A Comparative Study of Automatic Vectorizing
Compilers

David Levine * David Callahan f Jack Dongarra ¥

Abstract. We compare the capabilities of several commercially available, vectorizing Fortran
compilers using a test suite of Fortran loops. We present the results of compiling and executing
these loops on a variety of supercomputers, mini-supercomputers, and mainframes.

1 Introduction

This paper describes the use of a collection of Fortran loops to test the analysis capabilities
of automatic vectorizing compilers. An automatic vectorizing compiler is one that takes code
written in a serial language (usually Fortran) and translates it into vector instructions. The
vector instructions may be machine specific or in a source form such as the proposed Fortran 90
array extensions or as subroutine calls to a vector library.

Most of the loops in the test suite were written by people involved in the development of
vectorizing compilers, although several we wrote ourselves. All of the loops test a compiler
for a specific feature. These loops reflect constructs whose vectorization ranges from easy to
challenging to extremely difficult. We have collected the results from compiling and executing
these loops using commercially available, vectorizing Fortran compilers.

The results reported here expand on our earlier work [3]. In that paper, we focused principally
on analyzing each compiler’s output listing. For the present study, we ran the loops in both
scalar and vector modes. In addition, the set of loops has been expanded.

The remainder of this paper is organized into eight sections. Section 2 describes our classifi-
cation scheme for the loops used in the test. In Section 3 we describe the structure of the test
program. In Section 4 we describe the methodology used to perform the test. Section 5 reports
on the number of loops that vectorized according to the compiler’s output listing. Section 6
presents two aspects of the speedup results. In Section 7 we discuss our model of optimal vec-
tor performance and present the results of comparing the actual performance with the model.
Section 8 discusses several aspects of the test. In Section 9 we make some remarks about future
work.

*Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4801. This
work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U. S.
Department of Energy, under Contract W-31-109-Eng-38.

tTera Computer, 400 North 34th Street, Suite 300, Seattle, WA 98103

{Computer Science Department, University of Tennessee, Knoxville, TN 37996-1301. This work was supported
in part by the Applied Mathematical Sciences Research Program, Office of Energy Research, U. S. Department
of Energy, under Contract DE-AC05-840R21400 and in part by NSF cooperative agreement CCR-8809615.

2 Classification of Loops

The objective of the test suite is to test four broad areas of a vectorizing compiler: dependence
analysis, vectorization, idiom recognition, and language completeness. All of the loops in this
suite are classified into one of these categories.

We define all terms and transformation names but discuss dependence analysis and program
transformation only briefly. Recent discussions of these topics can be found in Allen and Kennedy
[2], Padua and Wolfe [11], and Wolfe [14]. For a practical exposition of the application of these
techniques, see Levesque and Williamson [6].

2.1 Dependence Analysis

Dependence analysis comprises two areas: global data-flow analysis and dependence testing.
Global data-flow analysis refers to the process of collecting information about array subscripts.
Dependence testing refers to the process of testing for memory overlaps between pairs of variables
in the context of the global data-flow information.

Dependence analysis is the heart of vectorization, but it can be done with very different
levels of sophistication ranging from simple pattern matching to complicated procedures that
solve systems of linear equations. Many of the loops in this section test the aggressiveness of
the compiler in normalizing subscript expressions into linear form for the purpose of enhanced
dependence testing.

1. Linear Dependence Testing. Given a pair of array references whose subscripts are lin-
ear functions of the loop control variables that enclose the references, decide whether the
two references ever access the same memory location. When the references do interact,
additional information can be derived to establish the safety of loop restructuring trans-
formations.

2. Induction Variable Recognition. Recognize auxiliary induction variables (e.g., variables
defined by statements such as K=K+1 inside the loop). Once recognized, occurrences of
the induction variable can be replaced with expressions involving loop control variables
and loop invariant expressions.

3. Global Data-Flow Analysis. Collect global (entire subroutine) data-flow information, such
as constant propagation or linear relationships among variables, to improve the precision
of dependence testing.

4. Nonlinear Dependence Testing. Given a pair of array references whose subscripts are not
linear functions, test for the existence of data dependencies and other information.

5. Interprocedural Data-Flow Analysis. Use the context of a subroutine in a particular
program to improve vectorization. Possibilities include in-line expansion, summary in-
formation (e.g., which variables may or must be modified by an external routine), and
interprocedural constant propagation.

6. Control Flow. Test to see whether certain vectorization hazards exist and whether there
are implied dependencies of a statement on statements that control its execution.

7.

2.2

Symbolics. Test to see whether subscripts are linear after certain symbolic information is
factored out or whether the results of dependence testing do not, in fact, depend on the
value of symbolic variables.

Vectorization

A simple vectorizer would recognize single-statement Fortran DO loops that are equivalent to
hardware vector instructions. When this strict syntactic requirement is not satisfied, more

sophisticated vectorizers can restructure programs so that it is. Here, program restructuring
is divided into two categories: transformations to enhance vectorization and idiom recognition.
The first is described here, and the other in the next section.

10.

11.

2.3

. Statement Reordering. Reorder statements in a loop body to allow vectorization.

. Loop Distribution. Split a loop into two or more loops to allow partial vectorization or

more effective vectorization.

. Loop Interchange. Change the order of loops in a loop nest to allow or improve vectoriza-

tion. In particular, make a vectorizable outer loop the innermost in the loop nest.

. Node Splitting. Break up a statement within a loop to allow (partial) vectorization.

Scalar and Array Expansion. Expand a scalar into an array or an array into a higher-
dimensional array to allow vectorization and loop distribution.

Scalar Renaming. Rename instances of a scalar variable. Scalar renaming eliminates some
interactions that exist only because of reuse of a temporary variable and allows more
effective scalar expansion and loop distribution.

Control Flow. Convert forward branching in a loop into masked vector operations; recog-
nize loop invariant IF’s (loop unswitching).

Crossing Thresholds (Index Set Splitting). Allow vectorization by blocking into two sets.
For example, vectorize the statement A(I) = A(N-I) by splitting iterations of the I loop
into iterations with I less than N/2 and iterations with I greater than N/2.

Loop Peeling. Unroll the first or last iteration of a loop to eliminate anomalies in control
flow or attributes of scalar variables.

Diagonals. Vectorize diagonal accesses (e.g., A(LI)).

Wavefronts. Vectorize two-dimensional loops with dependencies in both dimensions by
restructuring the loop for diagonal access.

Idiom Recognition

Idiom recognition refers to the identification of particular program forms that have (presumably
faster) special implementations.

2.4

. Reductions. Compute a scalar value or values from a vector, such as sum reductions,

min/max reductions, dot products, and product reductions.

. Recurrences. lIdentify special first- and second-order recurrences that have logarithmically

faster solutions or hardware support.

. Search Loops. Search for the first or last instance of a condition, possibly saving index

value(s).

. Packing. Scatter or gather a sparse vector from or into a dense vector under the control

of a bit mask or an indirection vector.

. Loop Rerolling. Vectorize loops where the inner loop has been unrolled.

Language Completeness

This section tests how effectively the compilers understand the complete Fortran language.
Simple vectorizers might limit analysis to DO loops containing only floating point and integer
assignments. More sophisticated compilers will analyze all loops and vectorize wherever possible.

10.

. Loop Recognition. Recognize and vectorize loops formed by backward GO TO’s.

. Storage Classes and Equivalencing. Understand the scope of local vs. common storage;

correctly handle equivalencing.

Parameters. Analyze symbolic named constants, and vectorize statements that refer to
them.

Nonlogical IF’s. Vectorize loops containing computed GO TO’s and arithmetic IF’s.

. Intrinsic Functions. Vectorize functions that have elemental (vector) versions such as SIN

and COS or known side effects.

Call Statements. Vectorize statements in loops that contain CALL statements or external
function invocations.

. Nonlocal GO TO’s. Branches out of loops, RETURN statements or STOP statements

inside of loops.

Vector Semantics. Load before store, and preserve order of stores.

. Indirect Addressing. Vectorize subscripted subscript references (e.g, A(INDEX(I))) as

Gather/Scatter.

Statement Functions. Vectorize statements that refer to Fortran statement functions.

3 Test Program Structure

The test program consists of 122 loops that represent different constructs intended to test the
analysis capabilities of a vectorizing compiler. Using the classification scheme in Section 2, there
are 29 loops in the Dependence Analysis category, 41 loops in the Vectorization category, 24
loops in the Idiom Recognition category, and 28 loops in the Language Completeness category.
Also included are 13 additional “control” loops we expect all compilers to be able to vectorize.
These allow us to measure the rates of certain basic operations for use with the model discussed
in Section 7.

The majority of the test loops operate on one-dimensional arrays; a small number operate on
two-dimensional arrays. Most of the loops in the test are fairly short; many are a single statement
and others usually no more than several statements. Many of the loops access memory with
a stride of one. Each loop is contained in a separate subroutine. A driver routine calls each
subroutine with vector lengths of 10, 100, and 1000.

An example loop is shown in Figure 1. Relevant operands are initialized once at the start of
the loop. An outer repetition loop is used to increase the granularity of the calculation, thereby
avoiding problems with clock resolution. A call to a dummy subroutine is included in each
iteration of the repetition loop so that, in cases where the inner loop calculation is invariant
with respect to the repetition loop, the compiler is still required to execute each iteration rather
than just recognizing that the calculation needs to be done only once.

After execution of the loop is complete, a checksum is computed by using the result array(s).
The checksum and the time used are then passed to a check subroutine. The check subroutine
verifies the checksum with a precomputed result and prints out the time to execute the loop.
The time is calculated by calling a timer at the start of the loop and again at the end of the
loop and taking the difference of these times minus the cost of the timing call and the cost of
the multiple calls to the dummy subroutine.

4 Test Methodology

The test program is distributed in two files: a driver program in one file, and the test loops in
the other. The files were distributed to interested vendors, who were asked to compile the loops
without making any changes™ using only the compiler options for automatic vectorization. Thus,
the use of compiler directives or interactive compilation features to gain additional vectorization
was not tested. Vendors were asked to make two separate runs of the test: one using scalar
optimizations only, and the other using the same scalar optimizations and, in addition, all
automatic vectorization options. Vendors with multiprocessor computers submitted uniprocessor
results only. Appendix A contains details of the exact machine configurations and versions of
the software used.

