
Copyright information to be inserted by the PublishersACHIEVING LOGARITHMIC GROWTH OFTEMPORAL AND SPATIAL COMPLEXITY INREVERSE AUTOMATIC DIFFERENTIATION �ANDREAS GRIEWANKMathematics and Computer Science Division, Argonne National Laboratory,Argonne, Illinois 60439In its basic form the reverse mode of automatic di�erentiation yields gradient vectors at a smallmultiple of the computational work needed to evaluate the underlying scalar function. The prac-tical applicability of this temporal complexity result, due originally to Linnainmaa, seemed to beseverely limited by the fact that the memory requirement of the basic implementation is propor-tional to the run time, T , of the original evaluation program. It is shown here that, by a recursivescheme related to the multilevel di�erentiation approach of Volin and Ostrovskii, the growth inboth temporal and spatial complexity can be limited to a �xed multiple of log(T). Other com-promises between the run time and memory requirement are possible, so that the reverse modebecomes applicable to computational problems of virtually any size.KEY WORDS: Gradient, Adjoint, Complexity, Checkpointing, Recursion1 INTRODUCTIONMany computational problems involve nonlinear vector functionsF (x) : Rnd 7! Rnr ;which are evaluated by codes written in a high-level computer language such as For-tran or C. Mathematically, this evaluation process can be interpreted as sequenceof n elementary transformationssi+1 fi(si) fi : S 7! S ; (1)where S denotes a larger vector space of real variables that includes, in particular,the dependent and independent variables of F . Provided that the transformationsfi are all di�erentiable with Jacobians f 0(si), the chain rule implies thatF 0(Qs0) = P f 0n�1(sn�1) � f 0n�2(sn�2); : : : ; f 0i(si); : : : ; f 00(s0)QT ;where Q and P are projections onto the domain and range of F , respectively. Eventhough the individual Jacobians f 0i are likely to be extremely sparse, Speelpenning� This work was supported by the Applied Mathematical Sciences subprogram of the O�ce ofEnergy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.1

2 A. GRIEWANK[8] and others have observed that multiplying them together from right to left (i.e.,for i = 0; 1; 2; : : : ; n � 1) may be much less e�cient than multiplying them fromleft to right, especially when nr << nd. Of particular importance are cases whereF 0 has only one row (i.e., nr = 1) or is multiplied from the left by a row vector �y.Then the product �x � �yF 0(x) can be obtained as �x = �s0Q, with �s0 the result ofthe adjoint recurrence�si �si+1f 0i(si) for i = n� 1; n� 2; : : : ; 0starting from �sn = �yP . Hence there is only one vector-matrix product associatedwith each elementary function, so that the e�ort for evaluating F and �yF 0 shouldbe comparable [4]. Provided that the fi are su�ciently simple, this is indeed thecase in terms of the usual operations counts. However, the potential di�culty forthis adjoint, top-down, or reverse mode of automatic di�erentiation is that it seemsas though either the Jacobians f 0i or the arguments si have to be saved in some formduring the original forward sweep (i.e., the execution of the recurrence (1)). Thisspatial complexity is usually proportional to the temporal complexity of the originalevaluation program and may therefore be quite large. Current implementations ofthe reverse mode [5] typically store 15{20 bytes per arithmetic operation, whichmay require 30 megabytes of storage for each minute evaluation time on a Sun 3.Even though care can be taken that these large data sets are accessed sequentiallyrather than randomly, this kind of memory requirement is clearly debilitating onlarger problems.While more economical implementations of the basic scheme can certainly ex-tend the range of applicability of the reverse mode, we describe a modi�cation thatdestroys the proportionality between the temporal complexity of the original evalu-ation program and the spatial complexity of the reverse mode. Since we will be ableto establish the possibility of merely logarithmic growth, suitable implementationsof the reverse mode should allow the automatic evaluation of gradients and otheradjoint vectors for problems of virtually any size. In accounting for computationalcosts, we will try to be as realistic and system independent as possible. The prob-lem we are addressing is closely related to that of logical program reversability,which has attracted some interest in theoretical computer science. Bennett[2] con-jectured already in 1973 that a logarithmic growth in the spatial complexity mightbe achievable. The technique advocated here could also be useful for debuggingpurposes, where previous states need to be reconstructed by some form of runningthe program backward.The paper is organized as follows. In Section 2 we develop a convenient model ofcomputations and their complexities on a single-processor machine with a �xed-sizecore and a sequentially accessed disk �le of arbitrary size. In Section 3 we considerthe basic reverse method, which minimizes temporal complexity, and its opposite,an even less attractive scheme that needs very little extra storage, but essentiallysquares the run time. In Section 4 we describe a recursive program for adjointevaluations and derive bounds for their complexities. In Section 5 we assume thatthe function evaluation can be broken into a sequence of computational steps thatare roughly of equal size in terms of the tape length needed to record them. Under

