84) n n (D)CCC CRAY-2 n n (0) na n (D) v v (81) p n (5) na n (D)CRI CRAY Y-MP n n (0) v v (100) v v (102) p v (79) n n (0)DEC VAX 9000-210 n n (2) n n (0) v n (D) v v (77) n n (0)FPS M511EA-2 n n (0) v p (23) v v (100) nc n (0) n n (0)Fujitsu VP2600/10 pb n (0) n n (0) v v (75) v p (33) v n (3)Hitachi S-820/80 v v (90) n n (D) v v (72) v p (21) v p (11)IBM 3090-600J v p (17) v v (73) v n (D) n n (0) n p (17)NEC SX-X/14 n n (0) v v (96) v v (92) v v (140) v n (3)30

Computer s311 s312 s313 s314 s315CONVEX C-210 v v (100) v v (52) v v (73) v v (91) v v (88)CCC CRAY-2 v v (99) v v (98) v v (73) v p (28) n n (0)CRI CRAY Y-MP v v (100) v v (100) v v (163) v p (38) v p (27)DEC VAX 9000-210 v v (104) v v (103) v v (98) v v (67) v v (72)FPS M511EA-2 v v (100) v p (44) v v (107) v v (100) v p (45)Fujitsu VP2600/10 v v (98) v n (0) v v (179) v v (99) v v (100)Hitachi S-820/80 v v (100) v n (0) v v (117) v v (93) v v (92)IBM 3090-600J v v (100) n n (0) v v (97) v n (5) v n (5)NEC SX-X/14 v v (102) v v (70) v v (124) v p (40) v p (25)Computer s316 s317 s318 s319 s3110CONVEX C-210 v v (90) v p (43) n n (0) v v (98) n n (0)CCC CRAY-2 v p (28) v v (75) n n (0) v v (95) n n (0)CRI CRAY Y-MP v p (38) v v (84) v p (42) v v (67) p n (D)DEC VAX 9000-210 v v (71) v v (469) v p (45) p p (21) n n (D)FPS M511EA-2 v v (100) n n (0) v p (47) v v (58) v p (23)Fujitsu VP2600/10 v v (99) v n (D) v v (132) pb n (0) v v (99)Hitachi S-820/80 v v (89) v n (D) v v (88) v v (78) p n (D)IBM 3090-600J v n (0) n n (3) n n (0) n n (0) v n (6)NEC SX-X/14 v p (40) v v (123) v p (26) v v (54) v p (25)Computer s3111 s3112 s3113 s321 s322CONVEX C-210 v v (85) n n (0) n n (0) n n (D) n n (6)CCC CRAY-2 v p (21) n n (0) v p (35) n n (0) n n (0)CRI CRAY Y-MP v p (41) n n (0) v v (68) v p (17) v p (45)DEC VAX 9000-210 v v (80) n n (4) v v (62) n n (3) n n (0)FPS M511EA-2 v v (78) n n (0) v v (110) v v (104) v p (31)Fujitsu VP2600/10 v v (125) v n (1) v v (130) v v (183) n n (4)Hitachi S-820/80 v v (75) v n (6) v v (90) v v (184) n n (D)IBM 3090-600J v p (47) n n (4) v n (8) n n (8) n p (10)NEC SX-X/14 v p (36) n n (0) v p (35) v v (113) n n (0)Computer s323 s331 s332 s341 s342CONVEX C-210 p n (2) v p (49) n n (0) v p (20) v p (21)CCC CRAY-2 n n (0) v p (40) v p (20) v p (17) v p (29)CRI CRAY Y-MP n n (0) v p (46) v p (29) v p (27) v p (19)DEC VAX 9000-210 n n (5) n n (D) n n (D) n n (D) n n (D)FPS M511EA-2 n n (0) v n (6) n n (0) n n (0) n n (0)Fujitsu VP2600/10 pb p (10) v p (20) v p (44) v p (44) v p (30)Hitachi S-820/80 v v (326) v p (32) v p (43) v v (81) v v (65)IBM 3090-600J n n (7) n n (0) v v (70) v v (53) v p (12)NEC SX-X/14 v v (56) v p (11) n n (0) v p (16) v p (16)31

