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is derivable in the left group calculus. A single axiom for the left group tautologies is a leftgroup formula � such that f�g is an axiomatization of the left group calculus.There are analogous de�nitions for the right group calculus, in which E(x; y) is inter-preted as x � y�1. (Ordinary modus ponens, rather than reverse modus ponens is used forthe right group calculus. This is discussed in Section 3.)The inference rule used for the proofs in this paper is C. A. Meredith's condenseddetachment [5, 9], which uses uni�cation to combine the operations of modus ponens andinstantiation: consider premises � and E(; �), in which variables have been renamed,if necessary, so that they have no variables in common; if � and  unify, then infer the(most general) corresponding instance of �. Every formula that can be derived by modusponens and instantiation either can be derived by condensed detachment or is a instanceof a formula that can be derived by condensed detachment [4]. See the proof of Theorem 4below for simple examples of the application of condensed detachment.Section 2 contains condensed detachment proofs that three (L1, L4, and L5) of Kalman's�ve axioms for the left group calculus are dependent on the remaining two axioms. It isthen shown thatE(E(E(E(x; y); z);E(E(u; v);E(E(E(w; v);E(w; u)); s)));E(z;E(E(y; x); s))) (S1)is a single axiom for the left group calculus. Several other simple axiomatizations (which arenot single axioms) are also given. Section 3 contains condensed detachment proofs that four(R1, R3, R4, and R5) of Kalman's �ve axioms for the right group calculus are dependenton the remaining axiom R2:E(x;E(x;E(E(y; z);E(E(y; u); E(z; u))))). (R2)Five other single axioms for the right group calculus are also given (without proof).Single axioms are known for the equivalential calculus [11], in which E(�; �) can beinterpreted as the � � � in Boolean groups, and for the L-calculus [8] (respectively R-calculus [1]) in which E(�; �) can be interpreted as ��1 �� (respectively � ���1) in Abelian2



groups. Prior to the work reported in this paper, no single axioms for the left group or rightgroup calculi were known to the author. The new single axioms answer questions raised byC. A. Meredith in [8, p. 222].We made extensive use of the automated theorem-proving program Otter [6] in ob-taining the new axiomatizations. Theorem-proving programs have been used to study givencandidate axiomatizations in related areas, for example, [3, 12, 10], but here, the goal wasto �nd simpler axiomatizations. Otter was used to generate candidate axiomatizations,to search for proofs that the candidates are in fact axiomatizations, and to search for de-pendencies in axiomatizations.2 The Left Group CalculusFrom here on, formulas are written in Polish notation. In the proofs that follow, thejusti�cation [m,n] indicates that formula m is the major premise E�� and that n is theminor premise, which uni�es with �. The result is the corresponding instance of �. Variablesare renamed starting with x; y; z; u; v;w; s; t. The formula numbers indicate position in thesequence of formulas retained by Otter.Kalman's axiomatization of the left group calculus consists of the following �veaxioms [2]:EEExEEyyxzz (L1)EEEEExyExzEyzuu (L2)EEEEEExyExzuEEyzuvv (L3)EEEExyzuEEExvzEEyvu (L4)EEExEEyxzEEuxvEEEExyuzv (L5)Theorem 1. The pair of formulas fL2,L3g axiomatizes the left group calculus.Proof (Otter). The following condensed detachment proof derives L4, L50, which is ageneralization of L5, and L1 from fL2,L3g: 3



3 EEEEExyExzEyzuu (L2)4 EEEEEExyExzuEEyzuvv (L3)18 [4,4] EEExyzEEuyEExuz21 [18,18] EExyEEEzuxEEvuEEzvy22 [4,18] EExyEEEEzuEzvxEEuvy23 [3,18] EExEyzEEEyuxEuz25 [18,4] EExyEEEEEEzuEzvwEEuvwxy34 [4,21] EEExyEEEzuEzvwEEsyEExsEEuvw37 [21,4] EEExyEEEEEzuEzvwEEuvwsEEtyEExts43 [3,22] EEEExyExzEEuvEuwEEyzEvw46 [22,4] EEEExyExzEEEEEuvEuwsEEvwstEEyzt48 [23,23] EEEEExyzuEzExvEuEyv56 [23,18] EEEExyzEEuyvEzEEuxv58 [23,3] EEExyEEEEzuEzvEuvExwEyw139 [43,3] EEExyEEzxuEEzyu366 [34,139] EExEEEyzuvEEEuEywxEEzwv372 [23,139] EEEExyzEEuyEExuvEzv375 [18,139] EExEEyzuEEEzvxEEyvu385 [37,25] EExyEEEEEzuvEEwuEEzwvxy1475 [46,22] EEEExyzuEEExvzEEyvu (L4)2688 [56,18] ExEEyzEEzyx3811 [48,2688] ExEyEEEEzuyEuzx4814 [372,3811] ExEEEEyzEEzyuux6608 [375,4814] EEExyzEEEEuvEEvuxyz8757 [366,6608] EEExEEyzuEEvxwEEEEzyvuw (L50)19117 [58,385] EEExEEyyxzz (L1)Theorem 2. The pair of formulas fL2,P1g axiomatizes the left group calculus:EEEEExyExzEyzuu (L2)EEExyzEEuyEExuz (P1)4