The rules require separate compilation of the two files. The rules for compilation of the

*One vendor was allowed to (1) separate a 135-way [F-THEN-ELSEIF-ELSE construct in order to overcome a
self-imposed limit, and (2) include the array declarations in a common block in the driver program (only) in order
to overcome a self-imposed limit on memory allocation size. Neither modification had any impact on performance.

subroutine s111 (ntimes,ld,n,ctime,dtime,a,b,c,d,e,aa,bb,cc)
integer ntimes, 1d, n, i, nl
real a(n), b(n), c(n), d(n), e(n), aa(ld,n), bb(1ld,n), cc(ld,n)
real tl1, t2, second, chksum, ctime, dtime, csid
call init(l1d,n,a,b,c,d,e,aa,bb,cc,’s11l ?)
t1 = second()
do 1 nl = 1,2*ntimes
do 10 i = 2,n,2
a(i) a(i-1) + b(i)
10 continue
call dummy(ld,n,a,b,c,d,e,aa,bb,cc,1.)
1 continue
t2 = second() - t1 - ctime - (dtime * float(2*ntimes))
chksum = csi1d(n,a)
call check (chksum,2*ntimes*(n/2),n,t2,’s111 ?)
return

end

Figure 1: Example loop

driver file require that no compiler optimizations be used and that the file not be analyzed
interprocedurally to gather information useful in optimizing the test loops.

The file containing the loops was compiled twice—once for the scalar run and once for the
vector run. For the scalar run, global (scalar) optimizations were used. For the vector run,
in addition to the same global optimizations specified in the scalar run, vectorization and —
if available — automatic call generation to optimized library routines, function inlining, and
interprocedural analysis were used.

All files were compiled to use 64-bit arithmetic. Most runs were made on standalone systems.*
For virtual memory computers, the runs were made with a physical memory and working-set
size large enough that any performance degradation from page faults was negligible. In all cases
the times reported to us were user CPU time.

After compiling and executing the loops, the vendors sent back the compiler’s output listing
(source echo, diagnostics, and messages) and the output of both the scalar and vector runs.
We then examined the compiler’s output listings to see which loops had been vectorized, and
analyzed the scalar and vector results. In addition to measuring the execution time of the loops,
we checked the numerical result in order to verify correctness. However, the check was strictly
for correctness of the numerical result; no attempt was made to see whether possibly unsafe
transformations had been used.

*The Cray Computer and Hitachi runs were not.

5 Number of Loops Vectorized

In this section we discuss the number of loops that were vectorized, as reported by the compiler’s
output listing. All of the loops in our test are amenable to some degree of vectorization. For
some loops, this may only be partial vectorization; for others, vectorization may require the use
of optimized library routines or special hardware.

5.1 Definition of Vectorization

We define a statement as vectorizable if one or more of the expressionsin the statement involve
array references or may be converted to that form. We define three possible results for a compiler
attempting to vectorize a loop. A loop is vectorized if the compiler generates vector instructions
for all vectorizable statements in the loop. A loop is partially vectorized if the compiler generates
vector instructions for some, but not all, vectorizable statements in the loop. No threshold is
defined for what percentage of a loop needs to be vectorized to be listed in this category, only
that some expression in a statement in the loop is vectorized. A loop is not vectorized if the
compiler does not generate vector instructions for any vectorizable statements within the loop.

For some loops the Cray Research, FPS Computing, IBM, and NEC compilers generated a
runtime [F-THEN-ELSE test which executed either a scalar loop or a vectorized loop. These
loops have been scored as either wvectorized or not vectorized according to whether or not
vectorized code was actually executed at runtime.

The Cray Computer compiler “conditionally vectorized” certain loops. That is, for loops
with ambiguous subscripts, a runtime test was compiled that selected a safe vector length.*
These loops have been scored as either vectorized if the safe vector length was greater than one,
otherwise not vectorized.

For a number of loops, the Fujitsu compiler generated scalar code even though the compiler
indicated that partial vector code could be generated. In these cases, the compiler listing
contained the message “Partial vectorization overhead is too large,” indicating that although
partial vectorization was possible, for these loops the compiler considered scalar code more
efficient. These loops have been scored as partially vectorized.

Our definition of vectorization counts as vectorized those loops that are recognized by the
compiler and automatically replaced by calls to optimized library routines. In some cases a
compiler may generate a call to an optimized library routine rather than explicitly generating
vector code. Typical examples are for certain reduction and recurrence loops. Often the library
routines use a mix of scalar and vector instructions; while perhaps not as fast as pure vector
loops, since the construct itself is not fully parallel, they are usually faster than scalar execution.
In all cases where the compiler automatically generated a call to a library routine, we have scored
the loop as vectorized.

*A safe vector length is one that allows the compiler to execute vector instructions and still produce the
correct result. For example, the statement A(I)=A(I-7) with loop increment one may be executed in vector mode
with any vector length less than or equal to 7.

Table 1: Full Vectorization (122 loops)

Computer A% P N
CONVEX €210 68.0 (83) | 10.7 (13) | 21.3 (26)
CCC CRAY-2 60.7 (74) | 1.6 (2)|37.7 (46)
CRI CRAY Y-MP 779 (95)| 82 (10) | 13.9 (17)
DEC VAX 9000-210 | 60.7 (74) | 3.3 (4) | 36.1 (44)
FPS M511EA-2 72.1 (83) | 4.9 (6)]23.0 (28)
Fujitsu VP2600/10 | 71.3 (87) | 16.4 (20) | 12.3 (15)
Hitachi S-820/80 1.3 (87)| 74 (9)] 213 (26)
IBM 3090-600J 779 (95) | 49 (6)|17.2 (21)
NEC SX-X/14 2.1 (83) | 5.7 (7)]|221 (27)
Average 702 (83)| 7.0 (8)]228 (27)

vV - vectorized

P - partially vectorized

N - not vectorized

V/P - fully or partially vectorized

Figure 2: Key to symbols for Tables 1-8, 12-13
5.2 Results

Tables 1-6 list the results of analyzing the compilers’ listings. Fach table contains the percentage
of loops in each column, followed by the actual number in parentheses. Table 1 summarizes the
results for all 122 loops. Table 2 is also a summary of all the loops; here, however, the column
V/P counts the loops that were either fully or partially vectorized. Tables 3—6 contain results
by category as defined in Section 2.

Table 2: Full and Partial Vectorization (122 loops)

Computer V/P N

CONVEX C210 787 (96) | 213 (26
CCC CRAY-2 62.3 (76) | 37.7 (46)
CRI CRAY Y-MP | 86.1 (105) | 13.9 (17)
DEC VAX 9000-210 | 63.9 (78) | 36.1 (44)
FPS M511EA-2 770 (94) | 23.0 (28)
Fujitsu VP2600/10 | 87.7 (107) | 12.3 (15)
Hitachi $-820/80 | 78.7 (96) | 21.3 (26)
IBM 3090-600J 82.8 (101) | 17.2 (21)
NEC SX-X/14 779 (95) 221 (27)
Average 7.2 (94) | 228 (27)

Table 3: Dependence Analysis (29 loops)

Computer A% P N

CONVEX (210 655 (19) | 17.2 (5) | 17.2 (5)
CCC CRAY-2 69.0 (20)| 0.0 (0)|31.0 (9)
CRI CRAY Y-MP | 862 (25)| 0.0 (0)|13.8 (4)
DEC VAX 9000-210 | 69.0 (20) | 0.0 (0)|31.0 (9)
FPS M511EA-2 828 (24)| 0.0 (0)|172 (5)
Fujitsu VP2600/10 | 65.5 (19) | 24.1 (7)|10.3 (3)
Hitachi S-820/80 55.2 (16) | 10.3 (3) | 34.5 (10)
IBM 3090-600J 86.2 (25)| 0.0 (0)|13.8 (4)
NEC $X-X/14 759 (22) | 69 (2)]17.2 (5)
Average 728 (21)| 6.5 (1)|20.7 (6)

Table 4: Vectorization (41 loops)

Computer A% P

CONVEX (210 732 (30) | 146 (6)]| 122 (5)
CCC CRAY-2 34.1 (14) | 4.9 (2)|61.0 (25)
CRI CRAY Y-MP | 56.1 (23)|22.0 (9)|220 (9)
DEC VAX 9000-210 | 58.5 (24) | 7.3 (3) | 34.1 (14)
FPS M511EA-2 61.0 (25)|14.6 (6)|24.4 (10)
Fujitsu VP2600/10 | 68.3 (28) | 24.4 (10) | 7.3 (3)
Hitachi $-820/80 | 78.0 (32) | 9.8 (4)|122 (5)
IBM 3090-600J 75.6 (31) 122 (5)| 122 (5)
NEC $X-X/14 65.9 (27)]12.2 (5)|220 (9)
Average 63.4 (26) | 13.6 (5)|23.0 (9)

Table 5: Idiom Recognition (24 loops)

Computer P N
CONVEX (210 66.7 (16) | 4.2 (1)]29.2
CCC CRAY-2 70.8 (17) | 0.0 (0)|29.2
CRI CRAY Y-MP | 875 (21) |42 (1)| 83
DEC VAX 9000-210 | 54.2 (13) | 4.2 (1) | 41.7
FPS M511EA-2 70.8 (17) [0.0 (0) | 29.2
Fujitsu VP2600/10 | 87.5 (21) |83 (2)| 4.2
Hitachi $-820/80 | 91.7 (22) |42 (1)| 4.2
IBM 3090-600J 583 (14) | 0.0 (0) | 41.7
NEC SX-X/14 87.5 (21) 0.0 (0)]|125
Average 75.0 (18) 28 (0)|222

Table 6: Language Completeness (28 loops)

Computer A% P N

CONVEX (210 643 (18) |36 (1)]321 (9)
CCC CRAY-2 82.1 (23) 100 (0)|17.9 (5)
CRI CRAY Y-MP 929 (26)]0.0 (0)| 7.1 (2)
DEC VAX 9000-210 | 60.7 (17) | 0.0 (0) | 39.3 (11)
FPS M511EA-2 786 (22) 0.0 (0)]214 (6)
Fujitsu VP2600/10 | 67.9 (19) | 3.6 (1) |28.6 (8)
Hitachi S-820/80 60.7 (17) | 3.6 (1) 357 (10)
IBM 3090-600J 890.3 (25) 36 (1) 7.1 (2)
NEC SX-X/14 64.3 (18) | 0.0 (0) | 357 (10)
Average 734 (20) |16 (0)|25.0 (7)

5.3 Analysis of Results

The average number of loops vectorized was 70%, and vectorized or partially vectorized was
77%. The best results were 78% and 88%, respectively. Of the 122 loops, only two were not
vectorized or partially vectorized by any of the compilers; both loops are vectorizable. There is
probably no significant difference between compilers within a few percent of each other. Slight
differences may be due to different hardware, the availability of special software libraries, the
architecture of a machine being better suited to executing scalar or parallel code for certain
constructs, or the makeup of the loops used in our test.

