
Automated Discovery of New Axiomatizationsof the Left Group and Right Group Calculi1WILLIAM W. MCCUNEMathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illi-nois, 60439-4801, U.S.A.Abstract. This paper shows how the automated theorem-proving program Otter wasused to discover new axiomatizations, including single axioms, for the left group and rightgroup calculi. J. A. Kalman's original axiomatizations of the two calculi each contain�ve axioms. Three of Kalman's axioms (L1, L4, and L5) for the left group calculus wereshown to be dependent on the remaining two axioms. Four of Kalman's axioms (R1, R3,R4, and R5) for the right group calculus were shown to be dependent on the remainingaxiom. Alternative simpler axiomatizations were discovered for both calculi, including asingle axiom for the left group calculus and �ve additional single axioms for the right groupcalculus. The program Otter was vital in discovering candidate axiomatizations as wellas in �nding proofs of new axiomatizations. All of the relevant Otter proofs are included.Key Words. Automated deduction, condensed detachment, group calculi, single axioms.1 IntroductionIn [4], J. A. Kalman presents the following deductive axiomatization of left group tautolo-gies, which we call the left group (LG) calculus:E(E(E(x;E(E(y; y); x)); z); z) (L1)E(E(E(E(E(x; y);E(x; z));E(y; z)); u); u) (L2)E(E(E(E(E(E(x; y);E(x; z)); u); E(E(y; z); u)); v); v) (L3)E(E(E(E(x; y); z); u);E(E(E(x; v); z);E(E(y; v); u))) (L4)E(E(E(x;E(E(y; x); z));E(E(u; x); v));E(E(E(E(x; y); u); z); v)) (L5)The term E(�; �) corresponds to left division ��1� in groups. The axiomatization is deduc-tive in the sense that the only rules of inference are substitution and detachment (modusponens).An equality axiomatization of group theory, in terms of the same operation E, is [2, 9]E(E(x;E(y; y));E(z; z)) = x (D1)E(E(x; y); E(x; z)) = E(y; z). (D2)Kalman proves that a formula E(�; �) follows from (L1,: : :,L5) by substitution and detach-ment (i.e., is a theorem in the LG calculus) if and only if � = � follows from (D1) and (D2)1This work was supported by the Applied Mathematical Sciences subprogram of the O�ce of EnergyResearch, U.S. Department of Energy, under Contract W-31-109-Eng-38.



by equality deduction.D. Scott observed [17] that the key steps of Kalman's proofs are �rst order and suggestedthat the program Otter [11] search for proofs of the those steps. After I experimented withvarious search strategies, Otter found the desired proofs. Scott also suggested searchingfor simpler axiomatizations of the LG calculus. Nine new and simpler axiomatizations werediscovered. One of the new axiomatizations consists of a single axiom (of length 27), andtwo of the others are shown to consist of independent axioms. Section 4 shows how Otterwas used in discovering the new axiomatizations.Kalman also gives [4] an axiomatization of the right group (RG) calculus, in whichthe operation E(�; �) is right division ���1. Six single axioms (each of length 15) werediscovered. Section 5 describes the use of Otter in obtaining those results.C. A. Meredith's condensed detachment [10, 15] is an inference rule that combines sub-stitution and detachment by making use of uni�cation. If E(�; �) and 
 are both theorems,and if � and 
 unify with most general uni�er �, then one can infer ��. The formulaE(�; �) is the major premise, and 
 is the minor premise. Every formula that can be de-rived by detachment and substitution either can be derived by condensed detachment or isa substitution instance of a formula that can be derived by condensed detachment [8].The LG and RG calculi (as well as other logic calculi) can be studied as �rst-ordertheories [8]. Each axiom of the calculus becomes the argument of a unary predicate symbolP , meaning \is a theorem", and condensed detachment becomes an axiom of the theory:8x8y(P (E(x; y)) & P (x) ! P (y)):In the context of the LG calculus, condensed detachment can be interpreted as \if x�1y isthe identity and x is the identity, then y is the identity".An application of the inference rule hyperresolution [20] with the axiom condenseddetachment as nucleus corresponds to an application of the inference rule condensed de-tachment.All of the condensed detachment proofs, which make up the vast majority of the collec-tion of proofs related to this study, were discovered by the program Otter. However, thefollowing key operations were not carried out by Otter:� Some of the candidates for axiom systems were chosen by the user.� The user speci�ed the search strategies and experimented with di�erent search strate-gies.� The two independence results in Section 6 are not �rst order and were not proved byOtter. However, the proofs involve a simple induction argument that was suggestedby examining the output of Otter jobs.Section 3 describes the features of Otter and the search strategies that were used in thestudy.The conclusion summarizes of the results of the study. A summary of the results alsoappears in [12]. 2



2 Related Calculi and Related WorkThe theorems of the classical equivalential calculus (EC) [18] are the formulas constructedfrom one binary operator and variables in which each variable has an even number ofoccurrences. If the EC operation is interpreted as the group operation, then the theoremsof EC are the formulas that are equal to the identity in Boolean groups (groups in whichthe square of every element is the identity). The L calculus [13] is also of interest. If the Lcalculus operation is interpreted as ��1� in groups, then the L theorems are the formulasequal to the identity in Abelian groups [3]. The relationship among the LG calculus, the Lcalculus, and EC is the following:LG theorems � L theorems � EC theorems:An analogous relationship exists among the RG calculus, the R calculus (with operationcorresponding to ���1), and EC:RG theorems � R theorems � EC theorems:A formula has the 2-property [1, 7] if each of its variables has exactly two occurrences.A calculus has the 2-property if it has an axiomatization in which each axiom has the 2-property. EC and the L, R, LG, and RG calculi have the 2-property. Condensed detachmentpreserves the 2-property. Every theorem in a calculus with the 2-property either has the2-property or is an instance of a theorem with the 2-property. In the remainder of thispaper, when I write \LG theorem", I generally mean \LG theorem with the 2-property".Note that L5 in Kalman's axiomatization of the LG calculus does not have the 2-property. However, L5 can be generalized and replaced with L5a, also an LG theorem,which does have the 2-property.P (E(E(E(x;E(E(y; x); z));E(E(u; x); v));E(E(E(E(x; y); u); z); v))) (L5)P (E(E(E(x;E(E(y; w); z));E(E(u; x); v));E(E(E(E(w; y); u); z); v))) (L5a)There has been much interest in axiomatizations of those calculi, particularly in singleaxioms and other simple axiom systems [18, 13, 3, 4, 16, 22, 19, 21]. The more recent workhas made heavy use of theorem-proving programs to search for and to �nd proofs and moregeneral automated reasoning programs to help search for counterexamples and to help �ndindependence proofs.Single axioms were known for EC [18, 6, 16, 21], the L calculus [13, 7], and the R calculus[3, 7]. Prior to the work reported in this paper and in [12], no single axioms were knownfor the LG calculus or the RG calculus. The new single axioms answer questions raised byC. A. Meredith and A. N. Prior in [14, p. 222].3 OtterOtter [11] is a resolution/paramodulation theorem-proving program for �rst-order logicwith equality. Its basic algorithm restricted to hyperresolution with condensed detachment3



is shown in Figure 1.Start with sos list containing all axioms and with usable list empty.Loop: 1. G = select-given-clause(sos);2. move G from sos to usable;3. apply condensed detachment as much as possible, with G as onepremise, taking the other premise from usable; append to sosthe results that are not subsumed by anything in sos or usable;end loop.Figure 1: Otter's Basic Algorithm with Condensed DetachmentThe computer on which the jobs were run is a SPARCstation 1+ with 16 MB of memory.In that environment, Otter can deduce several thousand results per second (most of whichare subsumed and deleted) and store about 20,000 theorems.In this study (as in most other studies with Otter) it was necessary to run many jobs,varying the axioms, search strategy, and other parameters. The following subsections showfeatures of Otter that were particularly useful.3.1 Selecting the Given ClauseSelection of the given clause G from sos in the �rst step of the loop has a great e�ect onthe search. Three methods were used:(1) Select the smallest (fewest symbols) theorem in sos. If there is more than one ofminimum length, select the �rst of those.(2) Select the �rst theorem in sos (�rst-in-�rst-out).(3) The user speci�es a ratio n. Through n iterations of the main loop, the smallesttheorem is selected; in the next iteration, the �rst theorem is selected; then throughthe following n iterations, the smallest theorem is selected; etc. This method allowslarge theorems to enter into the search while focusing mainly on small theorems.Each of the three methods is complete when used with the basic algorithm: given unlimitedtime and space, every pair of sos theorems will be considered for application of condenseddetachment, and every theorem will either be inferred or be an instance of one that isinferred. Kalman used similar strategies in one of his programs in 1976 [5].3.2 Discarding Complex TheoremsMemory limitations forced the use of the following technique for conserving memory. Startwith an initial bound 4n, for some small n, on the length of kept clauses. If sos becomes4