LOGARITHMIC REVERSE DIFFERENTIATION 3this quite reasonable assumption we develop in Section 6 a binomial partitioningscheme for recursive reversion that minimizes the growth in spatial and temporalcomplexity. Logarithmic growth is already achievable by a simpler bisection schemethat is used in our current implementation. In Section 7 we map out other feasiblecombinations of spatial and temporal complexities on a given problem. Section 8contains some numerical results with this experimental program and discusses thepractical rami�cations and implementation issues.2 COMPUTATIONAL FRAMEWORK AND COMPLEXITY MEASURESFor the purposes of our complexity analysis, we assume that the evaluation ofthe vector function in question is carried out by a sequence of calls to elementaryprocedures f : S � f0; 1gR 7! S ;where R � jSj < 1 is the size of the state space S. In other words, the statess 2 S are represented by bit vectors of length R on which the procedures f e�ectcertain transformations. In practice, most of these bits will be part of binaryrepresentations of integers or oating-point numbers, but that is of no concernhere. We refer to the application of f to a particular state s 2 S as a call to f at s.Without loss of generality we may assume that all f belong to a given �niteset L of elementary procedures. In practice, this library usually includes all binaryelementary operations but may also contain more involved procedures, such as basiclinear algebra routines or quadratures. Since dimensions and logical ags can becalling parameters, the complexity of these calls f may depend strongly on thestate vectors s to which they apply. We will use two complexity measures: a sizeand a work-vector denoted byjf js 2 Z and w(f)s 2 Ro ;respectively. The o components of w(f)s may account separately for various com-putational costs (e.g., logical or oating-point operations, and memory accesses tovarious parts of S). Since each component of w represents a certain amount ofexecution time on a particular machine, we consider the whole vector as a temporalcomplexity measure.The spatial complexity measure jf js counts the number of bits one has to recordon some internal or external medium in order to remember which procedure f wasapplied and to undo its call at s (i.e., restore s given f(s)). For optimizing therecursive di�erentiation process described in the next section, we will require thata suitable upper bound jf js is computable at negligible cost for any particular callfs. On the other hand, the work vectors w(f)s need not be known or estimatedfor that optimization. It is also interesting to note that, at least on a shared-memory machine, the temporal complexity w(f)s is likely to depend strongly onthe number of available processors, but the the spatial complexity jf js should beessentially constant.