From Table 1 we see that the Cray Research and IBM compilers vectorized the most loops. A
large number of other compilers are grouped closely together and only a few loops behind these
two. Comparing Table 1 to Table 2, we see that counting partially vectorized loops in the totals
allows the Fujitsu compiler to vectorize the most loops. It is interesting to note, however, that
of the 20 loops we counted as partially vectorized by the Fujitsu compiler, only two actually
resulted in (partial) vector code being executed at runtime. For the other 18 loops the Fujitsu
compiler made the decision that it would not be cost effective to partially vectorize them. The
Convex compiler also did a significant amount of partial vectorization.

Tables 3-6 show that some compilers did particularly well in certain categories. The Cray
Research, FPS Computing, and IBM compilers had the best results in the Dependence Analysis
category. The Convex, Hitachi, and IBM compilers had the best results in the Vectorization
category. The Cray Research, Fujitsu, Hitachi, and NEC compilers had the best results in the
Idiom Recognition category. In the Language Completeness category the Cray Research and
IBM compilers had the best results. The Vectorization category seemed the most difficult, with
approximately 10% fewer loops vectorized overall than for the other sections.

Certain sections seemed fairly easy, with most vendors vectorizing or partially vectorizing
almost all of the loops. Using the classification scheme of Section 2 these sections were linear
dependence testing, global data-flow analysis, statement reordering, loop distribution, node
splitting, scalar renaming, control flow, diagonals, loop rerolling, parameters, intrinsic functions,
indirect addressing, and statement functions.

In some sections, while many vendors vectorized or partially vectorized most loops, various

10

individual vendors did not do particularly well. These sections were induction variable recog-
nition, interprocedural data-flow analysis, symbolics, scalar and array expansion, reductions,
search loops, packing, and nonlogical 1F’S.

Some sections were difficult for many compilers. Typically, at least half the vendors missed
at least some, and sometimes most, of the loops in these sections. These sections were control
flow, loop interchange, index set splitting, loop peeling, recurrences, loop recognition, storage
classes and equivalencing, and nonlocal GO TO’s.

A few sections were particularly difficult, with only one or two compilers doing any vectoriza-
tion at all. These sections were nonlinear dependence testing, wavefronts, and call statements.

We found that some vendors with approximately equal results did much better in one section
than another. Certain induction variable tests, interprocedural data-flow analysis, loop inter-
change, recurrences, loop recognition, storage classes and equivalence statements, and loops
with exits were the sections that showed the greatest variation. We conclude that the compiler
vendors have focused their efforts on particular subsets of the features tested by the suite. Pos-
sible reasons might include hardware differences or (self-imposed) limits on compilation time,
compilation memory use, or the size of the generated code.

Individual results, on a loop-by-loop basis, may be found in Appendix B.

6 Speedup

The goal of vectorization is for the vectorized program to execute in less time than the unvec-
torized program. The metric used is the speedup, s, defined as s, = ¢;/t,, where ¢, is the scalar
time and t, is the vector time. In this section we look at two aspects of speedup. First, does
the vector code run slower than the corresponding scalar code? Second, how large a speedup
can be gained with vectorization?

6.1 Vectorized Loops Revisted

Ideally the speedup from vectorization (or partial vectorization) should be as large as possible.
At a minimum, though the vector code should run at least as fast as the scalar code. However,
this minimum is not always achieved, particularly at short vector lengths where there may not
be enough work in the loop to overcome the vector startup cost.

Tables 7 and 8 revisit the results in Table 1. The number of loops in each of the different
categories is again taken from the compiler listing. In Tables 7 and 8 however, we have not
counted as vectorized or partially vectorized any loops where s, < .95. The results in Table 7
are for vector length 100, and the results in Table 8 are for vector length 1000. We have not
presented these results for vector length ten since almost all vendors suffer some performance
degradation for short vectors.

The results in Tables 7 and 8 are mostly consistent with Table 1. Four of the compilers show

*We use .95 instead of 1 to allow for the possibility of measurement error.

11

Table 7: Loops Vectorized (s, > .95, Vector length = 100, 122 loops)

Computer A% P N

CONVEX (€210 68.0 (83) | 9.0 (11)|23.0 (28)
CCC CRAY-2 60.7 (74) | 0.8 (1)|385 (47)
CRI CRAY Y-MP | 77.9 (95)| 7.4 (9)|148 (18)
DEC VAX 9000-210 | 49.2 (60) | 2.5 (3)| 484 (59)
FPS M511EA-2 713 (87)| 3.3 (4)|254 (31)
Fujitsu VP2600/10 | 68.9 (84) | 13.1 (16) | 18.0 (22)
Hitachi S-820/80 69.7 (85) | 1.6 (2)|28.7 (35)
IBM 3090-600J 71.3 (87) | 4.1 (5)|24.6 (30)
NEC $X-X/14 72.1 (88) | 25 (3)]254 (31)
Average 67.7 (82)| 49 (6)|274 (33)

Table 8: Loops Vectorized (s, > .95, Vector length = 1000, 122 loops)

Computer A% P N

CONVEX (€210 68.0 (83)| 82 (10)|23.8 (29)
CCC CRAY-2 60.7 (74) | 0.8 (1)|385 (47)
CRI CRAY Y-MP | 77.9 (95)| 7.4 (9)|148 (18)
DEC VAX 9000-210 | 54.9 (67) | 2.5 (3)|42.6 (52)
FPS M511EA-2 713 (87)| 4.1 (5)|24.6 (30)
Fujitsu VP2600/10 | 69.7 (85) | 15.6 (19) | 14.8 (18)
Hitachi S-820/80 705 (86) | 1.6 (2)]|27.9 (34)
IBM 3090-600J 73.0 (89)| 4.1 (5)]23.0 (28)
NEC $X-X/14 721 (88) | 25 (3)]254 (31)
Average 68.7 (83)| 5.2 (6)|26.1 (31)

no degradation on any of the vectorized loops. Three others show a degradation on only one
or two loops. Only two compilers show a degradation on any significant number of loops. The
results for partial vectorization are also fairly consistent with Table 1, with only one compiler
showing any serious number of loops being degraded. There is a large variance in the test suite
as to which loops have degraded performance. No particular trend is obvious.

Two compilers also suffered noticeable performance degradations (below 90%) for a significant
number of loops (10 or more) that were not vectorized. We believe somehow that the attempt
to vectorize interfered with the generation of good scalar code. We view this as a performance
bug and have advised the vendors. Other than these cases, the vectorizers rarely generated code
that was inferior to the scalar code on vector lengths of 100 or more. An exception is the nine
loops the CRAY-2 compiler-generated vector code for with a safe vector length of one. These
loops, although scored as not vectorized, had vector execution times that were frequently twice
the scalar execution times.

6.2 Aggregate Speedup Results

The speedup that can be achieved on a particular vector computer depends on several factors:
the speed of the vector hardware relative to the speed of the scalar hardware, the inherent

12

Table 9: Aggregate Speedup Results by Section (122 loops)

Section 10 100 1000 All VL

Data Dependence 1.44 090 | 5.09 1.87 | 12.25 2.15] 6.26 1.42
Vectorization 1.37 097 | 5.11 1.74|21.32 1.91]9.27 1.41
Idiom Recognition 0.95 0.73]3.66 1.73 | 11.52 229|538 1.26
Language Completeness | 1.55 1.07 | 4.72 1.90 | 9.63 2.13 | 5.30 1.55
All Sections 1.35 0.92 | 4.73 1.80 | 14.55 2.08 | 8.61 1.41

Table 10: Aggregate Speedup Results by Type of Vectorization

Vectorization Level 10 100 1000 All VL

Full Vectorization 1.54 0.96 | 6.29 3.11 | 20.20 4.48 | 9.34 1.90
Full or Partial Vectorization | 1.47 0.93 | 5.85 2.61 | 18.56 3.48 | 8.63 1.72
Partial Vectorization 0.83 0.68 | 1.41 1.00 221 1.07 | 1.49 0.88

vector parallelism in the code of interest, and the sophistication of the compiler in detecting
opportunities to generate code to run on the vector hardware. From the perspective of our
test, we would like to measure the speedup achieved just from the compiler’s vectorization
capabilities. However, speedups are too strongly influenced by architecture and implementation
to be meaningful indicators of compiler performance. Therefore, we prefer not to give speedup
results for individual vendors which may be misinterpreted as representing compiler performance
only. Instead, we present speedup statistics using the aggregate results from all vendors.

Table 9 presents a summary of the speedup results of all vendors. The first four rows present
results according to the classification scheme in Section 2. Results are given for vector lengths
of 10, 100, and 1000 and, in the last column, the sum over all three vector lengths. Each column
contains the arithmetic and harmonic means of the speedups for the loops in that section. The
results in the last row are summed over all four sections.

Table 10 contains aggregate statistics for three different levels of vectorization. The format
of the table is similar to Table 9. The first row contains speedup statistics for the 771 loops
scored as fully vectorized. The second row contains speedup statistics for the 848 loops scored
as either fully or partially vectorized. The last row contains speedup statistics for the 77 loops
that were partially vectorized.

6.3 Discussion of Speedup

As might be expected, at the relatively short vector length of 10, the speedups were not very
large. This is particularly true of the Idiom Recognition section, where the methods used to
vectorize some of the loops are not amenable to the full speedup that can be provided by the
hardware. At vector length 100 most speedups were between three and six. At the longest vector
length, 1000, the individual speedups were slightly higher for most. Three vendors however, had
very large average speedups (29.4, 33.2, and 39.8) over the scalar speed.

The choice of mean clearly affects the results. In the Vectorization section, the arithmetic
mean at vector length 1000 is 21.32, while the harmonic mean is only 1.91. These results
show that a relatively small number of large speedups can greatly affect the arithmetic mean.

13

McMahon [10] and Smith [12] discuss the different means.

If we compare the last row of Table 9 with the first two rows in Table 10, we see better
speedups at all vector lengths when we consider only the loops fully or partially vectorized. Of
course which loops were included, and how many, varies for each vendor.