empty, increase the bound by 4 and restart the job, etc. (n is the number of distinctvariables. All 2-property EC theorems, and therefore all 2-property L, R, LG, and RGtheorems, have 4n� 1 symbols, excluding parentheses, commas, and the predicate symbolP . Otter includes P in the symbol count.)Without this technique, the sos list typically grows very fast, much faster than givenclauses are removed from it. Since most sos clauses|especially big ones|never enter thesearch, memory is wasted. When the smallest theorem is always selected as the given clause(method 1), this technique with a particular bound generates the same clauses in the sameorder as without a bound, until the sos list becomes empty (with a bound) or memory isexhausted (without). If the given clause is selected by either of the other methods, thenuse of a bound can alter the search by preventing the entrance of big theorems.In several cases, the following re�nement was used. The search is started with a highbound; then the bound is reduced to a speci�ed value after a speci�ed number of givenclauses has been selected and used. The re�nement enables the search to take advantageof the power and richness of some big formulas; then it prevents other big formulas fromwasting memory.3.3 Discarding Theorems with Instances of E(x; x)In previous experiments on EC and various implicational calculi, L. Wos and I observedthat theorems containing subformulas that are instances of E(x; x) (or i(x; x), or whateverthe name of the operator) are generally not as powerful as those of the same length withoutsuch instances. In addition, most theorems in the calculi we have studied do have suchinstances. (Of the 560 EC theorems of length 15 with the 2-property, 501 have instancesof E(x; x).) Although many Otter proofs contain formulas with instances of E(x; x), wefound that Otter could discover proofs of those theorems without such instances. WhenOtter was directed to discard such formulas, it usually found proofs much faster and withmuch smaller search spaces, although the proofs are sometimes longer. I do not know towhat extent this strategy is incomplete. ( Lukasiewicz was interested in organic theorems[18], which do not contain theorems as subformulas. Theorems without instances of E(x; x)are in the spirit of organic theorems.)The strategy can be implemented for Otter by including the following list of rewriterules. E(x; x) = junk:E(junk; x) = junk:E(x; junk) = junk:P (junk) = $T:Any formula containing an instance of E(x; x) rewrites to the tautology $T , which is im-mediately discarded. (Tricks like this can cause inconsistency. In this case, one can verifya proof by checking that the proof does not depend on any of the rewrite rules.)5



3.4 Finding More Than One RefutationOne can tell Otter not to stop its search if it �nds a refutation. Di�erent proofs of atheorem and proofs of di�erent theorems can be found in a single Otter search.One use of this ability is the following. If the goal is to prove �&�, input three denials::�, :�, and :(�&�). If Otter fails to prove both, it is very useful to know whetherOtter proved one of them. If Otter does prove both, it is useful to have separate proofsof � and � to easily see the axioms on which each proof depends. This feature was usedextensively in all of the experiments.2The ability to �nd and report more than one proof was also vital to the search fornew axiomatizations. When experimenting with a candidate axiomatization for the LGcalculus, denials of many LG theorems were included in the input along with known axiom-atizations. If a search failed to derive a known axiomatization but proved many interestingLG theorems, the candidate axiomatization was studied further.3.5 Common Otter Features Not UsedBack subsumption is an Otter option that causes previously kept clauses to be deletedif they are subsumed by a newly kept clause. Back subsumption was not used for theexperiments, because initial experiments showed that it consumed substantial time andhad little or no e�ect on the results.Users of Otter can input weight templates for measuring the complexity of formulas.For example, one can penalize formulas with a certain structure and cause them to bedeleted or cause their selection as given clauses to be delayed. Weight templates were notused in the experiments.Finally, the set of support strategy was not used. The initial sos list always containedall axioms.3.6 Notes on Otter Proofs� Variables are s, t, u, v, w, x, y, z. (This is di�erent from the normal Otter conventionof having variables start with u{z.)� The justi�cation for the condensed detachment inferences is given as a triple of integers[i,j,k]. Clause i is condensed detachment, j is the major premise, and k is the minorpremise.� All of the proofs were regenerated during the writing of this paper to make them moreuniform, but they are essentially the same as the original proofs. The clause numbersare di�erent from those in the original proofs and do not necessarily re
ect the sizesof the searches.2To Otter users: Another reason for including the denials of � and � separately is that the proof for thecombined denial might be delayed a long time after the individual proofs are reported. Refutation with aunit clause (unit con
ict) is reported immediately, but refutation with a nonunit must be by hyperresolution;in particular, all parts must �rst be selected as given clauses.6



4 The Left Group Calculus4.1 Enumerating LG TheoremsAt several points in the study, I wished to have all LG theorems with the 2-property withn variables. (Such formulas have length 4n � 1, where length includes variables and E,but not commas, parentheses, or P .) To build those sets, Otter was used as a symboliccalculator rather than as a theorem prover.First, the set of formulas with the 2-property (all of which are EC theorems) was con-structed by considering all strings of variables with the 2-property of length 2n, deletingalphabetic variants, and then, for each of those, building all associations with binary func-tor E. For example, if n = 3, there are 15 variable strings of length 6, and each can beassociated in 42 ways, so the result is 630 formulas.Then, the following procedure was used to decide which of the EC theorems are also LGtheorems. Rewrite an EC theorem with the following rewrite rules (demodulators) until norewrite rule can be applied:f(e; x) = x g(g(x)) = xf(x; e) = x f(y; f(g(y); x)) = xf(g(x); x) = e f(g(y); f(y; x)) = xf(x; g(x)) = e g(f(y; x)) = f(g(x); g(y))f(f(x; y); z) = f(x; f(y; z))g(e) = e E(x; y) = f(g(x); y)The formula is an LG theorem if and only if the result is the identity e. (The �rst tenrewrite rules are the complete set of reductions for free groups.)Table 1 gives the sizes of the sets of interest. The sets \LG { E(x; x)" are obtained from\LG 2-property" by deleting those containing instances of E(x; x). The set correspondingto the position marked with \?" was not constructed, and its size is not known.Table 1: Sizes of Formula Sets by Number of VariablesNumber n of variables 1 2 3 4 5Length of formulas 3 7 11 15 19Variable strings 1 3 15 105 945Associations of 2n 1 5 42 429 4862EC 2-property 1 15 630 45045 4594590LG 2-property 1 4 40 560 ?LG { E(x; x) 0 0 4 59 8004.2 Discovering Dependencies among L1{L5The �rst Otter searches for dependencies among L1{L5 failed. Each of the �ve wasconsidered in turn, and a proof of that one was sought from the remaining four. The onlystrategies used were to select the given clause by symbol count and to discard complex7



theorems. Many hours of CPU time were consumed, and no dependencies were found. Themain reason for the failures is that key formulas were excluded from the search (were notselected as given clauses) because they are too complex. Selection of given clauses by theratio strategy (Section 3.1), which allows complex formulas to enter the search, led to the�rst successes and was used for most of the remaining experiments in the study.4.2.1 The Dependence of L1The dependence of L1 on fL2,L3,L4g was discovered by accident when seeking a replacementfor L1 in the L1{L5 axiomatization. A job was set up starting with L2{L5, several LGcalculus lemmas (L6{L11) from Kalman's paper [4], and the denial of L1. Given clauseswere selected with ratio 2, and the following proof of L1 was found in 179 seconds:1 :P (E(x; y)) j :P (x) j P (y) (CD)2 P (E(E(E(E(E(x; y); E(x; z));E(y; z)); u); u)) (L2)3 P (E(E(E(E(E(E(x; y);E(x; z)); u);E(E(y; z); u)); v); v)) (L3)4 P (E(E(E(E(x; y); z); u);E(E(E(x; v); z);E(E(y; v); u)))) (L4)19 [1,4,3] P (E(E(E(E(E(E(x; y);E(x; z)); u); v); w);E(E(E(E(y; z); u); v); w)))20 [1,4,2] P (E(E(E(E(E(x; y); E(x; z)); u); v);E(E(E(y; z); u); v)))137 [1,19,3] P (E(E(E(E(E(x; y); z); E(E(u; y);E(E(x; u); z))); v); v))9176 [1,20,137] P (E(E(E(x;E(E(y; y); x)); z); z)) (L1)Although the proof is short, it is di�cult for Otter to �nd without the ratio strategy,because there are many paths involving less complex formulas to explore. Note that theproof of L1 depends only on L2{L4.4.2.2 The Dependence of L4I do not have a record of the motivation for the search that discovered the dependence ofL4 on fL2,L3g. I believe the job was a shot in the dark to see what could be derived fromfL2,L3,L5g and Kalman's lemmas L6{L11. In any case, given clauses were selected withratio 2. The following proof of L4 was found in 3 seconds:1 :P (E(x; y)) j :P (x) j P (y) (CD)2 P (E(E(E(E(E(x; y);E(x; z));E(y; z)); u); u)) (L2)3 P (E(E(E(E(E(E(x; y);E(x; z)); u); E(E(y; z); u)); v); v)) (L3)15 [1,3,3] P (E(E(E(x; y); z); E(E(u; y);E(E(x; u); z))))16 [1,3,2] P (E(E(x; y); E(x; y)))20 [1,3,15] P (E(E(x; y); E(E(E(E(z; u);E(z; v)); x); E(E(u; v); y))))24 [1,15,16] P (E(E(x; y); E(E(z; x); E(z; y))))33 [1,3,24] P (E(E(x;E(E(E(y; z); E(y; u)); v));E(x;E(E(z; u); v))))508 [1,33,20] P (E(E(E(E(x; y); z); u);E(E(E(x; v); z); E(E(y; v); u)))) (L4)The preceding two proofs show that L1 and L4 together are dependent on L2 and L3. It waslater learned that L4 can be derived from L3 alone, as the following proof demonstrates:8