4 A. GRIEWANKTo indicate that the action of a call to f at s must be recorded, we will use thestatement s f̂(s) rather than just s f(s). The cost for this action will bedenoted by ŵ(f)s � w(f̂)s 2 RoWe will make sure that all recorded data can be retrieved in a last-in-�rst-outfashion and, therefore, will refer to the corresponding storage device as the tape.Apart from recording some elementary procedures, we will also use the systemutilities snapshot(s) and retrieve(s) to copy the current state vector s 2 Sonto the tape and then to reinitialize S to the snapshot later on. All data arewritten forward and read backward so that none can be recovered twice. Apartfrom restricting the maximal length of the tape, one may also be concerned aboutthe total amount of data transfer to and from the tape. Fortunately, we will seethat this I/O e�ort grows at worst proportional to the the amount of arithmeticoperations needed fo the total adjoint calculation.The ratio w(f)s=jf js can be interpreted as a measure of computational intensity,which is quite small for single arithmetic operations but should be rather large forwell-designed subroutines. For example, consider an elementary procedure f thatmultiplies a variable vector by an m � n matrix that resides as a constant in S.Then only the values of the input vectors and output vectors (plus the dimensionsm;n and the addresses of the �rst matrix and vector elements) need to be recordedon tape. Consequently, the size jf js of a call to f is of order m + n, whereas itstemporal complexity grows like m �n, in any sensible measure. In this example therecording on the tape would also be quite cheap, so that ŵ(f)s � w(f)s for typicals. The decomposition of a calculation into elementary procedures in our sense is, ofcourse, not unique, and one may ask how a given problem should be decomposed forthe purposes of reverse automatic di�erentiation. As a general rule, we suggest thatthe elementary procedures should be computationally intensive, in that w(f)s=jf jsis not too small for most s, but at the same time the adjoint �fs (discussed below)must be easy to code and evaluate. In the case of the linear transformation dis-cussed above, the corresponding adjoint procedure amounts merely to multiplyingan adjoint m vector by the transposed of the constant matrix.The key ingredient of reverse automatic di�erentiation is that each call of f at shas a unique adjoint procedure call�fs : �S 7! �S ;where the adjoint state space �S is simply a replica of S. We consider the restorationof s from f(s) as an implicit part of the adjoint call �fs, so that even logical andinteger procedures have nontrivial adjoints. It is assumed that there is a libraryof adjoint procedures �f 2 �L that can be invoked at any pair (s; �s). The size jf jsde�ned above determines how much information must be retrieved from the tape ifone wishes to apply �fs, assuming S is in the state f(s). Since the adjoints �fs are,in fact, linear mappings on �S, we may assume that their work vector�w(fs) � w(�f)s 2 Ro

LOGARITHMIC REVERSE DIFFERENTIATION 5is essentially independent of the particular adjoint state to which they are applied.Moreover, we will assume that the complexity of an adjoint call can be boundedby a multiple of the underlying direct call, so that for some diagonal matrix D oforder o, �w(f)s � Dw(f)s � D ŵ(f)sfor all f 2 L and s 2 S. If the library L consists solely of binary arithmeticoperations and univariate system functions, one can show that, under reasonableconditions on the computer system in use, the scaled identity matrix D = 5 I islarge enough [4].For the sake of completeness we may formalize the concept of a computer programP as follows. Let P be a numbered set of m instructions each of which consists oftwo components: a procedure f 2 L and a mapping from S to the counter range[1; : : : ;m]. The second component lets every instruction nominate its successor,possibly as a function of ags and counters in the state space. Thus we allowfor loops and conditional jumps rather than restricting ourselves to straight-linecode. There must be terminal instructions that nominate themselves as successorsfor certain acceptable states s, and one or more entry instructions to begin theexecution. All these details have no bearing on our analysis, except that we assumethe e�ort of stepping through the program P to be negligible compared to the costof manipulating the state spaces �S and S and the tape. Finally, we assume thatthe overhead in calling the adjoint procedures �f 2 �L is also small.Concluding this section, we summarize the framework developed. There are tworandomly accessed state spaces S and �S of �xed size R = j�Sj bits and a strictlysequentially accessed tape �le of arbitrary length. Procedures f 2 L are called totransform a given state s 2 S into f(s) 2 S, an action which may be recorded onthe tape with jf js bits. Using this record, one can subsequently call on an adjointprocedure �fs that recovers s from f(s) on S and e�ects some (linear) transformationon the adjoint space �S. Associated with unrecorded, recorded and adjoint procedurecalls are computational cost vectors w(f)s; ŵ(f)s � w(f)s, and �w(f)s � Dw(fs),respectively. The system utilities snapshot(s) and retrieve(s) transfer a copy ofthe vector s between the state space and the tape.3 MINIMIZING EITHER TEMPORAL OR SPATIAL COMPLEXITYThroughout the remainder of the paper, we consider a sequence of (n+1) states siand n procedure calls fi at si that are generated according tosi+1 fi(si) for i = 0; 1; : : :n� 2; n� 1 (2)from some �xed initial state s0 2 S. Correspondingly, we may de�ne for a �xedterminal �sn 2 �S the adjoint states �si by the reverse recurrence�si�1 �fi(�si) for i = n� 1; n� 2; : : : ; 1; 0 ; (3)

