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1 Introduction

In [2], J. A. Kalman presents axiomatizations of the left group tautologies and the right
group tautologies. In this paper we sharpen those results by showing that Kalman’s axiom-
atizations are dependent and by giving other simpler axiomatizations, including ones that

consist of single formulas.

A left group formula is an expression constructed from variables and a binary function
symbol E. A left group formula « is a left group tautology iff « = 1is valid in (multiplicative)
group theory when E(z,y) is interpreted as 7% - y. The left group calculus consists of left
group formulas and the inference rules variable instantiation and modus ponens, where F
is treated as implication (i.e., from a and E(«, ) infer 8). An aziomatization of the left

group calculus is a finite set of left group tautologies from which every left group tautology
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is derivable in the left group calculus. A single aziom for the left group tautologies is a left

group formula a such that {a} is an axiomatization of the left group calculus.

There are analogous definitions for the right group calculus, in which E(z,y) is inter-
preted as x - y~!. (Ordinary modus ponens, rather than reverse modus ponens is used for

the right group calculus. This is discussed in Section 3.)

The inference rule used for the proofs in this paper is C. A. Meredith’s condensed
detachment [5, 9], which uses unification to combine the operations of modus ponens and
instantiation: consider premises a and E(7,), in which variables have been renamed,
if necessary, so that they have no variables in common; if @ and « unify, then infer the
(most general) corresponding instance of 3. Every formula that can be derived by modus
ponens and instantiation either can be derived by condensed detachment or is a instance
of a formula that can be derived by condensed detachment [4]. See the proof of Theorem 4

below for simple examples of the application of condensed detachment.

Section 2 contains condensed detachment proofs that three (1.1, L4, and L5) of Kalman’s
five axioms for the left group calculus are dependent on the remaining two axioms. It is

then shown that

E(E(E(E(z,y),2), E(E(u,v), E(E(E(w, v), E(w, 1)), s))), E(z, E(E(y,z),s)))  (S1)

is a single axiom for the left group calculus. Several other simple axiomatizations (which are
not single axioms) are also given. Section 3 contains condensed detachment proofs that four
(R1, R3, R4, and R5) of Kalman’s five axioms for the right group calculus are dependent

on the remaining axiom R2:

B, B, E(E(y, ), E(E(y, u). B(z.0)))). (R2)

Five other single axioms for the right group calculus are also given (without proof).

Single axioms are known for the equivalential calculus [11], in which E(«, ) can be
interpreted as the a - 3 in Boolean groups, and for the L-calculus [8] (respectively R-

calculus [1]) in which E(«, 3) can be interpreted as a™! -3 (respectively a-371) in Abelian



groups. Prior to the work reported in this paper, no single axioms for the left group or right

group calculi were known to the author. The new single axioms answer questions raised by

C. A. Meredith in [8, p. 222].

We made extensive use of the automated theorem-proving program OTTER [6] in ob-
taining the new axiomatizations. Theorem-proving programs have been used to study given
candidate axiomatizations in related areas, for example, [3, 12, 10], but here, the goal was
to find simpler axiomatizations. OTTER was used to generate candidate axiomatizations,
to search for proofs that the candidates are in fact axiomatizations, and to search for de-

pendencies in axiomatizations.

2 The Left Group Calculus

From here on, formulas are written in Polish notation. In the proofs that follow, the
justification [m,n] indicates that formula m is the major premise Faf and that n is the
minor premise, which unifies with a.. The result is the corresponding instance of 5. Variables
are renamed starting with z,y, z, u, v, w, s,1. The formula numbers indicate position in the

sequence of formulas retained by OTTER.

Kalman’s axiomatization of the left group calculus consists of the following five

axioms [2]:
EEExEFEyyxzz (L1)
FEEEEzyFErzFEyzuu (L2)
FPEEEFEFEryErzul Eyzuvv (L3)
EEEFEzyzuEEFEzvzFE Eyvu (L4)
FPEExEEyrzEEuzvEEEExyuzv (L5)

Theorem 1. The pair of formulas {1.2,1.3} aziomatizes the left group calculus.