1 :P (E(x; y)) j :P (x) j P (y) (CD)2 P (E(E(E(E(E(E(x; y);E(x; z)); u); E(E(y; z); u)); v); v)) (L3)26 [1,2,2] P (E(E(E(x; y); z); E(E(u; y);E(E(x; u); z))))30 [1,2,26] P (E(E(x; y); E(E(E(E(z; u);E(z; v)); x); E(E(u; v); y))))43 [1,30,2] P (E(E(E(E(x; y);E(x; z));E(E(E(E(E(u; v);E(u;w)); s);E(E(v; w); s)); t));E(E(y; z); t)))292 [1,43,30] P (E(E(E(E(x; y); z); u);E(E(E(x; v); z); E(E(y; v); u)))) (L4)4.2.3 The Dependence of L5The study then turned to �nding a simple replacement for L5. Formula L5 has length23. A job was set up to collect LG theorems of lengths 15 and 19 to serve as candidatereplacements for L5. Axioms L1{L5 were input, and given clauses were selected with ratio2. The job was run for several minutes, and all LG theorems of length 15 (390 theorems)and length 19 (284 theorems) were extracted from the output.Rather than try each of those 674 theorems as a possible replacement for L5, the entireset, along with L1{L4 and the 44 LG theorems of length 7 and 11 (Table 1), was input inan attempt to derive L5. Given clauses were selected with ratio 2. The following proof ofL5a (a generalization of L5) was found in about 10 hours. (The clause numbers have norelationship to the size of the search in this proof.)1 :P (E(x; y)) j :P (x) j P (y) (CD)48 P (E(E(x; y);E(E(z; x);E(z; y)))) (Q2)52 P (E(E(E(x; y); z); E(E(u; y);E(E(x; u); z)))) (P1)164 P (E(E(E(x; y); E(E(z; x); u));E(E(z; y); u))) (N3)178 P (E(E(E(E(x; y); z); E(y; u));E(z;E(x; u)))) (N4)357 P (E(E(x;E(E(y; z); u));E(E(E(z; y); x); u))) (N5)391 P (E(x;E(y;E(E(E(E(z; u); y); E(u; z)); x)))) (N6)740 [1,52,164] P (E(E(x;E(E(y; z); u));E(E(E(z; v); x);E(E(y; v); u))))741 [1,48,164] P (E(E(x;E(E(y; z);E(E(u; y); v)));E(x;E(E(u; z); v))))795 [1,48,357] P (E(E(x;E(y;E(E(z; u); v)));E(x;E(E(E(u; z); y); v))))822 [1,178,391] P (E(x;E(y;E(E(E(E(z; u); v);E(u; z));E(E(y; v); x)))))903 [1,795,740] P (E(E(x;E(E(y; z); u));E(E(E(v; y); E(E(z; v); x)); u)))923 [1,741,822] P (E(x;E(E(E(E(y; z); u); v);E(E(E(E(z; y); v); u); x))))1018 [1,903,923] P (E(E(E(x;E(E(y; z); u));E(E(v; x); w));E(E(E(E(z; y); v); u); w))) (L5a)Otter had found an axiomatization of the LG calculus in which all axioms are smallerthan L5, namely, fL2,L3,Q2,P1,N3,N4,N5,N6g.It was surprising to me that just 6 of the 722 input formulas occur in the proof, especiallysince all input clauses had actively participated in the search (had been selected as givenclauses). I observed that none of the six formulas contains an instance of E(x; x), and Iguessed that formulas with such instances are somehow weaker and not as useful in �ndingproofs. (That guess is consistent with observations made in collaboration with L. Wos inother logic calculi.) It was then determined that 638 of the 722 formulas contain instancesof E(x; x). 9



A job similar to the preceding one was then set up; the di�erence was that derivedformulas containing instances of E(x; x) were discarded (Section 3.3). A proof similar tothe preceding proof was found in about 36 minutes. This (incomplete) deletion strategy,along with the ratio strategy for selecting given clauses, was indispensible for the remainderof the study.The next step was to see which of fQ2,P1,N3,N4,N5,N6g could be derived from L1{L4(and therefore from fL2,L3g). Given clauses were selected with ratio 2, and the followingproof of all of the goals was found within 17 seconds:1 :P (E(x; y)) j :P (x) j P (y) (CD)3 P (E(E(E(E(E(x; y);E(x; z));E(y; z)); u); u)) (L2)4 P (E(E(E(E(E(E(x; y);E(x; z)); u);E(E(y; z); u)); v); v)) (L3)5 P (E(E(E(E(x; y); z); u);E(E(E(x; v); z);E(E(y; v); u)))) (L4)30 [1,4,4] P (E(E(E(x; y); z); E(E(u; y);E(E(x; u); z)))) (P1)36 [1,5,3] P (E(E(E(E(E(x; y);E(x; z)); u); v); E(E(E(y; z); u); v)))38 [1,5,30] P (E(E(E(x; y); z); E(E(u; y);E(E(v; u);E(E(x; v); z)))))40 [1,3,30] P (E(E(x;E(y; z)); E(E(E(y; u); x);E(u; z))))77 [1,3,36] P (E(E(E(x; y); E(E(z; x); u));E(E(z; y); u))) (N3)85 [1,40,77] P (E(E(E(E(x; y); z); E(E(u; y);E(E(x; u); v)));E(z; v)))90 [1,77,40] P (E(E(E(x; y); E(x; z));E(y; z)))178 [1,90,38] P (E(x;E(E(y; z);E(E(z; y); x))))203 [1,77,178] P (E(E(x; y);E(E(z; x);E(z; y)))) (Q2)235 [1,40,203] P (E(E(E(E(x; y); z); E(y; u));E(z;E(x; u)))) (N4)245 [1,3,203] P (E(E(x;E(E(y; z);E(y; u)));E(x;E(z; u))))392 [1,235,178] P (E(x;E(y;E(E(z; u);E(E(y;E(u; z)); x)))))795 [1,245,392] P (E(x;E(y;E(E(E(E(z; u); y); E(u; z)); x)))) (N6)1876 [1,85,77] P (E(E(E(x; y); E(E(y; x); z)); z))1924 [1,30,1876] P (E(E(x;E(E(y; z); u));E(E(E(z; y); x); u))) (N5)All of the goals had been achieved, showing that fL2,L3g axiomatizes the LG calculus. Thetotal number of symbols had been reduced from 87 (in L1{L5) to 34.The obvious next step was to see whether either of fL2,L3g could be derived from theother. Nothing can be derived from L2 alone, which answers half of the question. A searchof nearly 16 hours starting from L3 derived L4 and P1 but nothing else of obvious interest.4.3 New Multiformula Axiomatizations of LGThe next sequence of experiments was to search for axiomatizations of the LG calculus withfewer symbols than in fL2,L3g. In all of the Otter jobs described in this subsection, givenclauses were selected with ratio 2, and derived formulas containing instances of E(x; x) werediscarded.The �rst job was to search for a small replacement for L3 (similar to the search for areplacement for L5). Starting with L2, the 44 LG theorems of lengths 7 and 11 (Table 1),and the 390 LG theorems of length 15 (Section 4.2.3), the following proof of L3 was derivedin about 20 minutes. (The clause numbers have no relationship to the size of the search inthis proof.) 10