Computer s343 s351 s352 s353 s411CONVEX C-210 v n (1) v v (101) v v (155) v p (22) n n (0)CCC CRAY-2 v p (12) v v (91) v v (117) v p (21) v p (35)CRI CRAY Y-MP v p (19) v v (107) v v (144) v p (31) v v (100)DEC VAX 9000-210 n n (0) v n (0) v v (860) v p (11) n n (D)FPS M511EA-2 n n (0) v v (85) v v (121) v p (29) v v (100)Fujitsu VP2600/10 v p (20) v v (72) v v (113) v p (25) n n (0)Hitachi S-820/80 v p (19) v v (92) v v (222) v p (26) n n (0)IBM 3090-600J n n (0) v v (99) v v (186) v p (14) v v (100)NEC SX-X/14 v p (13) v v (287) v v (175) v p (47) n n (0)Computer s412 s413 s414 s415 s421CONVEX C-210 n n (0) n n (1) p n (D) n n (0) v v (99)CCC CRAY-2 v p (25) v p (46) na n (D) n n (0) v v (98)CRI CRAY Y-MP v v (100) v v (76) v v (79) n n (0) v v (81)DEC VAX 9000-210 n n (D) n n (D) n n (0) n n (D) v v (112)FPS M511EA-2 v v (100) v v (74) v v (100) n n (D) v v (86)Fujitsu VP2600/10 n n (0) n n (0) pb n (0) n n (0) v v (105)Hitachi S-820/80 n n (0) n n (0) v p (11) n n (0) v v (103)IBM 3090-600J v v (100) v v (67) v v (68) n n (0) v v (96)NEC SX-X/14 n n (0) n n (0) v n (5) n n (0) v v (77)Computer s422 s423 s424 s431 s432CONVEX C-210 v v (100) v v (96) n n (D) v v (100) v v (100)CCC CRAY-2 v v (97) v v (96) v v (76) v v (97) va v (68)CRI CRAY Y-MP v v (80) v v (79) v v (104) v v (104) vc v (80)DEC VAX 9000-210 v v (111) v v (113) n n (7) v v (136) v v (109)FPS M511EA-2 v v (86) n n (0) n n (0) v v (86) vc v (86)Fujitsu VP2600/10 n n (0) n n (0) n n (0) v v (104) v v (105)Hitachi S-820/80 n n (D) n n (D) n n (D) v v (96) n n (D)IBM 3090-600J v v (99) p p (18) n p (13) v v (101) vc v (101)NEC SX-X/14 v v (81) v v (82) n n (0) v v (83) vc v (82)Computer s441 s442 s443 s451 s452CONVEX C-210 v p (36) n n (1) v v (67) v v (53) v v (72)CCC CRAY-2 n n (0) n n (0) v p (30) v p (43) v v (76)CRI CRAY Y-MP v n (10) v n (4) v v (56) v p (30) v v (67)DEC VAX 9000-210 n n (1) n n (7) v p (16) v v (64) v v (56)FPS M511EA-2 v n (3) v n (D) v v (96) v v (91) v p (44)Fujitsu VP2600/10 v p (36) n n (0) v v (61) v v (71) v v (75)Hitachi S-820/80 v p (41) p n (D) v v (92) v p (42) v v (74)IBM 3090-600J v n (D) v n (D) v p (48) v n (3) v p (40)NEC SX-X/14 v p (21) n n (0) v p (42) v p (33) v v (63)32

Computer s453 s471 s481 s482 s491CONVEX C-210 v v (61) n n (0) n n (1) n n (1) v v (118)CCC CRAY-2 v p (45) n n (0) v v (56) v v (56) v v (123)CRI CRAY Y-MP v p (41) n n (0) v v (59) v v (70) v v (106)DEC VAX 9000-210 n n (0) v n (D) n n (D) n n (D) v v (149)FPS M511EA-2 v p (36) n n (2) n n (0) n n (0) v v (131)Fujitsu VP2600/10 v n (2) v v (58) v v (97) v n (0) v v (66)Hitachi S-820/80 v n (9) n n (0) v v (82) n n (0) v v (122)IBM 3090-600J v p (18) v v (115) v v (90) v v (68) v v (130)NEC SX-X/14 n n (0) n n (0) n n (0) n n (0) v v (71)Computer s4112 s4113 s4114 s4115 s4116CONVEX C-210 v v (99) v v (125) v v (119) v v (79) v v (112)CCC CRAY-2 v v (97) v v (107) v v (115) v v (86) v v (185)CRI CRAY Y-MP v v (110) v v (81) v v (157) v v (126) v v (190)DEC VAX 9000-210 v v (74) v v (85) v v (124) v v (61) v p (41)FPS M511EA-2 v v (112) v v (138) v v (109) v v (128) v v (150)Fujitsu VP2600/10 v v (109) v v (68) v v (151) v v (131) v v (175)Hitachi S-820/80 v v (105) v v (117) v v (89) v v (65) v v (103)IBM 3090-600J v v (77) v v (140) v v (123) v v (73) v v (132)NEC SX-X/14 v v (108) v v (63) v v (101) v v (101) v v (181)Computer s4117 s4121CONVEX C-210 v p (39) v v (100)CCC CRAY-2 v p (41) v v (100)CRI CRAY Y-MP v p (36) v v (100)DEC VAX 9000-210 v v (67) v v (138)FPS M511EA-2 v p (37) v v (101)Fujitsu VP2600/10 v p (38) v v (99)Hitachi S-820/80 v v (63) v v (100)IBM 3090-600J v p (30) v v (100)NEC SX-X/14 v n (9) v v (100)33

Appendix CThe tables below contain the operation counts for each loop in the test suite.