In several loops in the test suite, not all statements can be vectorized. A compiler can still
improve performance by partial vectorization — vectorizing some, but not all, of the statements.
As Table 10 shows, the speedups from partial vectorization are significantly less than those
from full vectorization. There are several reasons for this result. First, since by definition
partial vectorization vectorizes only some of the statements in a loop, others still run at scalar
speeds. Second, our definition of partial vectorization classifies as such a loop that uses any
vector instructions, no matter how much of the loop is executed in scalar mode. Finally, many
techniques for partial vectorization introduce extra work, such as extra loads and stores and
additional loop overhead, which is not required in the original loop.

Even with these caveats we see from the last row in Table 10 that there is still a benefit to
be gained from partial vectorization, but primarily at the longer vector lengths. Even more
so than with full vectorization, partial vectorization — at least on the test loops — degrades
performance at vector length of ten.

7 Percent Vectorization

In this section we focus on the performance of the compiler independent of the computer arch-
tecture. We do this by developing a machine-specific model of what optimal vector performance
is for each of the loops in our test suite. We then compare the optimal performance predicted
by this model with the actual vector execution results to determine the percent of the optimal
vector performance actually achieved.

7.1 A Model of Compiler Performance

A simple model of vector performance as a function of vector length is given by the formula [8]

t =1, + nt., (1)

where ¢ is the time to execute a vector loop of length n, ¢, is the vector startup time, and . is
the time to execute a particular vector element. Equivalent to (1) is the well-known model of
Hockney (see Hockney and Jesshope [5]),

t=rl(n+ n1/2), (2)

where 7o is the asymptotic performance rate and ny/, is the vector length necessary to achieve
one half the asymptotic rate. Equations (1) and (2) can be shown to be equivalent if we use the
definitions ro, = 171 and nq5 = 1./t [5].

As Lubeck [7] points out, neither equation models the stripmining process used by compilers
on register-to-register vector computers. Also, (1) and (2) may not reflect the behavior of cache-

14

Table 11: Basic Operation Classes

Class | Operation
0 Load
0 Gather (Load indirect)
1 Store
1 Scatter (Store indirect)
2 Arithmetic (Add, Multiply)
2 Reductions

based machines under increasing vector lengths (see, for example [1]). Nevertheless, for the
purposes of our model we believe (1) and (2) to be sufficient.

By analogy with r.,, for each loop, we define three rates: rs for the optimized scalar code,
r, for the vector code, and r, for optimal vector code for the target machine. These rates are
defined in units of the number of iterations per second of the loop. We assume r; < r,, and we
expect rs < r, < 7,, although (as the previous section indicated) it is possible to have r, < r,.

Using the scalar and vector data collected, we can solve (2), for each loop, for rs and r,,
respectively. Since we cannot necessarily assume r, = r,, we must estimate r,. To do this, we
assume that the execution time of a loop is determined by the basic operations in the loop. To
determine the rate at which basic operations (e.g., addition or load) can be performed, we use
the control loops, which we assume can be optimally vectorized.

We divide the basic operations into classes. FEach class contains operations that utilize a
specific functional unit. For example, Table 11 lists the basic operations in each class for a
generic computer with separate load and store pipes.*

The list of which operations belong to which classes varies by vendor, primarily with respect
to the memory operations. For example, on a machine with separate load and store pipes, the
load and gather operations are in one class (they compete for the load pipe), and the store and
scatter operations are in another class (they compete for the store pipe). For machines with
only one pipe for all memory accesses the four memory operations are all in the same class.
Even though these operations all have their own execution rates, when they compete for the
same resources they are in the same class.

To model control flow, we assume an “execute under mask” model in which every operation
is assumed to be executed in vector mode, and the results of various control paths are merged
together. Alternative strategies are possible, such as using compress and expand to perform
arithmetic only where selected, but we found that execute under mask was sufficient for our
purposes.

On each computer, and for each loop L, we estimate its optimal execution rate r,, using

*This table could be extended by subdividing classes into special cases. For example, the arithmetic class
could be divided into separate addition and multiplication classes. For machines that can execute adds and
multiplies concurrently — all machines in this study — these multiple functional units are modeled as simply a
higher arithmetic-processing rate. The difference in execution times between computing the elementwise sum of
three vectors and the elementwise product was insignificant for all computers. This fact is not surprising, since
the rate limiting step for almost all loops in the suite is memory references, and so this distinction would not
change our results significantly.

15

maztime — 0
foreach ¢ € C occuring in L
time «— 0
foreach o € ¢
time — time + N,/ R,
endfor
maxtime — maz(time, maxtime)
endfor
ro — 1/maxtime

Figure 3: Algorithm for Estimating Optimal Iixecution Rate

the algorithm shown in Figure 3. Here C represents the set of classes defined for a particular
computer, o the operations in a class, N, the number of instances of o in L, and R, the rate for
operation o (in units of operations per second) measured with the control loops. The algorithm
assumes that operations in different classes execute concurrently while operations in the same
class execute sequentially.

This model is based on the notion of a resource limit, similar to the model used to calculate
performance bounds in [9, 13]. We assume that for each loop there exists a particular class
of operations that use the same function unit and that the time to execute these operations
provides a lower bound on the time to execute the loop. The algorithm in Figure 3 calculates
that bound, and we use its reciprocal as r,.

In addition to measuring the basic vector operation rates, we also measure the basic scalar
operation rates. For each loop, we then determine which operations can be executed in vector
mode and which must be executed in scalar mode. We then modify the algorithm in Figure 3
to use the appropriate rate (vector or scalar) for R, for each operation.

For each loop and each vendor, we have now determined the three execution rates: r, using
the algorithm given in Figure 3, and r, and r, using (2). All three rates were computed by
using the data for vector lengths of 100 and 1000. We now define percent vectorization, p,, by

the formula
Ty — Ts

(3)

With this definition, if a loop’s vector execution rate is the same as the scalar rate, p, = 0%, and

Pv = .
To — Ts

if a loop’s vector execution rate is the same as the optimal vector execution rate, p, = 100%.
We can now classify a loop as vectorized, partially vectorized, or not vectorized according to the
value of p,. We do this according to the rule

n p, < 10%
Result =< p 10% < p, < 50% (4)
v 50% < p,.

16

7.2 Example

In this section we show an example of the computation of p, for two computers, C7 and Cj.
We assume that ('] has two load pipes and a store pipe and that C; has one pipe used for both
loads and stores.

The example used is the loop shown in Figure 1. For this loop we have the following profile
of basic operations,* N,:

Load Store Gather Scatter Arithmetic Reductions
02 01 00 00 01 00

The first number in each pair is the number of scalar operations, and the second is the number
of vectorizable operations. In this example, executing the loop requires two vector loads, one
vector store, and a vector addition. No scalar operations are required (our model takes into
account scalar operations that occur within the loop body, but not scalar operations, such as
incrementing the loop control variable or testing for loop termination, that have to do with the
loop control itself).

Using the results of the control loops, we have calculated the following basic vector operation
rates. The units are in million of operations per second.

Computer Load Store Arithmetic
C 227 150 269
Cy 186 207 286

Using these values and the loop profile above, we can estimate r, with the algorithm shown
in Figure 3. The result of these calculations is that, for (', the optimal vector execution rate is
114 million iterations per second, and for C; it is 64 million iterations per second.

Using the scalar and vector results for vector lengths 100 and 1000, we determined the follwing
results for 7, and r, by solving (2):

Computer 7y T
4 12.3 115.
Cy 10.7 19.8

Substituting the appropriate values for r,,7,, and r,, into (3), we calculated p, = 100% for Cy
and p, = 17% for Cy. Applying (4), we determined that C7 fully vectorizes this loop and that
(5 partially vectorizes this loop.

7.3 Results

Table 12 is similar to Table 1, except here the number of loops vectorized or partially vectorized
has been determined by applying (3) and (4) as opposed to analyzing the compiler’s output

*From Appendix C.

17

Table 12: Full Vectorization according to (3) and (4) (122 loops)

Computer A% P N
CONVEX (210 51.6 (63) | 14.8 (18) | 33.6 (41)
CCC CRAY-2 36.1 (44) | 24.6 (30) | 39.3 (48)
CRI CRAY Y-MP | 54.1 (66) | 25.4 (31) | 20.5 (25)
DEC VAX 9000-210 | 45.1 (55) | 8.2 (10) | 46.7 (57)
FPS M511EA-2 525 (64) | 18.0 (22) | 29.5 (36)
Fujitsu VP2600/10 | 53.3 (65) | 13.1 (16) | 33.6 (41)
Hitachi S-820/80 52.5 (64) | 15.6 (19) | 32.0 (39)
IBM 3090-600J 51.6 (63) | 18.9 (23) | 29.5 (36)
NEC SX-X/14 46.7 (57) | 21.3 (26) | 32.0 (39)
Average 49.3 (60) | 17.8 (21) | 33.0 (40)

listing.

In comparing Table 12 to Table 1 we observe that the results are mostly consistent with Table
1, with a somewhat tighter grouping among vendors with the most loops vectorized. Most
compilers vectorized between 20 and 30 loops which did not acheive full vector performance
(py > 50%). Appendix B contains complete results.

Casual inspection of the data indicates that there are a number of loops for which at most
one vendor successully achieved vector performance and all other vendors that vectorized did
not. Approximately 23 loops account for most of the differences between the two measures of
vectorization. For the most part, these loops are scattered across categories but they include
most of the scalar expansion loops, the search loops, the packing loops, and the loops with
multiway branching.

Factors other than simple detection of vectorizablility are reflected in the computation of vec-
torization percentages. In particular, traditional optimizations such as common subexpression
elimination, register allocation, and instruction scheduling will all influence the quality of the
generated code and hence the percentage of vectorization. In this sense, the percentage is more
a measure of the overall quality of the compiler generated code.

Optimal code generation and, in particular, instruction scheduling for very simple loops are
extremely difficult. For loops with large bodies, heuristic algorithms will usually get within a
small number of instructions of what is optimal. When the loop body contains only five or ten
instructions, however, being off by a “small” number could cost 25% of achievable performance.
Thus, since almost all of the loops in the suite are very simple, the compilers may perform
substantially better on “real” codes than is suggested by Table 12.

That the measured execution rates are lower than what might be expected from “vector” code
may be due to model limitations. For example, the model treats unit and nonunit stride vector
accesses as equal in cost: there was no convincing evidence that nonunit stride was a factor
worth adding to the operation classes listed in Table 11. The other major factor not modeled is
the presence of a data cache, its size and its organization. This is discussed in Section 8.3.1.