1 :P (E(x; y)) j :P (x) j P (y) (CD)49 P (E(E(E(x; y); z);E(E(u; y); E(E(x; u); z)))) (P1)61 P (E(E(x;E(y; z));E(E(E(y; u); x);E(u; z)))) (P2)363 P (E(E(E(x;E(y; z));E(x;E(E(z; y); u))); u)) (P3)417 P (E(x;E(E(E(E(y; z);E(y; u)); E(z; u)); x))) (P4)464 [1,61,49] P (E(E(E(E(x; y); z);E(E(u; y); v));E(z;E(E(u; x); v))))469 [1,49,363] P (E(E(x;E(y;E(E(z; u); v)));E(E(E(y;E(u; z)); x); v)))482 [1,464,417] P (E(x;E(E(E(E(y; z);E(y; u)); v);E(E(v; E(z; u)); x))))497 [1,469,482] P (E(E(E(E(E(E(x; y);E(x; z)); u);E(E(y; z); u)); v); v)) (L3)An axiomatization of LG had been found in which all axioms have 15 symbols, namely,fL2,P1,P2,P3,P4g. (Again I was surprised that so few of the input formulas appear in theproof.)The next three searches derived P4 from fL2,P1g in 37 seconds, derived P3 fromfL2,P1,P2g in 9 seconds, and derived P2 from fL2,P1g in less than 1 second, establish-ing that fL2,P1g axiomatizes LG. The following proof (obtained later) shows derivations ofP2, P3, and P4 from fL2,P1g:1 :P (E(x; y)) j :P (x) j P (y) (CD)2 P (E(E(E(E(E(x; y);E(x; z));E(y; z)); u); u)) (L2)3 P (E(E(E(x; y); z);E(E(u; y);E(E(x; u); z)))) (P1)33 [1,2,3] P (E(E(x;E(y; z));E(E(E(y; u); x);E(u; z)))) (P2)36 [1,33,33] P (E(E(E(E(E(x; y); z); u);E(z;E(x; v)));E(u;E(y; v))))38 [1,2,33] P (E(E(E(x; y);E(E(z; x);E(z; u)));E(y; u)))39 [1,33,3] P (E(E(E(E(x; y); z);E(E(u; y); v));E(z;E(E(u; x); v))))40 [1,33,2] P (E(E(E(x; y);E(E(E(E(z; u);E(z; v));E(u; v));E(x;w)));E(y;w)))63 [1,36,2] P (E(E(E(x; y);E(E(z; x); u));E(E(z; y); u)))81 [1,33,63] P (E(E(E(E(x; y); z);E(E(u; y);E(E(x; u); v))); E(z; v)))87 [1,39,3] P (E(x;E(E(y; z);E(E(z; y); x))))90 [1,63,87] P (E(E(x; y); E(E(z; x);E(z; y))))93 [1,39,87] P (E(x;E(E(y; z);E(E(u; y);E(E(z; u); x)))))98 [1,33,87] P (E(E(E(E(x; y); z); u);E(z;E(E(y; x); u))))113 [1,90,90] P (E(E(x;E(y; z));E(x;E(E(u; y);E(u; z)))))147 [1,36,93] P (E(x;E(y;E(E(z; u);E(E(E(E(u; v); y);E(v; z)); x)))))207 [1,98,38] P (E(E(E(x; y);E(x; z));E(E(u; y);E(u; z))))219 [1,40,113] P (E(E(E(x; y); z);E(E(E(u; x);E(u; y)); z)))1091 [1,81,63] P (E(E(E(x; y);E(E(y; x); z)); z))1104 [1,219,1091] P (E(E(E(x;E(y; z));E(x;E(E(z; y); u))); u)) (P3)1106 [1,207,1091] P (E(E(x;E(E(y; z); E(E(z; y); u))); E(x; u)))3098 [1,1106,147] P (E(x;E(E(E(E(y; z);E(y; u));E(z; u)); x))) (P4)Attempts to show that fL2,P2g and fL2,P3g axiomatize LG failed, but the followingproof of P1 from fL2,P4g, obtained in less than one second, shows that fL2,P4g axiomatizesLG: 11



1 :P (E(x; y)) j :P (x) j P (y) (CD)2 P (E(E(E(E(E(x; y);E(x; z));E(y; z)); u); u)) (L2)3 P (E(x;E(E(E(E(y; z);E(y; u));E(z; u)); x))) (P4)31 [1,3,3] P (E(E(E(E(x; y); E(x; z));E(y; z));E(u;E(E(E(E(v;w);E(v; s));E(w; s)); u))))32 [1,2,3] P (E(E(E(E(x; y); E(x; z));E(y; z));E(E(E(u; v);E(u;w));E(v;w))))34 [1,2,32] P (E(E(E(x; y);E(x; z));E(y; z)))36 [1,34,31] P (E(E(x; y);E(E(E(E(z; u); E(z; v));E(u; v));E(E(w; x);E(w; y)))))38 [1,2,36] P (E(E(E(E(x; y); E(x; z));E(y; z));E(E(u;E(E(v;w); E(v; s)));E(u;E(w; s)))))62 [1,2,38] P (E(E(x;E(E(y; z);E(y; u)));E(x;E(z; u))))86 [1,62,36] P (E(E(E(x; y); z);E(E(u; y);E(E(x; u); z)))) (P1)Section 6 contains a proof that fL2,P4g is independent.Each of L2, P1, and P4 has length 15. The next sequence of experiments was a successfulattempt to replace P1 (or P4) with shorter axioms. Starting with L2 and the 44 LG theoremsof lengths 7 and 11 (Table 1), Otter found the following proof of P1 in about 14 seconds:1 :P (E(x; y)) j :P (x) j P (y) (CD)2 P (E(E(E(E(E(x; y);E(x; z));E(y; z)); u); u)) (L2)39 P (E(x;E(E(y; z);E(E(z; y); x)))) (Q1)46 P (E(E(x; y);E(E(z; x);E(z; y)))) (Q2)79 [1,46,46] P (E(E(x;E(y; z)); E(x;E(E(u; y);E(u; z)))))81 [1,2,46] P (E(E(x;E(E(y; z);E(y; u)));E(x;E(z; u))))82 [1,46,39] P (E(E(x; y);E(x;E(E(z; u);E(E(u; z); y)))))95 [1,46,81] P (E(E(x;E(y;E(E(z; u);E(z; v)))); E(x;E(y; E(u; v)))))98 [1,81,79] P (E(E(E(E(x; y); z); E(y; u));E(z;E(x; u))))113 [1,81,82] P (E(E(E(E(x; y); z); u);E(z; E(E(y; x); u))))248 [1,98,2] P (E(E(E(x; y); z); E(E(E(u; x);E(u; y)); z)))490 [1,113,248] P (E(x;E(E(y; z);E(E(E(u; z);E(u; y)); x))))1237 [1,95,490] P (E(E(E(x; y); z); E(E(u; y);E(E(x; u); z)))) (P1)Thus, fL2,Q1,Q2g axiomatizes the LG calculus. Note that each of Q1 and Q2 has 11symbols. Starting from just fL2,Q1g, nothing interesting could be derived. Starting withfL2,Q2g, the theorems P2, P3, N3, N4, N5, and several of Kalman's lemmas were derived,but not enough to show that fL2,Q2g axiomatizes LG.The system was becoming narrower (shorter axioms) but longer (more axioms). Thenext move was to back up to the axiomatizations fL2,P1g and fL2,P4g and try to replaceL2 with simpler axioms. A search starting with P1 and the 45 LG theorems of lengths 3,7, and 11 (Table 1) produced the following proof of L2 in about 19 seconds:12



1 :P (E(x; y)) j :P (x) j P (y) (CD)2 P (E(E(E(x; y); z);E(E(u; y);E(E(x; u); z)))) (P1)32 P (E(E(E(x; y);E(E(y; x); z)); z)) (Q3)39 P (E(x;E(E(y; z);E(E(z; y); x)))) (Q1)44 P (E(E(E(x; y);E(x; z));E(y; z))) (Q4)46 P (E(E(x; y); E(E(z; x);E(z; y)))) (Q2)76 [1,2,32] P (E(E(x;E(E(y; z); u));E(E(E(z; y); x); u)))83 [1,2,44] P (E(E(x;E(y; z));E(E(E(y; u); x);E(u; z))))94 [1,46,76] P (E(E(x;E(y;E(E(z; u); v))); E(x;E(E(E(u; z); y); v))))110 [1,83,39] P (E(E(E(E(x; y); z); u);E(z;E(E(y; x); u))))111 [1,83,32] P (E(E(E(x; y);E(E(z; u);E(E(u; z);E(x; v))));E(y; v)))382 [1,110,2] P (E(x;E(E(y; z);E(E(u; y);E(E(z; u); x)))))808 [1,94,382] P (E(x;E(E(E(y; z); E(y; u));E(E(u; z); x))))1421 [1,94,808] P (E(x;E(E(E(y; z); E(E(u; y);E(u; z))); x)))1781 [1,111,1421] P (E(E(E(E(E(x; y);E(x; z));E(y; z)); u); u)) (L2)The preceding proof shows that fP1,Q1,Q2,Q3,Q4g axiomatizes LG.Axiom P1 was then tried with each of Q1{Q4. The search starting with fP1,Q3g wassuccessful, deriving Q1, Q2, and Q4 in less than 3 seconds:1 :P (E(x; y)) j :P (x) j P (y) (CD)2 P (E(E(E(x; y); z);E(E(u; y);E(E(x; u); z)))) (P1)3 P (E(E(E(x; y);E(E(y; x); z)); z)) (Q3)9 [1,2,2] P (E(E(x; y);E(E(E(z; u); x);E(E(v; u);E(E(z; v); y)))))10 [1,2,3] P (E(E(x;E(E(y; z); u));E(E(E(z; y); x); u)))22 [1,3,9] P (E(E(x; y);E(E(z; x);E(z; y)))) (Q2)28 [1,9,2] P (E(E(E(x; y);E(E(z; u); v));E(E(w; y);E(E(x;w);E(E(s; u);E(E(z; s); v))))))30 [1,10,22] P (E(E(E(x; y);E(x; z));E(y; z))) (Q4)39 [1,22,30] P (E(E(x;E(E(y; z);E(y; u))); E(x;E(z; u))))118 [1,39,30] P (E(E(E(x;E(y; z));E(x;E(y; u)));E(z; u)))611 [1,118,28] P (E(x;E(E(y; z); E(E(z; y); x)))) (Q1)The preceding proof shows that fP1,Q3g axiomatizes LG. Searches starting with fP1,Q1gand fP1,Q2g derived nothing interesting. The search starting with fP1,Q4g derived Q1,Q2, P2, N4, and N6, but not enough to show axiomatization of LG.The next few experiments paralleled the previous few, but with P4 instead of P1. Theresults were similar. The sets fP4,Q1,Q2,Q3,Q4g and then fP4,Q3g were shown to ax-iomatize LG. Rather than include proofs analogous to the preceding two, I shall show aderivation of P1 from fP4,Q3g, which was obtained later in less than 2 seconds:13