Proof (OTTER). The following condensed detachment proof derives L4, L5, which is a

generalization of L5, and L1 from {L2,L.3}:



18
21
22
23
25
34
37
43
46
48
56
58
139
366
372
375
385
1475
2688
3811
4814
6608

[4,4]
[18,18]
[4,18]
[3,18]
[18,4]
[4,21]
[21,4]
[3,22]
[22,4]
[23,23]
[23,18]
[23,3]
[43,3]
[34,139]
[23,139]
[18,139]
[37,25]
[46,22]
[56,18]

FEEEFExyFrzFyzuu
FEEEFEFExyFrzul Fyzuvv
FEExyzFFEuyFE Fxuz
FExyFEEEzux L EvuF FEzvy
FFExyFEEEzuFzve F Fuvy
FExFEyzFFEFEyux Fuz
FExyFEEEEE2uF zvwF Fuvway
FEExyEEEzulFzvwl FsylE FrsE FEuvw
FEExyEEEEE2ul zvwlF FuvwsE Bty Frts
FEEFExyVPrzFEFEuoFEuwl Eyz Fow
FEEFExyPrzFEEE Fuv EuvwsE Fvwst W Fyzt
FEEEFExyzuFzFErxvFEulyv
FEEExyzFEFEuyvFEzE Fuxv
FEExyEEEE2ul zvEuv FxwFEyw
FEExyFEEzeull Fzyu
FExFEEPEyzuwEFEFEFuFEywe B FEzwv
FEEExyzFEFEuyF FxuvFzv
FExFEFEyzuF FFEzve F FEyvu
FExyFEEEEzuvE FwuF Ezwoxy
FEEFExyzuF FFExvzFE Fyvu
FeFEFEyzFEzyx

[48,2688] FaFyFFEEEzuyFbuzx

[372,3811] Fe FEEFEyzF FEzyuux

[375,4814) FEEExyzEEFE FuvE Evuryz

8757 [366,6608] EFExEFyzuFE EvewFEEEEzyvuw

19117 [58,385]

Theorem 2. The pair of formulas {L2,P1} axiomatizes the left group calculus:

FEExFEFEyyrzz

FEEEFExyFrzFyzuu

FEExyzFFEuyFE Fxuz

(L4)



Proof (OTTER). P1 is a left group tautology (which can be verified by rewriting Fa/

to a~! and reducing to 1). The following condensed detachment proof derives L3 from

{L2,P1}:

3

4

32 [3.4]

35 [32,32]
38 [32.4]
44 [35,3]
61 [38,4]
86 [32,44]
93 [38,61]
116 [86,44]
161 [35,93]
219 [32,116]
221 [4,116]

1111 [221,221]

1127 [4,1111]

1511 [219,161]
1522 [38,1511]

FEEEFExyFrzFyzuu
FEExyzFFEuyFE Fxuz
FExFEyzFFEFEyux Fuz
FEEEFExyzuFzFErxvFEulyv
FEEExyzFEFEuyvFEzE Fuxv
FEExyFEEzeull Fzyu
FeFEFEyzFEzyx
FEEExyzFEFEuyF FxuvFzv
FeFEFEyzFEuylF Fzux
FEExyF Eyrzz
FelEyFEE2ul EFEFuvyFvzx
FEExyEEzulF FuzFrvEyv
FExFEFEyzuFEFEFEzyxu
FEExFEyzFxFEFEzyuu
FExFEyEEzuvEEFEyFuzxv
FeFEFEEEyzEyulzux
FeFEFEEEyzEyuvFE FvEzux

1524 [1127,1522) FEEEEFExyFxzuE Eyzuvv

Theorem 3. Formula S1 is a single axiom for the left group calculus:

FEEFExyzF EuwlEERwoFwusFEzFEFEyxs

(L3)

(S1)

Proof (OTTER). S1 is a left group tautology (which can be verified by rewriting Faf to

a™13 and reducing to 1). The following condensed detachment proof derives P1 and L2

from S1:



10 FEEEzyzEEuwEEEwvEwusEzEEyxs (S1)
23 [10,10] FEFEayFEEEzyEzeuE FEFEvwE EsvEswu

24 [10,23] EFEFExyExzEFEEub EvwEvsFuFEwstE Eyzt

26 [24,10] FEFEExFEyzFyuFExEzuFE FEEvwEvstE Fwst

32 [26,24] FEFEzyzEEFux Fuyz

33 [26,10] FEFEFExyExzuE Fyzu

34 [32,32] EEExEyzExuEFEEvyFvzu

41 [33.,33] FEEzyzE FuyE Eauz (P1)
331 [24,34] EFEEExyFExzFyzuu (L2)

Six other axiomatizations of the left group calculus were also discovered with the assis-

tance of OTTER. The axiomatizations include formulas from the following list:

FEEEEzyFErzFEyzuu (L2)
FEEzyzEFEuyl Eruz (P1)
ExEEEEyzEyul zux (P4)
ExzEFEy2EEzyx (Q1)
EExyEEzzEzy (Q2)
EEExzyEFEyxzz (Q3)
EEFEzyExzFEyz (Q4)

Each of the sets {L.2,P4}, {1.2,Q1,Q2}, {P1,Q3}, {P4,Q3}, {Q1,Q2,Q3}, {Q1,Q3,Q4} is an

axiomatization of the left group calculus. Proofs can be found in [7].

3 The Right Group Calculus

Kalman’s axiomatization of the right group tautologies consists of the following five

axioms [2]:
PrxExEEyEzzy (R1)
PrFExFEEyzEFEyulzu (R2)



ExFExEEyEzuFEyEEzvEuv (R3)
FEExEyzFulyvExEulzv (R4)
FEzEyEzFEuwl ExEvzEEyFEvuv (R5)

Let the mirror image of a formula be obtained by rewriting each occurrence of Faf to Ffa.
Note that each of the five axioms R1-R5 is the mirror image (after renaming variables) of
the the corresponding axiom in L1-L5. When the inference rule used with the right group
tautologies is reverse modus ponens, it is easy to see that the resulting calculus is isomorphic
to the left group calculus. However, Kalman states (without proof) that ordinary modus
ponens can also be used with R1-R5 to axiomatize the right group tautologies. We sketch

a proof of this result here.

Theorem 4. From formulas R1-R5, one can derive all right group tautologies with instan-

tiation and ordinary modus ponens.

Proof sketch (OTTER). We show that from R1-R5 (in fact, from just R2) and ordinary
condensed detachment, we can derive reverse modus ponens. We do this by assuming Fa/f
and 3, for constants a and 3, and deriving a. Once we have reverse modus ponens, we can

derive all right group tautologies.

2 Eap

3 s

4 PrFExFEEyzEFEyulzu (R2)
6 [4,3] EpEFxyEFEzzEyz

8 [6,3] FEFxzyEFEzzEyz

9 [8,8] FEFFEzyzEEFExzuFEyuz
10 [8,2] FFEoazFEpx

251[9,10] EFFFEaxEyxFEpy
26[9,8] FEFFEzyFEzyFEFEzuFEzu
2919,25] FEEFaxyFEzayFEpz
59 [26,26] FEFExyzEExyz

90 [29,59] Efa



93 [90,3] «a

For the right group calculus, we use ordinary modus ponens rather than reverse modus
ponens in order to have a system that is substantially different from the left group calculus.
In addition, it appears that the right group calculus has axiomatizations that are simpler

than the left group calculus has.
Theorem 5. Formula R2 is a single axiom for the right group calculus.

Proof (OTTER). The following (ordinary) condensed detachment proof derives R3, R1, R4,

and R5’, which is a generalization of R5, from R2:

3 FeFExEFEyzFEFEyuFzu (R2)
21 [3,3] FExFExzFEyzEEyuFzuF Fvwl EvsFws
22 [21,3] FExyFEFRrzFyz

24 [22,22] EEFExyzEEFzuFEyuz

25 [3,22] FEFxybEFExzFEyzEFEuvE FuwFEow
26 [22,3] FFExyFExFEzuFEzvEuvy

27 [24,24] FEFExyzFuzFEFFEzvEyvu

29  [3,24] FEFExyzFEFEFErzuFEyuzF Evwl EvsFws
30 [24,22] FEFxylzyEFEruFzu

31 [24,3] FEFxybzyEFErzEFEuvE FuwFEow
36 [26,22] FEExzyEFzuEFzvFEuwwFEExwEyw
40 [27,25] FEFxylzyFxz