One issue that biases the results presented here is that we use the measured performance on
simple loops to calibrate the model. Thus our “optimal rates” may be significantly below “ma-

18

chine peaks” since those peaks may be achievable only assuming optimal compilation. Further, if
the code generation capabilities of one compiler are generally poor compared with another, then
its ability to vectorize may appear inflated, since our estimate of optimal execution rate may be
too low. This situation can be corrected by replacing the control loops with numbers derived
from hand-crafted assembly routines that would provide estimates of “achievable peaks.” We
did not have the resources to generate these numbers for each machine.

8 Discussion

8.1 Validity of the Test Suite

How good is this test suite? The question can be answered in several ways, but we will address
three specific areas: coverage, stress, and accuracy.

8.1.1 Coverage

By “coverage” we refer to how well the test suite represents typical, common, or important
Fortran programming practices. We would like to assert that high effectiveness on the test
suite will correspond to high effectiveness in general. Unfortunately, there is no accepted suite
of Fortran programs that can be called representative, and so we have no quantitative way of
determining the coverage of our suite. We believe, however, that the method used to select the
tests has yielded reasonable coverage. This method consisted of two phases.

In the first phase, a large number of loops were collected from several vendors and interested
parties. This gave a diverse set of viewpoints, each with a different machine architecture and
hence somewhat different priorities. In some cases the loops represented “real” code from pro-
grams that had been benchmarked. The majority, however, were specifically written to test a
vectorizing compiler for a particular feature. Independently, the categorization scheme used in
Section 2 was developed based on experience and on published literature about vectorization.

In the second phase, the test suite was culled from the collected loops by classifying each loop
into one or more categories and then selecting a few representative loops from each category.
Our interest was in coverage; and since “representative” is not well defined, we made no attempt
to weight some of the subcategories more than others by changing the number of loops. Where
we felt that testing a subcategory required a range of situations, we included several loops; in
other cases we felt that one or two loops sufficed. There is significant weighting between major
categories. For example, the test suite places greater emphasis on basic vectorization (41 loops)
than on idiom recognition (24 loops). This weighting was an artifact of the selected categories
and was reflected in the original collection of samples. We felt that this weighting was reasonable
and made no attempt to adjust it.

19

Table 13: Loops Sorted by Difficulty

Table 14: Loops Sorted by Difficulty, from [3]

8.1.2 Stress

By “stress” we refer to how effectively the test suite tests the limits of the compilers. We wish
the test to be difficult but not impossible. Again there is no absolute metric against which we
can measure the test suite, but we can use the performance of the compilers as a measure. Table
13 lists the results for the various compilers. In this table, each row corresponds to a particular
compiler. Rows are sorted in order of decreasing full and partial vectorization (see Table 2).
Each column corresponds to a particular loop, and the columns are sorted in order of increasing

difficulty.

The loop scores at the bottom of Table 13 are based on the number of compilers that vectorized
or partially vectorized the loop. Many of the loops are inherently only partially vectorizable,
and so we have not attempted to weight full versus partial vectorization. We interpret a low
score as an indication of a difficult test. From the table we observe a skewed distribution of
results, with many of the loops “easy” (everyone vectorizes) and only a few “difficult” (only one
or two vendors even partially vectorizes).

Viewed from a historical perspective, the test appears less stressful now than it did originally.
We can see this qualitatively from Table 14, which is reprinted from [3]. Here there seems to be

20

a more balanced distribution of tests between “easy” and “difficult” when compared to Table
13. Statistics also support this view. In [3] the average number of loops vectorized was 55%, and
vectorized or partially vectorized was 61%. Even if we restrict ourselves to just the eight vendors
also participating in this test, the previous results are still only 59% and 64%, respectively. In
this test the average number of loops vectorized was 70%, and vectorized or partially vectorized
was 77%, an improvement of about 15%

Several factors may be at work. First, compilers have evolved and improved over time. Second,
specialized third-party compiler technology is now readily available to interested vendors. Third,
for various reasons approximately half the vendors who participated in the previous test did not
participate this time. While those who did not participate span the spectrum of previous results,
most had results in the lower or middle part of the previous test. While we added new loops to
this test (and also deleted a small number), this does not seem to have provided adequate stress.
Since one valid use of this test suite is for compiler writers to diagnose system deficiencies, we
expect over time that the test will lose its effectiveness to stress compilers.

8.1.3 Accuracy

By “accuracy” we refer to how well the test can measure the quality of a vectorizing compiler.
Since the difficulty of the tests was determined by the performance of the compilers, it would be
circular now to judge the absolute quality of the compilers by their performance on this suite.
What about relative performance? It is tempting to distill the results for each compiler into
a single number and use that to compare the systems. Such an approach, however, is clearly
incorrect, since these compilers cannot be compared in isolation from the machine environment
and target application area for which they were designed.

We conclude that the suite represents reasonable coverage, that the stress may no longer be
adequate, and that we cannot determine the accuracy of the suite.

8.2 Beating the Test

Some of the loops were vectorized in ways that defeated the intent of the test. One example is
the use of a runtime test. If the compiler cannot determine at compile time whether a loop is safe
to vectorize, because of, say, an unknown parameter value, it must either not vectorize the loop
or else generate an alternative code runtime test. At runtime, based on the value of the unknown
parameter, the test executes either a scalar or a vector version of the loop, as appropriate. In
general, we view runtime testing as a good thing to do. It allows vectorization of loops that
would not otherwise be vectorized and allows cost-effectiveness decisions to be deferred until
runtime. However, it has a negative side. First, the cost of the test is incurred each time the
loop is executed. Second, for large loop nests, it is possible to have a combinatorial explosion
in the number of tests generated. All of the loops in our test suite can be determined to be
vectorizable at compile time, and thus runtime testing is not necessary. The Cray Research,
FPS, IBM, and NEC compilers, however, can generate runtime tests and in a few cases were
able to “beat the test” this way.

A technique similar to runtime testing is conditional vectorization, which was used by the

21

Cray Computer compiler. With conditional vectorization, a safe vector length* is calculated at
runtime. While conditional vectorization is also good for a compiler to be able to do, it also
has a negative side. First, there is the overhead involved in calculating the safe vector length at
runtime. Second, if the calculated safe vector length is one, it is more eflicient to execute a scalar
instruction rather than a vector instruction. None of the loops in our test require conditional
vectorization. Nevertheless, the Cray Computer compiler conditionally vectorized 20 loops, 11
of which resulted in a safe vector length greater than one.

Another way compilers defeated the intent of the test was by their ability to vectorize recur-
rences, using either library routines or special hardware. Several of the tests call for the compiler
to split up a loop (loop distribution, node splitting) or change the order of a loop nest (loop
interchange) in order to vectorize a loop containing an “unvectorizable” recurrence. Several of
the compilers — notably those from Fujitsu, Hitachi, and NEC — were able to directly vectorize
some of these loops.

We emphasize that “beating the test” is not a bad thing. While there may be more efficient
ways to vectorize the loops, the techniques above are beneficial.

8.3 Caveats

We caution that the results presented here test only one aspect of a compiler and should in no
way be used to judge the overall performance of a vectorizing compiler or computer system. The
results reflect only a limited spectrum of Fortran constructs. We do not claim these loops are
representative of a “real” workload, just that they make an interesting test. Some additional
factors are discussed below.

8.3.1 Cache Effects

Two issues may impact machines with data caches. First, to ensure a large enough granularity
for timing purposes, we included a repetition loop around the loop of interest. While considered
a necessary evil for test purposes, this artificial repetition raises an important question about
data locality. The concern is that a cache machine will benefit from the reuse of data loaded
into cache on the first trip through the repetition loop and that additional references to main
memory will not be necessary.

The second issue concerns the data set size relative to the cache size. A small data set will
always fit in the cache. A large data set may not fit in the cache and will cause many performance-
degrading cache misses to occur. The paper by Abu-Sufah and Maloney [1] contains a discussion
of this issue and its impact on performance. Their uniprocessor performance results on an Alliant
FX/8 show that there is only a narrow range of vector lengths for which optimal performance
was achieved. Our choice of 10, 100, and 1000 as the vector lengths was somewhat intuitive and
was not made with any particular cache size in mind.

*See Section 5.1

22

doi=2,n do vector i = 2,n

a(i) = a(i) + b(i) a(i) = a(i) + b(i)
b(i) = b(i-1)*b(i-1)*a(i) enddo
a(i) = a(i) - b(i) doi=2,n
enddo b(i) = b(i-1)*b(i-1)*a(i)
enddo

do vector i = 2,n
a(i) = a(i) - (i)
enddo

Figure 4:

8.3.2 Loop Granularity

Because of the small granularity of our loops (at most a few statements) the speedups achievable
with a certain technique may not achievable on our particular loops. As an example, vectorizing
the loop shown on the left in Figure 4 requires splitting the loop into two vectorizable loops and
one scalar loop containing the nonlinear recurrence as shown on the right.

For this transformation to be successful, there needs to be enough work in the loop to justify
the two additional loop overheads introduced and the extra loads and stores which are not
required in the original loop. For this loop, inspection of the compiler listing showed that eight
of the nine compilers had partially vectorized the loop, but only three achieved more than 15%
of the estimated optimal performance, and only one achieved more than 50%.

8.3.3 Hardware and Software

Some of the loops are really tests of the underlying hardware and may not accurately reflect
the ability of the compiler itself. For example, in the statement A(I)=B(INDEX(I)) a compiler
may detect the indirect addressing of array B but not generate vector instructions because the
computer does not have hardware support for array references of this form. Other examples are
loops containing IF tests that may require mask registers, or recurrences that require special
library routines.

Several of the computers tested are multiprocessors whose compilers support the generation of
both parallel and vector code. Our test involved strictly uniprocessors and may have penalized
vendors who have put considerable effort into parallel execution. On some of these machines,
parallel execution may be more efficient than vectorization for certain loops.

Another example where the computer architecture may influence the compiler is on machines
that have a data cache. Compilers for such machines may concentrate on loop transformations
that improve data locality at the expense of adding “simple” vectorization capabilities.

Several vendors have sophisticated tools to aid the user in vectorization. For example, both
Fujitsu and NEC offer vectorization tools that interactively assist the user in vectorizing a
program. Another example is an interprocedural analysis compiler from Convex, which analyzes

23

an entire program at once. While all are very sophisticated tools, their use was against our rules.