1 :P (E(x; y)) j :P (x) j P (y) (CD)2 P (E(x;E(E(E(E(y; z);E(y; u)); E(z; u)); x))) (P4)3 P (E(E(E(x; y);E(E(y; x); z)); z)) (Q3)37 [1,3,2] P (E(E(x; y);E(E(z; x);E(z; y))))41 [1,37,37] P (E(E(x;E(y; z));E(x;E(E(u; y);E(u; z)))))43 [1,37,3] P (E(E(x;E(E(y; z);E(E(z; y); u)));E(x; u)))55 [1,43,41] P (E(E(E(x; y);E(x; z)); E(y; z)))64 [1,37,55] P (E(E(x;E(E(y; z);E(y; u)));E(x;E(z; u))))118 [1,64,2] P (E(E(E(E(x; y);E(x; z)); u);E(E(y; z); u)))198 [1,118,118] P (E(E(E(x; y); z);E(E(u; y); E(E(x; u); z)))) (P1)The preceding proof shows that fP4,Q3g axiomatizes LG. Section 6 contains a proof thatfP4,Q3g is independent.Continuing the search for simpler axiomatizations of LG, I next started a search withthe 45 LG theorems of lengths 3, 7, and 11. The following proof of L2 was derived inabout 56 minutes. (The clause numbers have no relationship to the size of the search inthis proof.)1 :P (E(x; y)) j :P (x) j P (y) (CD)31 P (E(E(E(x; y);E(E(y; x); z)); z)) (Q3)38 P (E(x;E(E(y; z);E(E(z; y); x)))) (Q1)43 P (E(E(E(x; y);E(x; z)); E(y; z))) (Q4)45 P (E(E(x; y);E(E(z; x);E(z; y)))) (Q2)81 [1,45,45] P (E(E(x;E(y; z));E(x;E(E(u; y);E(u; z)))))83 [1,45,43] P (E(E(x;E(E(y; z);E(y; u)));E(x;E(z; u))))84 [1,45,38] P (E(E(x; y);E(x;E(E(z; u);E(E(u; z); y)))))85 [1,45,31] P (E(E(x;E(E(y; z);E(E(z; y); u)));E(x; u)))91 [1,81,38] P (E(x;E(E(y;E(z; u));E(y;E(E(u; z); x)))))97 [1,83,81] P (E(E(E(E(x; y); z);E(y; u));E(z; E(x; u))))99 [1,83,43] P (E(E(E(x;E(y; z));E(x;E(y; u)));E(z; u)))102 [1,83,84] P (E(E(E(E(x; y); z); u);E(z;E(E(y; x); u))))116 [1,45,85] P (E(E(x;E(y;E(E(z; u);E(E(u; z); v))));E(x;E(y; v))))126 [1,43,91] P (E(x;E(y;E(E(z; u);E(E(y;E(u; z)); x)))))139 [1,83,97] P (E(E(E(E(x; y);E(x; z)); E(y; u));E(z; u)))140 [1,81,97] P (E(E(E(E(x; y); z);E(y; u));E(E(v; z);E(v; E(x; u)))))158 [1,102,99] P (E(E(x;E(y; z));E(E(E(y; u); x);E(u; z))))172 [1,116,45] P (E(E(x;E(E(y; z); u));E(E(E(z; y); x); u)))186 [1,97,126] P (E(x;E(y;E(E(z; u);E(E(v;E(u; z)); E(E(y; v); x))))))209 [1,102,139] P (E(E(x; y);E(E(E(z; u);E(z; x)); E(u; y))))211 [1,85,139] P (E(E(E(E(x; y);E(x;E(z; u)));E(y;E(E(u; z); v))); v))229 [1,116,158] P (E(E(x;E(y;E(E(z; u); v)));E(E(E(y;E(u; z)); x); v)))298 [1,97,186] P (E(x;E(y;E(E(z; u);E(E(v;E(u; z)); E(E(w; v);E(E(y;w); x)))))))321 [1,209,172] P (E(E(E(x; y);E(x;E(z;E(E(u; v); w))));E(y;E(E(E(v; u); z); w))))339 [1,140,211] P (E(E(x;E(y;E(E(z; u);E(E(v;E(u; z)); w))));E(x;E(E(v; y); w))))430 [1,339,298] P (E(x;E(E(y; z);E(E(u; y);E(E(z; u); x)))))448 [1,321,430] P (E(x;E(E(E(y; z);E(y; u)); E(E(u; z); x))))493 [1,229,448] P (E(E(E(E(E(x; y); E(x; z));E(y; z)); u); u)) (L2)14



Thus, fQ1,Q2,Q3,Q4g axiomatizes LG.All of the proper subsets of Q1{Q4 were considered as candidate axiomatizations of LG,and two yielded successes. The following proof of Q4 from fQ2,Q3g was found in less thanone second:1 :P (E(x; y)) j :P (x) j P (y) (CD)3 P (E(E(x; y);E(E(z; x);E(z; y)))) (Q2)4 P (E(E(E(x; y);E(E(y; x); z)); z)) (Q3)23 [1,3,3] P (E(E(x;E(y; z));E(x;E(E(u; y); E(u; z)))))26 [1,3,4] P (E(E(x;E(E(y; z);E(E(z; y); u)));E(x; u)))67 [1,26,23] P (E(E(E(x; y);E(x; z));E(y; z))) (Q4)The preceding proof shows that fQ1,Q2,Q3g axiomatizes LG. The following proof, whichshows that fQ1,Q3,Q4g axiomatizes LG, was also found in less than 1 second:1 :P (E(x; y)) j :P (x) j P (y) (CD)2 P (E(x;E(E(y; z);E(E(z; y); x)))) (Q1)4 P (E(E(E(x; y);E(x; z));E(y; z))) (Q4)22 [1,2,2] P (E(E(x; y);E(E(y; x);E(z;E(E(u; v); E(E(v; u); z))))))26 [1,22,4] P (E(E(E(x; y);E(E(z; x);E(z; y)));E(u;E(E(v;w); E(E(w; v); u)))))37 [1,4,26] P (E(E(E(x; y);E(x; z));E(E(u; v);E(E(v; u); E(y; z)))))39 [1,4,37] P (E(E(x; y);E(E(z; x);E(z; y)))) (Q2)The �nal set of experiments included the 5 LG theorems of lengths 3 and 7 (Table 1)along with the subsets of Q1{Q4. No new axiomatizations were found.If the measure of simplicity of an axiom system is total symbol count, then fP1,Q3g andfP4,Q3g are the simplest axiomatizations of the LG calculus that were found. Each systemcontains 26 symbols. If the measure is the length of the longest axiom, then fQ1,Q2,Q3gand fQ1,Q3,Q4g are simplest. Each of Q1{Q4 has 11 symbols. The single axiom presentedin Section 4.4 contains 27 symbols.4.4 The Search for a Single Axiom for LGAt the time when the intensive search for a single axiom began, the known axiomatizationsof the the LG calculus were fL2,L3g, fL2,P1g, fL2,P4g, fL2,Q1,Q2g, fP1,Q3g, fP4,Q3g,fQ1,Q2,Q3g, and fQ1,Q3,Q4g. The overall strategy was to investigate LG theorems withthe 2-property, but without instances of E(x; x). (The limitation to 2-property theorems issafe, because every non-2-property theorem is an instance of a 2-property theorem, but theE(x; x) limitation is a heuristic gleaned from previous proofs and known axiomatizations.)As listed in Table 1, there are 4 such theorems of length 11 (Q1{Q4), 59 of length 15(including L2 and P1{P4), and 800 of length 19.A simple unix C shell program was written to run a sequence of Otter jobs. Aheader �le contained Otter input except for a prospective single axiom, and a second�le contained all of the candidates. The C shell program simply iterated through thecandidates, appending each to the header �le and sending the results to Otter. The15