Proof (Otter). P1 is a left group tautology (which can be veri�ed by rewriting E��to ��1� and reducing to 1). The following condensed detachment proof derives L3 fromfL2,P1g:3 EEEEExyExzEyzuu (L2)4 EEExyzEEuyEExuz (P1)32 [3,4] EExEyzEEEyuxEuz35 [32,32] EEEEExyzuEzExvEuEyv38 [32,4] EEEExyzEEuyvEzEEuxv44 [35,3] EEExyEEzxuEEzyu61 [38,4] ExEEyzEEzyx86 [32,44] EEEExyzEEuyEExuvEzv93 [38,61] ExEEyzEEuyEEzux116 [86,44] EEExyEEyxzz161 [35,93] ExEyEEzuEEEEuvyEvzx219 [32,116] EEExyEEzuEEuzExvEyv221 [4,116] EExEEyzuEEEzyxu1111 [221,221] EEExEyzExEEzyuu1127 [4,1111] EExEyEEzuvEEEyEuzxv1511 [219,161] ExEEEEyzEyuEzux1522 [38,1511] ExEEEEyzEyuvEEvEzux1524 [1127,1522] EEEEEExyExzuEEyzuvv (L3)Theorem 3. Formula S1 is a single axiom for the left group calculus:EEEExyzEEuvEEEwvEwusEzEEyxs (S1)Proof (Otter). S1 is a left group tautology (which can be veri�ed by rewriting E�� to��1� and reducing to 1). The following condensed detachment proof derives P1 and L2from S1: 5



10 EEEExyzEEuvEEEwvEwusEzEEyxs (S1)23 [10,10] EEExyEEEzyEzxuEEEvwEEsvEswu24 [10,23] EEEExyExzEEEuEEvwEvsEuEws tEEyzt26 [24,10] EEEExEEyzEyuExEzuEEEvwEvstEEwst32 [26,24] EEExyzEEEuxEuyz33 [26,10] EEEExyExzuEEyzu34 [32,32] EEExEyzExuEEEvyEvzu41 [33,33] EEExyzEEuyEExuz (P1)331 [24,34] EEEEExyExzEyzuu (L2)Six other axiomatizations of the left group calculus were also discovered with the assis-tance of Otter. The axiomatizations include formulas from the following list:EEEEExyExzEyzuu (L2)EEExyzEEuyEExuz (P1)ExEEEEyzEyuEzux (P4)ExEEyzEEzyx (Q1)EExyEEzxEzy (Q2)EEExyEEyxzz (Q3)EEExyExzEyz (Q4)Each of the sets fL2,P4g, fL2,Q1,Q2g, fP1,Q3g, fP4,Q3g, fQ1,Q2,Q3g, fQ1,Q3,Q4g is anaxiomatization of the left group calculus. Proofs can be found in [7].3 The Right Group CalculusKalman's axiomatization of the right group tautologies consists of the following �veaxioms [2]:ExExEEyEzzy (R1)ExExEEyzEEyuEzu (R2)6



ExExEEyEzuEyEEzvEuv (R3)EEExEyzEuEyvExEuEzv (R4)EExEyEzEuvEExEvzEEyEvuv (R5)Let the mirror image of a formula be obtained by rewriting each occurrence of E�� to E��.Note that each of the �ve axioms R1{R5 is the mirror image (after renaming variables) ofthe the corresponding axiom in L1{L5. When the inference rule used with the right grouptautologies is reverse modus ponens, it is easy to see that the resulting calculus is isomorphicto the left group calculus. However, Kalman states (without proof) that ordinary modusponens can also be used with R1{R5 to axiomatize the right group tautologies. We sketcha proof of this result here.Theorem 4. From formulas R1{R5, one can derive all right group tautologies with instan-tiation and ordinary modus ponens.Proof sketch (Otter). We show that from R1{R5 (in fact, from just R2) and ordinarycondensed detachment, we can derive reverse modus ponens. We do this by assuming E��and �, for constants � and �, and deriving �. Once we have reverse modus ponens, we canderive all right group tautologies.2 E��3 �4 ExExEEyzEEyuEzu (R2)6 [4,3] E�EExyEExzEyz8 [6,3] EExyEExzEyz9 [8,8] EEExyzEEExuEyuz10 [8,2] EE�xE�x25 [9,10] EEE�xEyxE�y26 [9,8] EEExyEzyEExuEzu29 [9,25] EEEE�xyEEzxyE�z59 [26,26] EEExyzEExyz90 [29,59] E�� 7