9 Conclusions and Future Work

Our results indicate that most of the compilers tested are fairly sophisticated, able to use a wide
variety of vectorization techniques and transformations. Loops that were considered challenging
several years ago, such as indirect addressing or vectorizing loops containing multiple IF tests,
now seem routine. While there are still various vectorization challenges left to be met, we are
not sure how much they will be addressed in the future. Our perception is that most current
compiler work is going into memory hiearchy management, parallel loop generation, highly
pipelined scalar processors, and interactive and interprocedural tools. We may well be nearing a
plateau as far as how much additional work vendors will put into vectorization techniques alone.

Our test suite continues to evolve from simple inspection of the compiler’s output listing to
trying to judge the quality of the execution results. To make the test more meaningful, we
plan to add the types of “real” loops found in applications. Real loops present combinations of
vectorization problems rather than individual challenges. It will then be interesting to compare
results on the “simple” loops with those on the real loops.

A copy of the source code used in the test is available from the NETLIB electronic mail facility
[4] at Oak Ridge National Laboratory. To receive a copy of the code, send electronic mail to

netlib@ornl.gov. In the mail message, type send vectors from benchmark or send vectord from
benchmark to get either the REAL or DOUBLE PRECISION versions, respectively.

Acknowledgments

We thank John Lesvesque, Murray Richman, Steve Wallach, Joel Williamson, and Michael
Wolfe for providing many of the loops used in this test. Thanks also to the many people involved
in running this test, providing results and constructive feedback on earlier versions.

References

[1] W. Abu-Sufah and A. Malony. Vector processing on the Alliant FX/8 multiprocessor. In
Proceedings of the 1986 International Conference on Parallel Processing, pages 559-566,
1986.

[2] J. Allen and K. Kennedy. Automatic translation of Fortran programs to vector form.

TOPLAS, 9(4):491-542, 1987.

[3] D. Callahan, J. Dongarra, and D. Levine. Vectorizing compilers: A test suite and results.
In Proceedings of Supercomputing 88, pages 98-105, 1988.

[4] J. Dongarra and E. Grosse. Distribution of mathematical software via electronic mail.
Communications of the ACM, 30(5):403-407, July 1987.

[5] R. Hockney and C. Jesshope. Parallel Computers: Architecture, Programming and Algo-
rithms. Adam Hilger, Ltd., Bristol, United Kingdom, 1981.

24

[6]

[7]

J. Levesque and J. Williamson. A Guidebook to Fortran on Supercomputers. Academic
Press, New York, New York, 1988.

O. Lubeck. Supercomputer performance: The theory, practice, and results. Technical
Report LA-11204-MS, Los Alamos National Laboratory, 1988.

O. Lubeck, J. Moore, and R. Mendez. A benchmark comparison of three supercomputers:
Fujitsu VP-200, Hitachi S810/20, and Cray X-MP/2. IFEE Computer, 18(12):10-23, 1985.

W. Mangione-Smith, S. Abraham, and E. Davidson. A performance comparison of the IBM
RS/6000 and the Astronautics ZS-1. IEEE Computer, 24(1):39-46, 1991.

F. McMahon. The Livermore Fortran kernels: A computer test of the numercial range.
Technical Report UCRL-53745, Lawrence Livermore National Laboratory, 1986.

D. Padua and M. Wolfe. Advanced compiler optimizations for supercomputers. Communi-
cations of the ACM, 29(12):1184-1201, 1986.

J. Smith. Characterizing computer performance with a single number. Communications of
the ACM, 31(10):1202-1206, 1988.

J. Tang and E. Davidson. An evaluation of Cray-1 and Cray X-MP performance on vector-
izable Livermore Fortran kernels. In Proceedings of the 1988 International Conference on
Supercomputing, pages 510-518, St. Malo, France, 1988.

M. Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press, Cambridge,
Massachusetts, 1989.

25

Appendix A

Table 15: Hardware and Software used in this test.

Company
Computer

Compiler Version
Compiler Options

OS Version
Main/Cache Memory

CONVEX Computer Corp. | fc 6.1 05 9.0
CONVEX (€210 -02 -uo -is 512MB/None
Cray Computer Corp. cft77 4.0.1.1 UNICOS 6.0
CRAY-2 Defaults 1GB/None
Cray Research, Inc. CF77 4.0 UNICOS 5.1
CRAY Y-MP -Wd”-e78b” 1GB/None
Digital Equipment Corp. FORTRAN V5.5, HPO V1.0 VMS 5.4
VAXvector 9000-210 /HPO/VECTOR/BLAS=(INLINE, 512MB/128KB
MAPPED)/ASSUME=NOACC/OPT
FPS Computing 77 4.3 FPX, 4.3.2
FPS M511EA-2 -u -0 -Oc inl+ -Oc¢ vec+ -Oc pi+ 256MB/64KB

Fujitsu Fortran77EX/VP V11L10 OSIV/MSP AFII &,

VP2600/10 VP(2600),0PT(F),INLINE(EXT(S151S)) | VPCF V10L10
VMSG(DETAIL) 1GB/None

Hitachi fort77/hap V24-0f vos3/as jss4 01-02

S-820/80 sopt,xfunc(xfr), 512MB/256KB
hap(model80,vist),uinline

IBM Corp. VS FORTRAN 2.4.0, VAST-2 R2 MVS/ESA SP3.1.0E

IBM 3090-600J

vopt(opton=r8 inline=s151s,5152s)
copt(opt(3) vec(rep(xlist)))

JES2 SP3.1.1
256MB/256KB
512MB Extended Memory

NEC Corp.
SX-X/14

f77sx 010
-pi *:s151s *:5152s

SUPER-UX RI.11
1GB/64KB

26

Appendix B

The tables below contain the results, on a loop-by-loop basis, for the 122 loops in the test
suite. For each loop three columns of data are given. The first column is the result according to
the compiler listing: vectorized (v), partially vectorized (p), or not vectorized (n), as described
in Section 5.

The second and third columns were calculated with the model described in Section 7. The
second column was calculated by applying (4) to p,. The third column (enclosed in parentheses)
is py, the percentage of vectorization, calculated with equation (3). An entry of “(D)” indicates
that the vector execution rate was less than the scalar execution rate. Occasionally, the p, value
will be higher than 100%. Some of these loops — notably s176, s352, and s4116 — seem to have
uniformly higher values, while most of the others are scattered throughout the test suite. We
have no general explanation for these cases. Two possibilities are limitations of the model or
measurement error.*

Computer s111 s112 s113 s114 s115

CONVEX C-210 v v (100) v v (99 |v v (93)|v p (22)|v v (88)
CCC CRAY-2 v p (17)|v v (7)|v v (56)|n n (0)|v* v (66)
CRI CRAY Y-MP |v v (103)|v v (79)|v v (100)|v v (50)|v v (107)
DEC VAX 9000-210 | v v (97)|v v (I181)|v v (147)|v n (5 |v v (83)
FPS M511EA-2 v p (49 |v v (86)|v v (65 |v p (31)|v v (86)
Fujitsu VP2600/10 | v p (33)|v v (104)|v v (121)|v p (41)|v v (84)
Hitachi S-820/80 v v (113) (v v (102)|v v (105)|v p (32)|v v (108)
IBM 3090-600J v v (92)|v v (103)|v v (97)|v n (7)|v v (84
NEC SX-X/14 v v (M)|v v (1) |v v (69)|v p (43)|v v (61)
Computer 5116 s118 s119 s121 5122

CONVEX C-210 v v (92)|v p (16)|v v (8L)|v v (100)|v v (98)
CCC CRAY-2 n n (0)jn n (0)|v* v (67)|v v (97)|v v (77)
CRI CRAY Y-MP |v v (55)|v v (8)|v v (8)|v v (73)|v v (76)
DEC VAX 9000-210 | v. o (D)|v n (3)|v v (59 |v v (60)|v v (110)
FPS M511EA-2 v p (42)|v p (29)|v v (100)|v v (86)|v v (86)
Fujitsu VP2600/10 | v p (17)|v p (35)|v v (104)|v v (105)|v v (92)
Hitachi S-820/80 v v (8)|v p (18 |v v (99)|v v (104)|n n (D)
IBM 3090-600J v v (53)|v n (8 |v v (55 |v v (100) v v (101)
NEC SX-X/14 v v (189) v p (37)|v v (87)|v v (84)|v v (75

® These loops were conditionally vectorized. For loops with ambiguous subscripts, a runtime
test was compiled which selected a safe vector length.

b These loops were executed in scalar mode. The compiler indicated that partial vectorization
was possible but that the overhead was too large.

¢ For these loops a runtime IF-THEN-ELSE test was compiled which executed either a scalar
loop or a vectorized loop.

* We estimate slightly less than two decimal digits of significance in the timing information collected. Hence,
the percentage of vectorization calculations may have error terms of approximately 10% to 15%.