only output was the proofs, if any, that were found and the reason the search stopped.The header �le speci�ed a simple search strategy: select given clauses with ratio 2, deletederived theorems containing instances of E(x; x), delete theorems with length greater than39, and stop the search after 2 minutes. (A limit of 2 minutes was reasonable, becausewith nearly all candidates, little or nothing within the constraints could be derived, andthe search terminated within a few seconds.) Denials of the known axiomatizations wereincluded. Denials of individual theorems L2, L3, P1{P4, and Q1{Q4 were also included sothat candidates that derived some interesting theorems but no known axiomatization couldbe studied further.The candidates of lengths 11 and 15 yielded nothing more than the set of experimentsdescribed in Section 4.3. The 800 candidates of length 19 yielded several promising theoremssuch as the following:P (E(E(E(E(E(x; y); E(x; z)); u); v);E(E(E(y; z); u); v))) (LG-19-12)P (E(E(E(E(E(E(x; y);E(E(z; x);E(z; y))); u); u); v); v)) (LG-19-128)P (E(E(E(E(E(E(x; y); z);E(y; u));E(z;E(x; u))); v); v)) (LG-19-538)Theorem LG-19-12 (the twelfth theorem of length 19) derived L2, P3, Q3, and Q4. TheoremLG-19-128 derived L3 and P1. Theorem LG-19-538 derived L4, P4, and Q1. However,additional searches with those and other promising candidates failed to derive any of theknown axiomatizations.I could not �nd an e�ective way to generate the analogous complete sets of candidates oflength 23 theorems or of length 27 theorems. Instead, I simply used Otter to generate LGtheorems without instances of E(x; x) and collected 6456 of length 23 and 2552 of length27. Running the C shell program on the length 23 candidates yielded many promising the-orems, including the following:P (E(E(E(E(x; y); z);E(E(u; v); w)); E(E(E(E(y; x);E(v; u)); z); w))) (LG-23-288)P (E(E(E(x; y);E(E(y; x); E(z; u)));E(E(v; E(w; z));E(v;E(w; u))))) (LG-23-566)Theorem LG-23-288 derived Q1 and Q3, and theorem LG-23-566 derived Q2, Q3, and Q4.However, additional searches with those and other promising candidates failed to derive anyof the known axiomatizations.One success occurred with one of the 2552 candidates of length 27:P (E(E(E(E(x; y); z);E(E(u; v);E(E(E(w; v);E(w;u)); s)));E(z;E(E(y; x); s))))(LG-27-1690)The following proof (from the Otter job invoked by the C shell program) derives P1 andQ3 from LG-27-1690 in less than 2 seconds: 16



1 :P (E(x; y)) j :P (x) j P (y) (CD)10 P (E(E(E(E(x; y); z);E(E(u; v);E(E(E(w; v);E(w; u)); s)));E(z; E(E(y; x); s)))) (LG-27-1690)15 [1,10,10] P (E(E(E(x; y);E(E(E(z; y);E(z; x)); u));E(E(E(v; w);E(E(s; v);E(s;w))); u)))16 [1,10,15] P (E(E(E(E(x; y);E(x; z));E(E(E(u;E(E(v;w);E(v; s)));E(u;E(w; s))); t)); E(E(y; z); t)))17 [1,16,16] P (E(E(E(E(x;E(E(y;E(z; u));E(y;E(z; v))));E(x;E(u; v))); w); w))19 [1,16,10] P (E(E(E(E(x;E(E(y; z);E(y; u))); E(x;E(z; u)));E(E(E(v; w);E(v; s)); t));E(E(w; s); t)))20 [1,17,17] P (E(E(E(x;E(y; z));E(E(u;E(v; x)); E(u;E(v;E(y;w))))); E(z; w)))24 [1,17,10] P (E(E(E(x;E(y; E(E(z; u); E(z; v))));E(x;E(y;w)));E(E(u; v); w)))31 [1,20,15] P (E(E(E(x; y);E(E(z; x);E(E(E(u; y);E(u; z)); v))); v))50 [1,19,10] P (E(E(E(E(x; y);E(x; z)); u);E(E(y; z); u)))66 [1,50,50] P (E(E(E(x; y); z); E(E(u; y);E(E(x; u); z)))) (P1)167 [1,24,31] P (E(E(E(x; y);E(E(y; x); z)); z)) (Q3)The preceding proof shows that LG-27-1690 is a single axiom for LG, because fP1,Q3gaxiomatizes LG.Including initial searches to adjust parameters and several false starts with the C shellprogram, well over 10,000 Otter jobs were run during the search for a single axiom. Thejobs were run over a two-day period, and about 12 hours of CPU time were used.5 The Right Group CalculusLet the mirror image of a formula constructed from variables and binary functor E beobtained by replacing all occurrences of E(�; �) with E(�; �). A formula is a right group(RG) theorem if and only if its mirror image is an LG theorem. The inference rule reversedetachment derives � from E(�; �) and �. The �rst-order form of reversed condenseddetachment (RCD) is8x8y(P (E(x; y)) & P (y) ! P (x))If the inference rule for the RG calculus were reverse condensed detachment, then theRG calculus would be a trivial variation of the LG calculus, because all aspects of the twocalculi would be mirror images. However, the inference rule for the RG calculus is ordinarycondensed detachment (CD). (In fact, I �rst studied the RG calculus by considering the LGtheorems with RCD.) The following observation follows from remarks in the preliminaryversion of [4].Observation 1. If a set S of formulas axiomatizes the LG calculus, then the correspondingset of mirror images M(S) axiomatizes the RG calculus.Outline of Proof. The proof is from the �rst-order point of view, in which CD is an axiomrather than a rule of inference. By remarks in the preceding paragraph, the conclusion ofthe observation is equivalent to \S and RCD derive all LG theorems". It is su�cient to17



show Q3 & RCD ) CD, because S derives Q3, and S & CD derive all LG theorems. Thefollowing Otter refutation shows that CD follows from Q3 and RCD. (A and B are Skolemconstants.)1 :P (E(x; y)) j :P (y) j P (x) (RCD)4 P (E(E(E(x; y);E(E(y; x); z)); z)) (Q3)5 P (E(A;B))6 P (A)7 :P (B)12 [1,4,6] P (E(E(x; y);E(E(y; x);A)))17 [1,12,4] P (E(E(E(x; y);A);E(y; x)))21 [1,17,5] P (E(E(B;A); A))29 [1,21,6] P (E(B;A))32 [1,29,6] P (B)33 [32,7] 2The converse of Observation 1 is false: a counterexample is given at the end of this section.Notation. If � is the name of an LG theorem (example Q3), then �0 is the name of itsmirror image (Q30).Kalman's axiomatization of the RG calculus [4] is the mirror image of his axiomatizationof the LG calculus L1{L5. It follows from Observation 1 that L10{L50 axiomatizes RG.P (E(x;E(x;E(E(y;E(z; z)); y)))) (L10)P (E(x;E(x;E(E(y; z);E(E(y; u);E(z; u)))))) (L20)P (E(x;E(x;E(E(y;E(z; u));E(y;E(E(z; v); E(u; v))))))) (L30)P (E(E(E(x;E(y; z));E(u;E(y; v)));E(x;E(u;E(z; v))))) (L40)P (E(E(x;E(y;E(z;E(u; v))));E(E(x;E(v; z));E(E(y;E(v; u)); v)))) (L50)From Observation 1 and the results in Section 4.3, we can conclude that each of the setsfL20,L30g, fL20,P10g, fL20,P40g, fL20,Q10,Q20g, fP10,Q30g, fP40,Q30g, fQ10,Q20,Q30g, andfQ10,Q30,Q40g axiomatizes the RG calculus.P (E(x;E(x;E(E(y; z);E(E(y; u);E(z; u)))))) (L20)P (E(E(E(x;E(y; z));E(u; y));E(x;E(u; z)))) (P10)P (E(E(x;E(E(y; z);E(E(y; u);E(z; u)))); x)) (P40)P (E(E(E(x;E(y; z));E(z; y)); x)) (Q10)P (E(E(E(x; y);E(z; y)); E(x; z))) (Q20)P (E(x;E(E(x;E(y; z));E(z; y)))) (Q30)P (E(E(x; y);E(E(x; z);E(y; z)))) (Q40)A sequence of Otter jobs easily veri�ed those axiomatizations. However, when attemptingto further simplify those axiomatizations, the following proof was discovered by Otter:18