6 A. GRIEWANKwhere we abbreviate �fi � �fsi . The adjoint vector �s0 is the actual target of the calcu-lation and could, for example, represent the gradient of a scalar function evaluatedby the successive calls fi.The basic implementation of the reverse mode (i.e., the calculation of �s0 basedon (3)) consists of recording all procedure calls fi on the tape during the forwardsweep (2) and then executing the reverse sweep reading the tape backwards. Thespatial and temporal complexity of the basic scheme is described byjSj+ j�Sj+ T = 2R+ T (4)and Ŵ + �W � Ŵ +DW � (I +D) Ŵ ; (5)where T � n�1Xi=0 jfijsi ; W � n�1Xi=0 w(fi)si (6)and Ŵ � n�1Xi=0 ŵ(fi)si ; �W � n�1Xi=0 �w(fi)si : (7)Thus we have reestablished the by now well-known | but still surprising | resultthat the basic reverse scheme yields the adjoint vector �s0 as a function of the pair(s0; �sn) for a �xed multiple of the temporal complexity needed to calculate sn asa function of s0. Unfortunately, compared to the original evaluation process, thespatial complexity grows essentially by the factorh � T=R ; (8)which will be central to our analysis.To get an idea of what the ratio h means in practice, let us briey considera time-dependent partial di�erential equation on a square. Using a grid with Nnodes in each spatial direction, we may describe the state at any time by severalvectors of size N2 (plus some counters and ags that we may neglect). To progressto the next step, we need one or more copies of each original state variable and afew intermediates, so that R could be something like 50N2 bytes, assuming realsare stored in four bytes each. Over M > N discrete time steps, the total numberoating-point operations would be about 50M N2, which corresponds to a tape sizeof T = 1000M N2 bytes. (Here we have assumed that each arithmetic operation isrecorded using 20 bytes). The resulting ratio h = 20M can obviously be arbitrarilylarge. In general, h can be thought of as the height of the computational graph[1], with R representing its width and T the area (i.e., the total number of nodes).This visualization of the situation is utilized in Fig. 1.

LOGARITHMIC REVERSE DIFFERENTIATION 7It appears that with regards to the size of h most computations are made up ofcomponents that belong to one of the following three classi�cations:h = O(one) For Stationary Structures in Euclidean Plane and Space.(Circuit Boards, Buildings, Vehicles, Satellites, Molecules, etc.)h = O(T=t) For Evolution Calculations over a Period T with Time-steps t.(Multibody dynamics, Fluid Flow, Weather/Climate, etc.)h = O(its) For �xed-point Iterations over a variable number of its steps.(Adaptive Quadratures, Newton Variants, Gradient Methods, etc.)On problems in the �rst class the reverse mode su�ers no serious memory growth,because the function evaluation process involves only nearest neighbor interactionbetween structural components. Therefore the evaluation process can be doneessentially in-place, i.e., on the data structures representing the individual compo-nents and their connectivity. That applies even for molecules and other multi-bosysystems with long-range interactions, provided these enter additively into the overallenergy. Then the individual energy contributions can be evaluated and di�erenti-ated separately, and their gradients may be accumulated immediately without anyneed to keep a global tape.All problems of the �rst class turn into an element of the second if one wishes tostudy the evolution of the structure in question as a function of time. In robot orsatellite design, weather data assimilation and other optimal control problems oneneeds the gradient of some performance measures or �tting functions with respectto model parameters, boundary conditions, and controls. In control theory it is wellknown that these gradients can be obtained with low temporal complexity by inte-grating the linear co-state equation backward in time. The close relation betweenthis well-established technique and reverse automatic di�erentiation was analyzedin Evtushenko's contribution to the proceedings [3] of the �rst SIAM Workshop onthe Automatic Di�erentiation of Algorithms. The same volume contains severalpapers by leading researchers from Meteorology and Oceanography, where adjointmodels are in regular use. Despite great e�orts to hand-code the adjoints as econom-ically as possible, the storage requirement prevents their application to operationalmodels with �ne resolution.Problems in the third class are characterized by numerically induced iterations,which may be interpreted as pseudo-time evolutions. In the case of implicit func-tions, quadratures, and other problems with a well de�ned mathematical structuretheir characteristics can often be exploited to obtain derivatives quite economically.However, this requires a lot of insight and intervention by the user and the relevantprogram fragments may be hard to isolate in a larger code. Therefore it is desirablethat the reverse mode can be implemented automatically such that numerical iter-ations in some part of the evaluation process do not let the tape grow unacceptablylong.The maximal tape size T is likely to be proportional to some norm of the workvector W , unless the key elementary procedures f are composites such as matrix-vector products with large computational intensities w(f)s=jf js. We have implicitly