27

SN TN TN ST TN TN N N N
SO O OO O

957“8(57(

TN TN TN TN TN TN TN TN N
DOOOO466D14
~— e

S~— —

SN STN TN TN TN TN N TN N

oo T o VLD

SO 40 ST S w0
— — —

S e e T N

s211

TN TN TN SIS TN TN N N
O < AN O — —H
SO MO DO

— —
N— ~— L — N N e

— e e e ~— e — o™
< ot = =
T R - T w| & > > A e AR = B
= = = = - .
S - - - = i
VVVVprVVH 4 B 8 > B> a8 > TN N TN TN TN TN TN s N
~— SESsawit®E
N TN TN N N N
P e e e e i e e 0 00 o~ =)
AT amnl Soo—-ocop—o ERICREREZ Ll —o oo
~— ~— ~— e
% Mnnnnnnnnn N s
ﬂnnvnpnpvn n ol e — = = == .
2 /2 8 9 @8 &4 &8 & o -
e T S T -
TN TN TN TN TN TN TN TN N SN TN TN TN TN TN TN TN TN
TN TN TN TN TN N TN N o o O o O ~ ~ — —
AR TaSxs N IEEsZZE2Zs o - T =T =
—_——_ o N ~ —
% ~— S ~— ﬂVVVVVVVVV m m|E B o> 8 g > >
ﬂvvvpvvvvv .) w8 > 8 » 8 8 9 &8 = i
== = s o o o o o S~ = = =
= O 8 g e
SN TN TN TN T TN N N e o i o e
S 0V O OO ™M © 0 0o oo
NoikpaxwoAavo Sk Dwg o 9o \An_l/m/m/\%/m/mmm/m/ —LrOr =2 —
((3(6((4(— T e T e e e e e T e ~— M ~ ~
_— ~— ~— ~— o — N N ~—
N R 2 PR
wm|A 8 &8 » 8 8 & 9 n|lg g2 5 2 5 2 5 o
Q 3
anHprnVH == = A g e 5> 95 2 > g = = R =~
(eI T IS Ll o Bl e B e o e N R i R e R e
SSSR/RSSARSS S®BIZEZ28 gcxago=ge CEeRZxIESS
e e e S e s S e OO/‘”A\(((~ — = -~ e e e e Z —
o X &(\ N ~— T — g
N — t —
ﬂnnnnnnnnn m|lr &> > 8 28 9 49 2 e T T S m|E B o & g g9 > >
s] 8 Q Q Q9
o8 8 8 4 a8 8 &8 = - = o PR e TR = i o T = — = = = =~ . 2 > 8 » 8 8 & &
= o = — = — = S
A e = o A~ N = o A~ N ~ o A e = o
1 1 1 1
S T89S % = S . 52N SZ . SR = R S o83 %o
N o] N o] N o] N o]
e = R LS B o2~ LS B o2~ e = R
O - P NN D © P NN D O P NN D O SR 2 RN N =SS
iR S o I Do DA% I D= &% T
TVA A — Lo 7 TVA A — Lo 7 TVA A — Lo 7 TVA A — Lo 7,
Llg = A5V89X flE e A5V89X Ll e A5V89X Llg = A5V89X
> YO =2 BEs®n > C U2 EESA >YOF 2 B Eawm >0 P E B Ea®m
o wn g o w g joh w "3 =N w "o
L= YnE sz LY== s 50 L=V nE s 50 SO nE 520
P LaEHA PERH SPLaEHA e AR P AEHA T ERH P LaEHA T ERH
DO O0OARKTE=SZA DOV O0OARKTESZA DOV OOVARKTES & DOV ARKTE=S &

28

P o e e e e N e

S S N N N e e N

8242

TN STN TN TN TN TN TN TN N
0O oo W T 0 n o
MmO O N ®

—
~— ~— e ~—’ e’

~—’ e’

SN TN TN TN TN TN N N N
O N < — N TN O
S N AN - © 0O S oM

P e N N

m o [— e e e — e —
Nlggeasaesasa = REAE R A N R
12} R = e TR N = = N g 8 a8 4 49 8 4 4
3 2 &adg o o)
2 8 28 8 4 94 2 2 & === S
SSafECoCa alallalalialalaliais
1(NI M 2(\ S e (13(111((
% Dl g = o o o O % m — N — N’ N’
m|» & = o > > m| &8 8 8 8 9 & o4 anpnpppnn
e == = =
3 o
R T i e s e e e e e A
SEREREZTTE
S’ e’ S~— N’ e’ o — — S e N e N N e N
~ ~— ~— ~— &~ — e T T e e Ne)
m m | g > o e > % %
mlad 8 > & &g 8 & & N S S S wm| |8 8 8 8 8 8 8 8 &
3
e == = =
[T =« Pl « T« P« i o P o i e . 2 8 8 &9 > > 8 >
SSERRESER camesssgs SETOAREGS I8s-ssgas
— — —
= - = o = ~— e
T N ~— e L e e o~ B ~— NI ~— ey
o™ <
N GleAAAa A8 -4 N T R B RV
Nl g &8 oo Nl 8 8 » 8 » 9 &=
S] =
T - AeE e Aa A8 S - -V T SRR N
P o e e T e T e
rTeaNEExS D aaTmaNonAg PetxaToas yooococogo
S O MmO O oo 0 S e N e ~ (PN = N B 0 SER I L) e e e e e ~—
— g <t 0
o Slae a8 aasa o o>
Rl g oo o « L = e T e e
3
= = = = - . o e 2 = = = e Vnnnnbpvvn
= o = — = — = S
- AN ~ o - A~ e ~ o - Ay e = o - SN = o
| ~—— | ~—— | ~ | ~—
= M_%QOBJAL = M_%QOBJAL = M_%QOBJAL = M_%QOBJAL
R e TN =Z2 o83 TS Z o8 S D - Py =g
O - P NN D © P NN D O P NN D O PR NN B
- — %I - — %I - — A 0 I - — & % I
TVAA o Lo TVAA o o TVAA o) TVAA o Lo
v RA — > &K, v RA — > n K, v RA — > K v RA — > FK
SEE=Ss T I3 cEE=Ss T L2 cEEET T 2% SHEL DT D2 %
P LaEHA PERH SPLaEHA e AR P aEHA =N SPLAEHA T ERH
DO O0OARKTE=SZA oA RESZ DO AERKEALZA DDA KRERZ

29

P P A N

.

OO O~ O 0 oM

SN TN TN TN TN TN N N N
DD0003173

SN e N N N N ~—

| T O | ——— e e e ~— > Q g4 8 8 8 8 8 &4 &4 g
I~ ~
> Y Plassras>a > .
a8 g 49> » 28 >
~
e or e o o T S BT - TV
SN TN TN TN TN TN TN N TN
< O IO M O O
WO N MmO = O N A D W I Acwo o A=A ANl T T oo T o
DO 0D Do ST M Mman S I= oo TN _N_ T S —
i I3 0 N> g8 5 2008 5
D I e T e S ST Gl g as as 2 s
Q
SO T = =T~
S s EEEEEE e - - -
TN AN AS
—
OSSR ESE ZAa5aszaAas R e ZxgEsii2s
I~
N N I= Dl s > 200 2 2
L P T A A s A > A AF o I V- =V SO,
T
S R .
N o o
R PP e N coocooaoosa TESZRZEES
n/l\/l\/l\/l\(((((m(((P N NN mu(((u\u\u\u\(w o e me .
N w
e L e A EE A B A e Sl e B o oo
3
=== e A A S s 4 /8 8 B 8 8 > >
NN N TN TN N N N N
o woemoo oA cooococonn© Tl et \%)m/m/\?ﬁm/m/w/mm/
~— ~— ~ ~ ~— — e
Nej
o Flaga g g as 8 3 o
ol e < - - T - ® Nl aa s an s 2 o wm|& 9 8 94 94 9 » & 2
3
bR B BB oA N == -V =T =Y . > 2 88 8 &k b &
= o = — = — = S
- A 10 - A 10 - Al e 10 - Al e 10
| ~— | ~— | ~— | ~
= M_%QOBJAL = M_%QOBJAL = M_%QOBJAL = M_%QOBJAL
D - == T2 3 = e g D R =y =g
O - P NN D © P NN D O P NN D O PR NN B
> — Ay O T e > — Ay O T e > — Ay O T e > — Ay O e
IVAAAX P IVAAAX s IVAAAX P IVAAAX P
5} =~ AlVSQ. [o= AlVSQ. [o= AlVSQ. [o= AlVSQ.
SESeED g 3 SES=EZ S T2 SEEL T NS e HEGEEEE NS e
P LaEHA PERH SPLaEHA e AR P aEHA =N SPLAEHA T ERH
oA ERE=S & oA EREES & DO AR IEES &S oA HRE=S &

30

P P A N

O O I- AN 1o © N O O

P

.

P A N N

oo OO Q20 AN O

0 _NI- o N 0(\(\(\(\29(\(\2 con o DT oo NN AT MmO A
Yol R S e e ~— — ~ ~ ((4 (3((1(AN | S e e N
R > 2 ar e p oA o R = R - -T=Y

n|lEd 8 &8 &9 8 &g
R e = -
8 49 > 48 » 8 a8 a8 48

— 00 O I~ O O Mo O SO AN s - Yo N N TN N TN N N o N 077D04136

SN Mm oo P — O e F oo N =N 0o
T I S S w8 > a8 > m Pla o acs 2 a s s oo

Nilg 8 &8 = o o8
D
- e == = VI - o PR > o 83 8 B> o o
8 49 > 8 » > g >
TN TN TN TN TN TN

P o ek Tl e SSaoCcaxSe — Sgsgaczace

I~ -0 o O - = 3 AN ((444B8(2 O WO 0N OO O W NP B RSN
m m = N e e s ~— ~
N - N e R T N =Y = R e R I i L

w8 & o o a8y

S T S R I N

= - = = =

SN TN TN TN TN TN TN TN TN P N e N e N T T e NI e N (ST T T T T e

Nwomtoooo Mmoo s oo e LA o

sSSS s 22 SRR BN SN AT TIFTSoae o~
N | e e ~ I~ | ~— O | e e e e e e e e M/I\((~— ~
— — — o
o oM — w
Ll N - “lee > 2288 8 » wmleeaaaaaa s el N B T s

N A R - - - PR REREREREEA>

oo o Yo wo o o N N e N T == 10— O 00 D 1 I~ © — N o

=R === === SN Mm-S o _F O N GOSN IS e
— — — o
o™ o™
S T - R-¥ R N T -Y-Y @ls A8 a8 > aF#

- e = = = =g = = - = = =g pnnnnprHV

= o = — = — = S
Ay N = o AN = o AN ~ o A = o
1 1 1 1

= M_%QWBJ = M_%QWBJ = M_%QWBJ = M_%QWBJ

O =g =) NN os = O === O =g =)

O - P NN D © P NN D O P NN D O PR NN B
o AYVAlPo@_vA o AYVAlPo@_VA o AYVAlPOA_V_vA o AnV.AVA‘IADLOMV >
o | < — = n ol < — > 2 ol < — > 2 o | < = n
tERRA5 D e tERRA5 D L tERRA5 D L tERRA5 D e
=) V — O =) V] =) V — O =) V — O
P LaEHA PERH SPLaEHA e AR P aEHA =N SPLAEHA T ERH
DOV ARMRKREARZ DOV U ARMRKRESZ DOV ARRKRELRZ DO ARMKREARZ