1 :P (E(x; y)) j :P (x) j P (y) (CD)2 P (E(x;E(E(x;E(y; z));E(z; y)))) (Q30)18 [1,2,2] P (E(E(E(x;E(E(x;E(y; z));E(z; y)));E(u; v));E(v; u)))20 [1,18,2] P (E(E(x; y);E(E(z;E(E(z;E(u; v)); E(v; u))); E(y; x))))25 [1,20,2] P (E(E(x;E(E(x;E(y; z));E(z; y)));E(E(E(u;E(v;w));E(w; v)); u)))30 [1,25,2] P (E(E(E(x;E(y; z));E(z; y)); x)) (Q10)Thus, each of fQ20,Q30g and fQ30,Q40g axiomatizes the RG calculus.5.1 Single Axioms for the RG CalculusThe search for single axioms for the RG calculus was similar to the LG calculus search(Section 4.4). A C shell program iterated through the RG theorems with the 2-propertybut without instances of E(x; x). No single axioms were found among the 4 theorems oflength 11 (Q10{Q40), but six single axioms were found among the 59 theorems of length 15:P (E(x;E(x;E(E(y; z);E(E(y; u); E(z; u)))))) (L20)P (E(E(x;E(y; z));E(x;E(E(y; u);E(z; u))))) (S20)P (E(x;E(x;E(E(E(y; z); E(u; z));E(y; u))))) (S30)P (E(E(x;E(y; z));E(E(x;E(u; z));E(y; u)))) (S40)P (E(E(x;E(E(y; z); E(E(y; u);E(z; u)))); x)) (P40)P (E(E(x;E(E(E(y; z); E(u; z));E(y; u))); x)) (S60)Note that L20 is a member of Kalman's original axiomatization of RG.The following six Otter proofs show that each of the preceding formulas is a singleaxiom. The �rst proof derives axiomatization fQ20,Q30g from S40, and the remaining proofsderive S40. All were found within a few seconds.Formula S40 is a single axiom for the RG calculus:1 :P (E(x; y)) j :P (x) j P (y) (CD)11 P (E(E(x;E(y; z)); E(E(x;E(u; z));E(y; u)))) (S40)29 [1,11,11] P (E(E(E(x;E(y; z));E(u;E(y; v)));E(E(x;E(v; z)); u)))31 [1,29,11] P (E(E(x;E(y; z)); E(x;E(y; z))))32 [1,29,31] P (E(E(x;E(y; y)); x))35 [1,32,32] P (E(E(x; x); E(y; y)))38 [1,11,32] P (E(E(E(E(x; y);E(z; z));E(u; y));E(x; u)))41 [1,29,35] P (E(E(E(x; y);E(z; y));E(x; z))) (Q20)64 [1,38,11] P (E(x;E(E(x;E(y; z)); E(z; y)))) (Q30)19



Formula L20 is a single axiom for the RG calculus:1 :P (E(x; y)) j :P (x) j P (y) (CD)9 P (E(x;E(x;E(E(y; z);E(E(y; u); E(z; u)))))) (L20)31 [1,9,9] P (E(E(x;E(x;E(E(y; z);E(E(y; u);E(z; u)))));E(E(v; w);E(E(v; s);E(w; s)))))32 [1,31,9] P (E(E(x; y); E(E(x; z); E(y; z))))34 [1,32,32] P (E(E(E(x; y); z); E(E(E(x; u);E(y; u)); z)))38 [1,34,34] P (E(E(E(E(x; y); z);E(u; z));E(E(E(x; v);E(y; v)); u)))41 [1,34,32] P (E(E(E(x; y);E(z; y));E(E(x; u);E(z; u))))60 [1,38,41] P (E(E(E(x; y);E(z; y));E(x; z)))65 [1,32,60] P (E(E(E(E(x; y);E(z; y)); u);E(E(x; z); u)))67 [1,60,31] P (E(E(x;E(E(y; z); E(u; z)));E(x;E(y; u))))97 [1,65,67] P (E(E(x;E(y; z)); E(E(x;E(u; z));E(y; u)))) (S40)Formula S20 is a single axiom for the RG calculus:1 :P (E(x; y)) j :P (x) j P (y) (CD)9 P (E(E(x;E(y; z));E(x;E(E(y; u);E(z; u))))) (S20)27 [1,9,9] P (E(E(x;E(y; z));E(E(x; u);E(E(E(y; v);E(z; v)); u))))30 [1,27,9] P (E(E(E(x;E(y; z)); u);E(E(E(x; v);E(E(E(y; w);E(z;w)); v)); u)))50 [1,30,27] P (E(E(E(x; y);E(E(E(z; u);E(v; u)); y));E(E(x;w);E(E(E(z; s);E(v; s)); w))))51 [1,30,9] P (E(E(E(x; y);E(E(E(z; u);E(v; u)); y));E(x;E(E(z; w);E(v;w)))))163 [1,51,50] P (E(E(E(x; y);E(z; y)); E(E(x; u);E(z; u))))177 [1,163,163] P (E(E(E(x; y); z);E(E(x; y); z)))228 [1,27,177] P (E(E(E(E(x; y); z); u);E(E(E(E(x; y); v); E(z; v)); u)))229 [1,9,177] P (E(E(E(x; y); z);E(E(E(x; y); u);E(z; u))))243 [1,229,9] P (E(E(E(x;E(y; z)); u);E(E(x;E(E(y; v);E(z; v))); u)))342 [1,228,177] P (E(E(E(E(x; y); z);E(u; z)); E(E(x; y); u)))368 [1,342,177] P (E(E(x; y);E(x; y)))399 [1,27,368] P (E(E(E(x; y); z);E(E(E(x; u); E(y; u)); z)))400 [1,9,368] P (E(E(x; y);E(E(x; z);E(y; z))))436 [1,399,368] P (E(E(E(x; y);E(z; y)); E(x; z)))442 [1,400,436] P (E(E(E(E(x; y);E(z; y)); u);E(E(x; z); u)))453 [1,436,368] P (E(x; x))798 [1,243,453] P (E(E(x;E(E(y; z);E(u; z))); E(x;E(y; u))))832 [1,442,798] P (E(E(x;E(y; z));E(E(x;E(u; z)); E(y; u)))) (S40)
20



Formula S30 is a single axiom for the RG calculus:1 :P (E(x; y)) j :P (x) j P (y) (CD)9 P (E(x;E(x;E(E(E(y; z);E(u; z));E(y; u))))) (S30)27 [1,9,9] P (E(E(x;E(x;E(E(E(y; z);E(u; z));E(y; u))));E(E(E(v;w);E(s;w)); E(v; s))))28 [1,27,9] P (E(E(E(x; y);E(z; y));E(x; z)))30 [1,9,28] P (E(E(E(E(x; y);E(z; y));E(x; z));E(E(E(u; v);E(w; v));E(u;w))))32 [1,28,30] P (E(E(E(x; y);E(z; y));E(E(x; u); E(z; u))))34 [1,28,32] P (E(E(x; y);E(x; y)))38 [1,32,9] P (E(E(x; y);E(E(x;E(E(E(z; u);E(v; u));E(z; v))); y)))39 [1,28,34] P (E(x; x))49 [1,9,39] P (E(E(x; x);E(E(E(y; z);E(u; z));E(y; u))))54 [1,28,49] P (E(E(x; y);E(E(x; z);E(y; z))))59 [1,54,28] P (E(E(E(E(x; y);E(z; y)); u); E(E(x; z); u)))131 [1,38,39] P (E(E(x;E(E(E(y; z);E(u; z));E(y; u))); x))202 [1,59,131] P (E(E(x;E(E(y; z);E(u; z)));E(x;E(y; u))))238 [1,59,202] P (E(E(x;E(y; z));E(E(x;E(u; z));E(y; u)))) (S40)Formula P40 is a single axiom for the RG calculus:1 :P (E(x; y)) j :P (x) j P (y) (CD)9 P (E(E(x;E(E(y; z); E(E(y; u);E(z; u)))); x)) (P40)27 [1,9,9] P (E(E(E(x; y);E(E(x; z);E(y; z)));E(E(u; v);E(E(u;w);E(v;w)))))28 [1,9,27] P (E(E(x; y); E(E(x; z); E(y; z))))30 [1,28,28] P (E(E(E(x; y); z); E(E(E(x; u);E(y; u)); z)))32 [1,28,9] P (E(E(E(x;E(E(y; z); E(E(y; u);E(z; u)))); v);E(x; v)))69 [1,32,9] P (E(x; x))73 [1,30,69] P (E(E(E(x; y);E(z; y));E(x; z)))80 [1,32,73] P (E(E(x;E(E(y; z); E(u; z)));E(x;E(y; u))))82 [1,28,73] P (E(E(E(E(x; y);E(z; y)); u);E(E(x; z); u)))133 [1,82,80] P (E(E(x;E(y; z)); E(E(x;E(u; z));E(y; u)))) (S40)Formula S60 is a single axiom for the RG calculus:1 :P (E(x; y)) j :P (x) j P (y) (CD)9 P (E(E(x;E(E(E(y; z); E(u; z));E(y; u))); x)) (S60)27 [1,9,9] P (E(E(E(E(x; y);E(z; y));E(x; z));E(E(E(u; v);E(w; v));E(u;w))))28 [1,9,27] P (E(E(E(x; y);E(z; y));E(x; z)))30 [1,9,28] P (E(E(E(E(x; y);E(z; y)); u);E(E(x; z); u)))35 [1,30,9] P (E(E(x;E(E(y; z); E(u; z)));E(x;E(y; u))))58 [1,30,35] P (E(E(x;E(y; z)); E(E(x;E(u; z));E(y; u)))) (S40)Note that the preceding six proofs contain many instances of E(x; x). The strategy ofdeleting such formulas was not used, because it resulted in longer proofs in those cases. Inaddition, the strategy appears to block all interesting theorems when starting the searchwith the single axiom S40. 21