8 A. GRIEWANK

Maximal Memory Requirement

Snapshot

Snapshot

Snapshot

Snapshot

Snapshot

Final State

Initial State

S5

S4

S3

S2

S1

S0

T/R

RFIGURE 1: Computational Graph with vertical Time and horizontal Space axis

LOGARITHMIC REVERSE DIFFERENTIATION 9restricted the complexity of the elementary procedures f 2 L by requiring thatthey have adjoint procedures �f that can be coded easily for inclusion in the adjointlibrary �L. Volin and Ostrovskii [9] suggested recursively treating procedures asprograms with their own work space and evaluating their adjoints by performingforward and reverse sweeps within these subprograms. We prefer to consider theelementary procedures as lowest computational units and refer to the maximal sizeG � maxf jfij : 0 � i < n gas the granularity of the calculation. Like the maximal tape size T the granularityis dependent on the initial state s0, but by our assumptions both integers can becomputed during a preliminary forward sweep.The basic method described above has optimal temporal complexity but requiresa potentially excessive amount of storage. At the opposite extreme one can minimizespatial complexity at the expense of temporal complexity by the following simplescheme. Suppose we have a tape �le of size at least S + G. Then we can take asnapshot of s0 and execute the forward sweep without recording until reaching sn�1.The �nal call f̂n�1 can now be executed and recorded so that the application of�fn�1 yields �sn�1 from �sn. We may then repeat the process by reinitializing S to s0and then executing another, mostly unrecorded, forward sweep. Since one adjointcall can be applied each time, �s0 must be reached after at most n (partial) forwardsweeps. Even if we record several smaller calls together, the number of forwardsweeps will be at least ~n � dT=Ge, so that the resulting temporal complexity is oforder ~nW , provided the work is reasonably evenly distributed between early andlate procedure calls.4 RECURSIVE ADJOINT EVALUATION METHODAn ~n-fold increase in the spatial complexity is clearly unacceptable even for compar-atively small problems. However, the basic approach of repeating forward sweepsfrom a previously saved state is quite viable. Rather than returning to the initialstate every time, we will instead take snapshots at checkpoints that are carefullychosen to minimize the number of times a particular procedure has to be evalu-ated. The basic idea is depicted in Fig. 1, where the checkpoints are spaced evenly.By optimizing the number of snapshots, one can reduce the spatial complexity toO(phR). This very signi�cant saving in memory requires only one extra sweepthrough each segment of the calculation sequence, so that the work estimate (5) isincreased by W . The work W for an unrecorded forward is always smaller thanthe e�ort Ŵ for a recorded sweep, which in turn is typically dominated by the cost�W of the full adjoint sweep. Therefore, we can expect that a few additional un-recorded sweeps will have little impact on the overall temporal complexity. Ratherthan using just one level of snapshots as depicted in Fig. 2, one can apply the sametechnique recursively to the horizontal slices of the graph.Provided s 2 S and �s 2 �S have been initialized to the given s0 and �s0, the reversesweep can be performed in pieces by a call treeverse(0; 0; n); where the recursive