31

e

SN TN TN TN TN TN TN N N
S W —H N O O MO -

TN TN TN TN TN TN TN TN
WO DLV A =N
S V0SS Do w

cwopaococoocoo = = = ot
— ~— ~— ~— — [e T e e T [ap] = = © > < I~ I~ —F ©
ﬂ @ M = - — =~ Fon N] N N N N N
Nig & 8 > 49 49 > 4 Rl oo o o %
3 9 Q Q9 L e = = Vi~ i = T
4> > A5 848> & T S PEm R E R R R R
e L T R R T N TN TN TN SN TN TN TN TN TS O~ © O H O - M
%/I\/I\/I\/I\(((((= ~ W0 FH MmO o= ™
o & /2 4 48 8 8 2 4
ol o T = T T T = T = T = Vil P n e I - = - %
O FEEARARE=ARA PEoE e e B frEsrmm AR
oSS -=moo aaRegeogh Sg3-ssaas
O~ < D N o N O I~ — — 0 ~— - . _Z SN TN TN TN TN TN N N N
2(((((((((
2 m|leE 8 »= 8 » 8 & » & o e R I = = =T Mn
N = e N = = e N e N
3
- S T e T R I
= g
SN N TN N N S N N TN TN TN N S N TN TN TN TN N TN TN TN TS
e e = I S N B — © © + o oo © O Mmoo o0 N
SEsSBREg g JsEafzzss SSEZZZ85% SSSTASEES
— |~ — e e e o N~ e ~— ~— %((((S 2(((((((((
| Ln] —
<t <t <t
Rle 5> o 20 5 b b s 2l ar ap» 88> 8 2> > > > 888 &> JYlae g e s aa a2 =
S s = = 82 > 8 48 » g > a8 &8 & & & g 5> 2 B> g 0 s o
= = Swhwopngoococoo c-o~-voAas o 85T meSAS
o — N — N ~— [w\l ~— e ~— ~— AN | — — o — ~— — = ~— — ~—
<t — N <t
o) - - ¢
nlg &8 8 &8 & Nig & &8 > 49 49 > 4 RlE > oo a8 > nle g 8 8 8 @ 8 &
= =T = = = . 2 g > 8 8 » ¢ === = R = i = T == ==
= o = — = — = S
- SN ~ o - Ay N ~ o - AN = o - A = o
| ~—— | ~—— | ~ | ~—
= M_%QOBJAL = M_%QOBJAL = M_%QOBJAL = M_%QOBJAL
N e} N e} N e} N e}
_QY%Aﬁoml _QY%Aﬁoml _QY%Aﬁoml _QY%A60W1
CYY M D CYY AN =N CYY AR Ry CYY AR Ry
R e e e I R e e e B T e e S Ll = T = K >
eVA A — S eVA A — < eVA A — S eVA A — S
tERRArOV.QlquA tERRArOV.QlquA tERRArOV.QlquA tERRArOV.QlquA
2 Yo 2 g Eaw 2l Yo 2 g ERw 2 Yo =2 gE8® ZF T2 2E8%
P LaEHA PERH SPLaEHA e AR P AEHA T ERH P LaEHA T ERH
oA REARZ oA RESZ oA KRERZ oA KRERZ

32

5491

= A

= A

54116

P o e e e e e e
N O O~ O M AN A
— 00 O =H W - O M O
— — ™ o o~ o~
R S N N

== T

- T

5482

e o e T e e e e
— 60D oo O 0O

(57((((6(

S e’ -
S = a8 a8 8 8 = #

S = a8 a8 » & = =

s4115

SN TN TN TN STN TN N N TN
S OO - 00— M
I~ 00 AN © AN M O - O

— — —
e e ~— e e’

- T

- T

5481

e e R e i e
o oMo No o
e T o oS

~—’ e’ S e e

~—

S = a8 a8 » » = H

S = a8 a8 » » = H

s4114

- T

- T

5471

o e e e s R e R
oo O D N 0 O W0 O
(((((5(1 —
—
~— NI

/& 848 8 = &8 = #

& 8 48 > 8 » &8 = #

s4113

o e T R R e L R

e e = o e

- T

- T

s453

TN TN TN TN TN TN TN TN TN
— 10 — O O N O 0O
O = o —

~— ~— e ~—
S e e ~— ~—

e A s s A

==

Computer

CONVEX C-210
CCC CRAY-2

CRI CRAY Y-MP
DEC VAX 9000-210
FPS M511EA-2
Fujitsu VP2600/10
Hitachi S-820/80
IBM 3090-600J
NEC SX-X/14

54112

TN N TN N TN TN TN S N
S - O = AN OO I~ O
SH O - OO O

— — — —
S e Y e e e T

- T

- T

54121

P P

=
D

100
100
100
138
101
100
100
100

~—

S e e N N S e e

== = i

== = i

SN TN TN TN TN TN N N N
Sy O == 00 M O O
M H M O M MmO M

~—

Computer

CONVEX C-210
CCC CRAY-2

CRI CRAY Y-MP
DEC VAX 9000-210
FPS M511EA-2
Fujitsu VP2600/10
Hitachi S-820/80
IBM 3090-600J
NEC SX-X/14

N((((((((
—
Tl s a2
e or e o o
S o
= S2.33.
O =g =)
Cloe = e = A T
CHEZEE 28
5 - <t 5 — S
o S
EI5 0O =0V = & Mmhv
o0 ERARERA
oA ERE=S &

33

Appendix C

The tables below contain the operation counts for each loop in the test suite.

34

Loop | Load | Store | Gather | Scatter | Arithmetic | Reductions
s111 02 01 00 00 01 00
5112 02 01 00 00 01 00
s113 01 01 00 00 01 00
s114 02 01 00 00 01 00
s115 02 01 00 00 02 00
s116 05 05 00 00 05 00
s118 02 00 00 00 02 00
s119 02 01 00 00 01 00
5121 02 01 00 00 01 00
8122 02 01 00 00 01 00
5123 04 01 00 00 05 00
8124 04 01 00 00 05 00
8125 03 01 00 00 02 00
5126 03 01 00 00 02 00
8127 04 02 00 00 04 00
5128 03 02 00 00 02 00
5131 02 01 00 00 01 00
5132 02 01 00 00 02 00
s141 01 01 01 01 01 00
5151 02 01 00 00 01 00
5152 04 02 00 00 03 00
5161 06 02 00 00 07 00
5162 03 01 00 00 02 00
s171 02 01 00 00 01 00
8172 02 01 00 00 01 00
s173 02 01 00 00 01 00
8174 02 01 00 00 01 00
s175 02 01 00 00 01 00
s176 02 00 00 00 02 00
s211 05 02 00 00 04 00
8212 05 02 00 00 03 00
8221 04 02 00 00 13 00

35

Loop | Load | Store | Gather | Scatter | Arithmetic | Reductions
8222 | 26 12 00 00 24 00
§231 | 02 01 00 00 01 00
§232 | 02 01 00 00 02 00
s233 | 04 02 00 00 02 00
s234 | 03 01 00 00 02 00
$235 | 03 01 00 00 02 00
s241 | 04 02 00 00 04 00
§242 | 03 01 00 00 13 00
s243 | 05 02 00 00 06 00
s244 | 04 02 00 00 05 00
s251 | 03 01 00 00 03 00
§252 | 02 01 00 00 02 00
s253 | 04 02 00 00 06 00
8254 | 01 01 00 00 02 00
§255 | 01 01 00 00 03 00
§256 | 02 01 00 00 02 00
§257 | 02 01 00 00 02 00
§258 | 04 02 00 00 07 00
s261 | 05 02 00 00 03 00
s271 | 03 01 00 00 04 00
§272 | 05 02 00 00 07 00
s273 | 05 03 00 00 08 00
s274 | 05 02 00 00 04 00
s275 | 04 01 00 00 03 00
s276 | 03 01 00 00 02 00
s277 | 05 02 00 00 08 00
s278 | 05 03 00 00 01 00
s279 | 05 03 00 00 01 00
s2710 | 05 04 00 00 02 00
82711 | 03 01 00 00 02 00
s2712 | 03 01 00 00 04 00
8281 | 02 01 00 00 02 00
§201 | 02 01 00 00 02 00
§292 | 03 01 00 00 02 00
$293 | 00 01 00 00 00 00
s2101 | 03 01 00 00 02 00
§2102 | 00 01 00 00 00 00
s2111 | 02 01 00 00 01 00

36

Loop | Load | Store | Gather | Scatter | Arithmetic | Reductions
s311 | 01 00 00 00 00 01
s312 | 01 00 00 00 00 01
s313 | 02 00 00 00 01 01
s314 | 01 00 00 00 00 01
s315 | 01 00 00 00 00 01
s316 | 01 00 00 00 00 01
s317 | 00 00 00 00 00 01
s318 | 01 00 00 00 01 01
s319 | 03 02 00 00 02 02
s3110 | 01 00 00 00 00 01
s3111 | 01 00 00 00 01 01
83112 | 01 01 00 00 00 01
s3113 | 01 00 00 00 01 01
8321 | 02 10 00 00 20 00
s322 | 03 10 00 00 40 00
s323 | 03 02 00 00 22 00
s331 | 01 00 00 00 00 01
s332 | 01 00 00 00 01 00
8341 | 01 01 00 00 01 00
8342 | 01 01 00 00 01 00
s343 | 02 01 00 00 01 00
s361 | 010 | 05 00 00 01 00
§352 | 010 | 05 00 00 09 01
s353 | 02 01 01 00 01 00
s411 | 03 01 00 00 02 00
s412 | 03 01 00 00 02 00
s413 | 04 02 00 00 04 00
s414 | 03 01 00 00 02 00
s415 | 03 01 00 00 02 00
8421 | 02 01 00 00 01 00
8422 | 02 01 00 00 01 00
8423 | 02 01 00 00 01 00
8424 | 02 01 00 00 01 00
s431 | 02 01 00 00 01 00
s432 | 02 01 00 00 01 00
s441 | 03 01 00 00 01 00
s442 | 05 01 00 00 01 00
s443 | 03 01 00 00 07 00

37

Loop | Load | Store | Gather | Scatter | Arithmetic | Reductions
s451 | 028 | 01 00 00 02 00
8452 02 01 00 00 02 00
5453 01 01 00 00 01 01
8471 03 01 00 00 02 00
5481 04 01 00 00 03 00
8482 04 01 00 00 03 00
5491 04 00 00 01 02 00
s4112 | 01 01 01 00 02 00
s4113 | 01 00 01 01 01 00
s4114 | 03 01 01 00 03 00
s4115 | 01 00 01 00 01 01
s4116 | 00 00 02 00 01 01
s4117 | 02 01 01 00 03 00
s4121 | 03 01 00 00 02 00
va 01 01 00 00 00 00
vpv 02 01 00 00 01 00
vtv 02 01 00 00 01 00
vpvts 02 01 00 00 02 00
vpvtv | 03 01 00 00 02 00
vpvpv | 03 01 00 00 02 00
vivty | 03 01 00 00 02 00
vbor 06 01 00 00 0 59 00
vif 02 01 00 00 02 00
vag 00 01 01 00 00 00
vas 02 00 00 01 00 00
vsumr | 01 00 00 00 00 01
vdotr | 02 00 00 00 01 01

38

Appendix D

39