Counterexample to Converse of Observation 1. Formula L20 is a single axiom for theRG calculus, but its mirror image L2 cannot be a single axiom for the LG calculus, becausenothing can be derived from L2 alone by ordinary condensed detachment.6 IndependenceIndependence of axiomatizations was not emphasized in the study described in this paper,but several results follow easily from failed Otter searches. This section contains a proofthat each of the axiomatizations fL2,P4g and fP4,Q3g of the LG calculus is independent.P (E(E(E(E(E(x; y);E(x; z)); E(y; z)); u); u)) (L2)P (E(x;E(E(E(E(y; z);E(y; u));E(z; u)); x))) (P4)P (E(E(E(x; y);E(E(y; x); z)); z)) (Q3)Lemma 6.1. Let T be the formula E(E(E(y; z); E(y; u));E(z; u)) (which is a subformulaof P4). Starting with P4 and condensed detachment, every derived formula has the formE(T 0; F ), for some formula F , where T 0 is a variant of T .Proof. The proof is by induction on the number of given clauses. The base case holdsbecause, on the �rst given clause, P4 condensed-detaches only with itself to derive E(T 0;P4).Assume that the lemma holds for n given clauses, and consider given clause n + 1, say G.Condensed detachment with minor premise G and major premise P4 derives E(T 0; G).Assume that another formula is derived. By the induction hypothesis, G must be of theform E(T; F ). There are two cases. In Case 1, G is the major premise, and P4 is the minorpremise. The occurs-check (Fig. 2) prevents application of condensed detachment. In Case2, G condensed-detaches with a derived formula, say H . By the induction hypothesis, Hmust also be of the form E(T; F ). No matter which is the major premise, E(T; F ) mustunify with a variant of T . However, the occurs-check (Fig. 2) prevents the uni�cation. This�nishes the proof of the two cases, the induction step, and the lemma.Case 1.E(x, E(E(E(E(y,z),E(y,u)),E(z,u)),x)) : P4E( E(E(E(v,w),E(v,t)),E(w, t)) ,F) : E(T,F)Case 2.E(E(E(E(x,y),E(x,z)),E(y,z)),F) : E(T,F)E( E(E(E(v, w), E(v,t)),E(w,t)), F') : E(T',F')Figure 2: Lemma 6.1 Occurs-Check FailuresTheorem 6.1. In the LG calculus, fL2,P4g is independent, and fP4,Q3g is independent.Proof. Neither L2 nor Q3 condensed-detaches with itself, so neither can derive P4. NeitherL2 nor Q3 is a variant of E(E(E(E(y; z);E(y; u));E(z; u)); F ), for any F , so by Lemma6.1, neither can be derived from P4. This completes the proof of the theorem.22



Theorem 6.1 is the direct result of failed searches with Otter. In the output of asearch starting with just P4, it was observed that each given clause derived exactly one newtheorem, and the pattern was as described in Lemma 6.1.7 SummaryKalman's axiomatization L1{L5 of the left group (LG) calculus was used as the startingpoint for the search for new axiomatizations of the LG calculus. Section 4 contains a proofthat LG-27-1690 is a single axiom for the LG calculus.P (E(E(E(E(x; y); z);E(E(u; v);E(E(E(w; v);E(w;u)); s)));E(z;E(E(y; x); s))))(LG-27-1690)Section 4 also shows that each of the sets fL2,L3g, fL2,P1g, fL2,P4g, fL2,Q1,Q2g, fP1,Q3g,fP4,Q3g, fQ1,Q2,Q3g, and fQ1,Q3,Q4g also axiomatizes the LG calculus.P (E(E(E(E(E(x; y); E(x; z));E(y; z)); u); u)) (L2)P (E(E(E(E(E(E(x; y);E(x; z)); u);E(E(y; z); u)); v); v)) (L3)P (E(E(E(x; y); z);E(E(u; y); E(E(x; u); z)))) (P1)P (E(x;E(E(E(E(y; z);E(y; u)); E(z; u)); x))) (P4)P (E(x;E(E(y; z);E(E(z; y); x)))) (Q1)P (E(E(x; y);E(E(z; x);E(z; y)))) (Q2)P (E(E(E(x; y);E(E(y; x); z)); z)) (Q3)P (E(E(E(x; y);E(x; z)); E(y; z))) (Q4)In addition, the sets fL2,P4g and fP4,Q3g are shown to be independent in Section 6.Kalman's axiomatization L10{L50 (named R1{R5 by Kalman) of the right group (RG)calculus was used as the starting point for the search for new axiomatizations of the RGcalculus. Section 5 contains proofs that each of the following formulas is a single axiom forthe RG calculus:P (E(x;E(x;E(E(y; z);E(E(y; u);E(z; u)))))) (L20)P (E(E(x;E(y; z));E(x;E(E(y; u); E(z; u))))) (S20)P (E(x;E(x;E(E(E(y; z);E(u; z));E(y; u))))) (S30)P (E(E(x;E(y; z));E(E(x;E(u; z)); E(y; u)))) (S40)P (E(E(x;E(E(y; z);E(E(y; u);E(z; u)))); x)) (P40)P (E(E(x;E(E(E(y; z);E(u; z));E(y; u))); x)) (S60)23



Section 5 also shows that each of the pairs fQ20,Q30g and fQ30,Q40g also axiomatizesthe RG calculus.P (E(E(E(x; y);E(z; y)); E(x; z))) (Q20)P (E(x;E(E(x;E(y; z));E(z; y)))) (Q30)P (E(E(x; y);E(E(x; z);E(y; z)))) (Q40)This paper has shown how the automated theorem-proving program Otter was usedto discover proofs that candidate sets of theorems axiomatize the LG and RG calculi.Otter was also used in several ways that might not be considered standard �rst-order logictheorem proving. First, axiomatizations were found by starting a search with hundreds ofinput theorems, Otter deriving a known axiomatization, then the user simply lookingat the proof to �nd the new axiomatization (the input theorems on which the derivationdepends). In most cases, the user then directed Otter to search for dependencies in thenew axiomatization. Second, single axioms were found by automatically running thousandsof separate Otter jobs with di�erent candidates, which were extracted from the outputof a previous Otter run. Third, Otter was used to enumerate all of the equivalentialcalculus (EC) theorems of a given length and to extract the LG theorems from the ECtheorems by rewriting (Section 4.1, Table 1). Finally, Otter produced unexpected results,for example, the dependence of L1 and L4 (Section 4.2) in Kalman's original axiomatizationof the LG calculus.The variation in Otter jobs was much more in the set of input formulas than in thesearch strategy. The variation in search strategy (Section 3) involved selection of givenclauses, whether or not derived formulas containing instances of E(x; x) were discarded,and the weight threshold for derived clauses. The most successful combination for theseexperiments was to select given clauses with ratio 2, to discard derived formulas withinstances of E(x; x), and to discard derived formulas with weight greater than 28.The study described in this paper consumed about 4 CPU days on a SPARCstation 1+computer. The dependence of L1 and L4 was discovered on October 9, 1990. The rest ofthe results were obtained January 10{25, 1991.AcknowledgmentsI thank Dana Scott for suggesting these calculi as challenges for Otter, Larry Wos forcollaborating on the formulation of search strategies applied by Otter in related condenseddetachment problems, and John Kalman for discussions on the topic.References[1] N. D. Belnap. The two-property. Relevance Logic Newsletter, 1:173{180, 1976.[2] G. Higman and B. H. Neumann. Groups as groupoids with one law. PublicationesMathematicae Debrecen, 2:215{227, 1952.24
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