43 [27,29] FEEFExyzEEuFyvzEFxvu

57 [30,21] FEEzsEEyzFuzvEFx Eyuv

69  [22,40] FEFExyFzyuFEExzu

74 [40,29] FEFxybzEyuFE FExuz

75 [40,21] FExFEFEyzFuzFxFyu

93  [57,40] EEFzEyzFEuyFExFuz

102 [69,69] EEFzyzFExuFEzFEuy

124 [74,31] FEFxyb FEzuFyuFxz



126 [69,75] FExEyzFEExFEuzFEyu

135 [43,93] FEEExFEFEyyzzx

142 [22,93] FEFExEyzFuyvFEEx Fuzv

160 [24,102] FEFExyzFuzFEFzvEuFvy

161 [22,102] FEFExyzuEFEFExzvEzFEvyu

164 [102,74] FEFxyzEFEFzuvEzEvEyu

181 [124,36] FExFEEyzFEFEyuFzux

184 [126,126] FEFExFyzFuFEyvEExFEvzu

378 [184,181) EFFExEFyzuFEuEFEyvEzvx

382 [184,93] EFEFExEyzEzyx

542 [184,382] FEFEEFExFEyzFEuyFzux

543 [164,382] EFEFExFEyzuvFxFvEEzyu

544 [161,382] FEFEFExyFEzuEyFuzx

836 [57,542] EFEFExFyEzuEFvuyEzvx

876 [543,378] FEazFaxFEyEzuEyEEzvFEuv (R3)
888 [543,135] FEazFExFEyFEzzy (R1)
1029 [160,544] FEFExFEyzEuEzyvExEvu

1500 [543,836] FEzEyEzuFaeFEFEyEvuEzv

1587 [142,1029] FEzEyEzFuvExEEyEvuz

2210 [75,1500] FEFEzEyzFuEyvExzFEulzv (R4)
2276 [1500,1587] FEz EyEzFuwE FEx FwzE EyFEvuw (R5")

One might conjecture that a set of formulas axiomatizes the left group calculus if and
only if its set of mirror images axiomatizes the right group calculus. On the contrary,
although R2 is a single axiom for the right group calculus, L2 cannot be a single axiom for

the left group calculus, because it does not (ordinary) condensed detach with itself.

Fach of the following formulas is also a single axiom for the right group calculus (with

ordinary modus ponens). Proofs can be found in [7].

FExPyzFExFEEyulzu (S2)



ExExEEEyzFEuzEyu (S3)
FExPyzFEExFuzEyu (S4)
EExEFEyzEEyuEzux (S5)
EExEEEyzFuzEyux (S6)

4 The Role of OTTER

The program OTTER [6] is a general-purpose, resolution/paramodulation theorem prover
for first-order logic with equality. The main consideration in the design of OTTER was the
ability to quickly explore large search spaces rather than the use of heuristics to carefully

control the searches.

We used OTTER in two ways to obtain these results. First, to find the multi-formula
axiomatizations listed at the end of Section 2, we iterated as follows: take a known axiom-
atization, replace a complex axiom, say «, with a set of simpler tautologies, then search
for a proof of «; if a proof is found, search for dependencies in the new axiomatization.
Second, to find the single axioms, we generated large sets of tautologies, and with each,
searched for a known axiomatization. The main method for generating the large sets of
candidate single axioms was to enumerate tautologies not containing instances of E(z,z).
(Most tautologies contain instances of E(z,x), but the interesting axiomatizations usually
do not.) Approximately 10,000 OTTER searches were run, consuming about four days of
computer time. Another paper [7] contains a detailed presentation of the use of OTTER to

obtain the results presented in this paper.

Acknowledgments. 1 wish to thank Dana Scott for suggesting these calculi as challenges
for OTTER, Larry Wos for collaborating on the formulation of search strategies applied
by OTTER in related areas, John Kalman for discussions on the topic, and a referee for

substantially improving to this paper.
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