34

Loop Load Store Gather Scatter Arithmetic Reductionss111 0 2 0 1 0 0 0 0 0 1 0 0s112 0 2 0 1 0 0 0 0 0 1 0 0s113 0 1 0 1 0 0 0 0 0 1 0 0s114 0 2 0 1 0 0 0 0 0 1 0 0s115 0 2 0 1 0 0 0 0 0 2 0 0s116 0 5 0 5 0 0 0 0 0 5 0 0s118 0 2 0 0 0 0 0 0 0 2 0 0s119 0 2 0 1 0 0 0 0 0 1 0 0s121 0 2 0 1 0 0 0 0 0 1 0 0s122 0 2 0 1 0 0 0 0 0 1 0 0s123 0 4 0 1 0 0 0 0 0 5 0 0s124 0 4 0 1 0 0 0 0 0 5 0 0s125 0 3 0 1 0 0 0 0 0 2 0 0s126 0 3 0 1 0 0 0 0 0 2 0 0s127 0 4 0 2 0 0 0 0 0 4 0 0s128 0 3 0 2 0 0 0 0 0 2 0 0s131 0 2 0 1 0 0 0 0 0 1 0 0s132 0 2 0 1 0 0 0 0 0 2 0 0s141 0 1 0 1 0 1 0 1 0 1 0 0s151 0 2 0 1 0 0 0 0 0 1 0 0s152 0 4 0 2 0 0 0 0 0 3 0 0s161 0 6 0 2 0 0 0 0 0 7 0 0s162 0 3 0 1 0 0 0 0 0 2 0 0s171 0 2 0 1 0 0 0 0 0 1 0 0s172 0 2 0 1 0 0 0 0 0 1 0 0s173 0 2 0 1 0 0 0 0 0 1 0 0s174 0 2 0 1 0 0 0 0 0 1 0 0s175 0 2 0 1 0 0 0 0 0 1 0 0s176 0 2 0 0 0 0 0 0 0 2 0 0s211 0 5 0 2 0 0 0 0 0 4 0 0s212 0 5 0 2 0 0 0 0 0 3 0 0s221 0 4 0 2 0 0 0 0 1 3 0 0
35

Loop Load Store Gather Scatter Arithmetic Reductionss222 2 6 1 2 0 0 0 0 2 4 0 0s231 0 2 0 1 0 0 0 0 0 1 0 0s232 0 2 0 1 0 0 0 0 0 2 0 0s233 0 4 0 2 0 0 0 0 0 2 0 0s234 0 3 0 1 0 0 0 0 0 2 0 0s235 0 3 0 1 0 0 0 0 0 2 0 0s241 0 4 0 2 0 0 0 0 0 4 0 0s242 0 3 0 1 0 0 0 0 1 3 0 0s243 0 5 0 2 0 0 0 0 0 6 0 0s244 0 4 0 2 0 0 0 0 0 5 0 0s251 0 3 0 1 0 0 0 0 0 3 0 0s252 0 2 0 1 0 0 0 0 0 2 0 0s253 0 4 0 2 0 0 0 0 0 6 0 0s254 0 1 0 1 0 0 0 0 0 2 0 0s255 0 1 0 1 0 0 0 0 0 3 0 0s256 0 2 0 1 0 0 0 0 0 2 0 0s257 0 2 0 1 0 0 0 0 0 2 0 0s258 0 4 0 2 0 0 0 0 0 7 0 0s261 0 5 0 2 0 0 0 0 0 3 0 0s271 0 3 0 1 0 0 0 0 0 4 0 0s272 0 5 0 2 0 0 0 0 0 7 0 0s273 0 5 0 3 0 0 0 0 0 8 0 0s274 0 5 0 2 0 0 0 0 0 4 0 0s275 0 4 0 1 0 0 0 0 0 3 0 0s276 0 3 0 1 0 0 0 0 0 2 0 0s277 0 5 0 2 0 0 0 0 0 8 0 0s278 0 5 0 3 0 0 0 0 0 1 0 0s279 0 5 0 3 0 0 0 0 0 1 0 0s2710 0 5 0 4 0 0 0 0 0 2 0 0s2711 0 3 0 1 0 0 0 0 0 2 0 0s2712 0 3 0 1 0 0 0 0 0 4 0 0s281 0 2 0 1 0 0 0 0 0 2 0 0s291 0 2 0 1 0 0 0 0 0 2 0 0s292 0 3 0 1 0 0 0 0 0 2 0 0s293 0 0 0 1 0 0 0 0 0 0 0 0s2101 0 3 0 1 0 0 0 0 0 2 0 0s2102 0 0 0 1 0 0 0 0 0 0 0 0s2111 0 2 0 1 0 0 0 0 0 1 0 036