93 [90,3] �For the right group calculus, we use ordinary modus ponens rather than reverse modusponens in order to have a system that is substantially di�erent from the left group calculus.In addition, it appears that the right group calculus has axiomatizations that are simplerthan the left group calculus has.Theorem 5. Formula R2 is a single axiom for the right group calculus.Proof (Otter). The following (ordinary) condensed detachment proof derives R3, R1, R4,and R50, which is a generalization of R5, from R2:3 ExExEEyzEEyuEzu (R2)21 [3,3] EExExEEyzEEyuEzuEEvwEEvsEws22 [21,3] EExyEExzEyz24 [22,22] EEExyzEEExuEyuz25 [3,22] EEExyEExzEyzEEuvEEuwEvw26 [22,3] EExyEExEEzuEEzvEuvy27 [24,24] EEEExyzEuzEEExvEyvu29 [3,24] EEEExyzEEExuEyuzEEvwEEvsEws30 [24,22] EEExyEzyEExuEzu31 [24,3] EEExyEzyEExzEEuvEEuwEvw36 [26,22] EEExyEEzuEEzvEuvEExwEyw40 [27,25] EEExyEzyExz43 [27,29] EEEExyzEEuEyvzEExvu57 [30,21] EEExEEyzEuzvEExEyuv69 [22,40] EEEExyEzyuEExzu74 [40,29] EEExyEzEyuEExuz75 [40,21] EExEEyzEuzExEyu93 [57,40] EEExEyzEuyExEuz102 [69,69] EEExyzEExuEzEuy124 [74,31] EEExyEEzuEyuExz 8



126 [69,75] EExEyzEExEuzEyu135 [43,93] EEExEEyyzzx142 [22,93] EEEExEyzEuyvEExEuzv160 [24,102] EEEExyzEuzEExvEuEvy161 [22,102] EEEExyzuEEExvEzEvyu164 [102,74] EEExyzEEExuvEzEvEyu181 [124,36] EExEEyzEEyuEzux184 [126,126] EEExEyzEuEyvEExEvzu378 [184,181] EEExEEyzuEuEEyvEzvx382 [184,93] EEExEyzEzyx542 [184,382] EEEExEyzEuyEzux543 [164,382] EEEExEyzuvExEvEEzyu544 [161,382] EEExyEEzuEyEuzx836 [57,542] EEEExEyEzuEEvuyEzvx876 [543,378] ExExEEyEzuEyEEzvEuv (R3)888 [543,135] ExExEEyEzzy (R1)1029 [160,544] EEExEEyzEuEzyvExEvu1500 [543,836] EExEyEzuExEEyEvuEzv1587 [142,1029] EExEyEzEuvExEEyEvuz2210 [75,1500] EEExEyzEuEyvExEuEzv (R4)2276 [1500,1587] EExEyEzEuvEExEwzEEyEvuw (R50)One might conjecture that a set of formulas axiomatizes the left group calculus if andonly if its set of mirror images axiomatizes the right group calculus. On the contrary,although R2 is a single axiom for the right group calculus, L2 cannot be a single axiom forthe left group calculus, because it does not (ordinary) condensed detach with itself.Each of the following formulas is also a single axiom for the right group calculus (withordinary modus ponens). Proofs can be found in [7].EExEyzExEEyuEzu (S2)9



ExExEEEyzEuzEyu (S3)EExEyzEExEuzEyu (S4)EExEEyzEEyuEzux (S5)EExEEEyzEuzEyux (S6)4 The Role of OtterThe program Otter [6] is a general-purpose, resolution/paramodulation theorem proverfor �rst-order logic with equality. The main consideration in the design of Otter was theability to quickly explore large search spaces rather than the use of heuristics to carefullycontrol the searches.We used Otter in two ways to obtain these results. First, to �nd the multi-formulaaxiomatizations listed at the end of Section 2, we iterated as follows: take a known axiom-atization, replace a complex axiom, say �, with a set of simpler tautologies, then searchfor a proof of �; if a proof is found, search for dependencies in the new axiomatization.Second, to �nd the single axioms, we generated large sets of tautologies, and with each,searched for a known axiomatization. The main method for generating the large sets ofcandidate single axioms was to enumerate tautologies not containing instances of E(x; x).(Most tautologies contain instances of E(x; x), but the interesting axiomatizations usuallydo not.) Approximately 10,000 Otter searches were run, consuming about four days ofcomputer time. Another paper [7] contains a detailed presentation of the use of Otter toobtain the results presented in this paper.Acknowledgments. I wish to thank Dana Scott for suggesting these calculi as challengesfor Otter, Larry Wos for collaborating on the formulation of search strategies appliedby Otter in related areas, John Kalman for discussions on the topic, and a referee forsubstantially improving to this paper. 10
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