Loop Load Store Gather Scatter Arithmetic Reductionss311 0 1 0 0 0 0 0 0 0 0 0 1s312 0 1 0 0 0 0 0 0 0 0 0 1s313 0 2 0 0 0 0 0 0 0 1 0 1s314 0 1 0 0 0 0 0 0 0 0 0 1s315 0 1 0 0 0 0 0 0 0 0 0 1s316 0 1 0 0 0 0 0 0 0 0 0 1s317 0 0 0 0 0 0 0 0 0 0 0 1s318 0 1 0 0 0 0 0 0 0 1 0 1s319 0 3 0 2 0 0 0 0 0 2 0 2s3110 0 1 0 0 0 0 0 0 0 0 0 1s3111 0 1 0 0 0 0 0 0 0 1 0 1s3112 0 1 0 1 0 0 0 0 0 0 0 1s3113 0 1 0 0 0 0 0 0 0 1 0 1s321 0 2 1 0 0 0 0 0 2 0 0 0s322 0 3 1 0 0 0 0 0 4 0 0 0s323 0 3 0 2 0 0 0 0 2 2 0 0s331 0 1 0 0 0 0 0 0 0 0 0 1s332 0 1 0 0 0 0 0 0 0 1 0 0s341 0 1 0 1 0 0 0 0 0 1 0 0s342 0 1 0 1 0 0 0 0 0 1 0 0s343 0 2 0 1 0 0 0 0 0 1 0 0s351 0 10 0 5 0 0 0 0 0 1 0 0s352 0 10 0 5 0 0 0 0 0 9 0 1s353 0 2 0 1 0 1 0 0 0 1 0 0s411 0 3 0 1 0 0 0 0 0 2 0 0s412 0 3 0 1 0 0 0 0 0 2 0 0s413 0 4 0 2 0 0 0 0 0 4 0 0s414 0 3 0 1 0 0 0 0 0 2 0 0s415 0 3 0 1 0 0 0 0 0 2 0 0s421 0 2 0 1 0 0 0 0 0 1 0 0s422 0 2 0 1 0 0 0 0 0 1 0 0s423 0 2 0 1 0 0 0 0 0 1 0 0s424 0 2 0 1 0 0 0 0 0 1 0 0s431 0 2 0 1 0 0 0 0 0 1 0 0s432 0 2 0 1 0 0 0 0 0 1 0 0s441 0 3 0 1 0 0 0 0 0 1 0 0s442 0 5 0 1 0 0 0 0 0 1 0 0s443 0 3 0 1 0 0 0 0 0 7 0 037

Loop Load Store Gather Scatter Arithmetic Reductionss451 0 28 0 1 0 0 0 0 0 2 0 0s452 0 2 0 1 0 0 0 0 0 2 0 0s453 0 1 0 1 0 0 0 0 0 1 0 1s471 0 3 0 1 0 0 0 0 0 2 0 0s481 0 4 0 1 0 0 0 0 0 3 0 0s482 0 4 0 1 0 0 0 0 0 3 0 0s491 0 4 0 0 0 0 0 1 0 2 0 0s4112 0 1 0 1 0 1 0 0 0 2 0 0s4113 0 1 0 0 0 1 0 1 0 1 0 0s4114 0 3 0 1 0 1 0 0 0 3 0 0s4115 0 1 0 0 0 1 0 0 0 1 0 1s4116 0 0 0 0 0 2 0 0 0 1 0 1s4117 0 2 0 1 0 1 0 0 0 3 0 0s4121 0 3 0 1 0 0 0 0 0 2 0 0va 0 1 0 1 0 0 0 0 0 0 0 0vpv 0 2 0 1 0 0 0 0 0 1 0 0vtv 0 2 0 1 0 0 0 0 0 1 0 0vpvts 0 2 0 1 0 0 0 0 0 2 0 0vpvtv 0 3 0 1 0 0 0 0 0 2 0 0vpvpv 0 3 0 1 0 0 0 0 0 2 0 0vtvtv 0 3 0 1 0 0 0 0 0 2 0 0vbor 0 6 0 1 0 0 0 0 0 59 0 0vif 0 2 0 1 0 0 0 0 0 2 0 0vag 0 0 0 1 0 1 0 0 0 0 0 0vas 0 2 0 0 0 0 0 1 0 0 0 0vsumr 0 1 0 0 0 0 0 0 0 0 0 1vdotr 0 2 0 0 0 0 0 0 0 1 0 1

38

Appendix D

39