10 A. GRIEWANKprocedure treeverse is de�ned as the informal program listed in Fig. 1.treeverse(base,start,finis)if start > base snapshot(s)s fi(s) for i = base; : : : ; start� 1while base << finispick kidstart 2 (start; finis)treeverse(start; kidstart; finis)finis = kidstarts f̂i(s) for i = start; : : : ; finis � 1�s �fi(�s) for i = finis � 1; : : : ; startif start > base retrieve(s)returnFIGURE 2: Recursive Adjoint Calculation RoutineThe name treeverse was chosen to reect the fact that we are traversing a treeof recursive calls to perform a reverse sweep on the given computational sequence.The index base indicates what state of the forward calculation has been reached andthe index bracket [start; finis] tells the invocation of treeverse which subrangeof the calculation it has to \cover." Here, to \cover" means to move the adjointstate back from �s = �sfinis to �sstart. To this end treeverse �rst advances fromsbase to sstart, and then calls up several children to reduce the current target finisuntil it is deemed close enough to start that the remaining stretch from sstart tosfinis can be recorded and reversed directly. Here the notion close enough is thenegation of the relation << that will be de�ned more speci�cally later on. Exceptwhen base = start the initial state sbase is saved and later restored just beforecontrol returns to the calling program. The recursion must terminate since thechild's start kidstart must always lie inside the current bracket (start; finis), andwe have tacitly assumed that the test start << finis can hold only if the widthfinis � start is greater than one. Under these two simple conditions on the whilecondition and the choice of kidstart, the recursive procedure must terminate withthe correct result �s = �s0.Sometimes the calculations performed by the functions fi for base � i < finismay be known in advance to take place in a conveniently addressed subset of thestate space S. In this case we need only save and restore that subspace at thebeginning and end of the call to treeverse, repectively. In this way our recursiveformalism can be modi�ed to include Volin and Ostrovskii's multilevel di�eren-tiation approach [9]. However, in this paper we assume that the simplicity andconvenience of taking snapshots of the whole state space outweigh the savings instorage that might be achieved by a more localized approach. As we will brieydiscuss in the �nal section, the operating system may automatically provide thislocalization through its virtual memory manager.

LOGARITHMIC REVERSE DIFFERENTIATION 11If one imposes an a priori bound on the size of the recordings, the maximal tapelength becomes essentially equal to R times the maximal depth of the recursion,which we will denote by d. Hence we obtain the spatial complexity boundTd � G+ (d+ r)R ; (9)where the constant term r � 1R max(finisXi=start jfij � G)represents the maximal size of any recording measured in units of R.As with the spatial complexity, we wish to bound the temporal complexity rel-ative to the e�ort of executing the original forward calculation. For this purposelet us consider how often any particular elementary procedure fi is evaluated dur-ing one of the partial forward advances. By inspection of the informal programfor treeverse, we see that this procedure occurs exactly as often as the particularindex i is contained in the interval [base; start) for a call to treeverse. Clearly i iscontained in the intervals [start; kidstart) for all children of the particular call thateventually records fi. For that unique parent i must be contained in the interval[start; finis) at the time of its call. This interval is traversed by all older siblings ofthe parent, as their kidstart values exceed the value of finis at the time when theparent itself was born. Since the grandparents' interval [start; finis) contains thatof the parent, we conclude that the number of all older siblings of all direct ances-tors must be added as well. While this argument seems rather complicated, we willsee below that the number of forward sweeps through any part of the calculationsequence can be computed quite easily.5 SEGMENTATION INTO COMPUTATIONAL STEPSThe spatial bound (9) is not optimal, because one may use shorter recordings atlarger depth. However, this does not help much, and a uniform recording size hasother advantages. Given r as a parameter, we will therefore partition the originalsequence of elementary procedures fi into segments called computational stepsFj � [fij ; fij+1; : : : ; fij+1�1] for j = 0; : : : ; �� 1Here the indices ij � n are de�ned as large as possible, subject to the constraintthat Xk<ij jfkj � j R r : (10)This de�nition implies that the total number of computational steps is given by�r � dT=(r R)e

12 A. GRIEWANKand that for all j � �rjFjj � Xij�k<ij+1 jfkj � rR+ G :Our analysis will reveal that good choices of r are at least sizable fractions andoften greater than one, so that r R should be quite large compared to the granu-larity. Consequently, we can expect that the sizes jFjj � r R� G are very close totheir average rR. To indicate that the elements of Fi are applied with or withoutrecording, and similarly to represent the application of their adjoints in reverseorder, we use the statementss Fj(s) ; s F̂j(s) ; and �s �Fj(�s) ;respectively. Hence, we have coarsened the original sequence of elementary proce-dures fi into a sequence of computational steps Fj of nearly uniform size jFjj � r R.Here size represents again the length of the recording needed to prepare the groundfor the corresponding adjoint step at a later time.In explicitly time-dependent problems the Fj can be de�ned naturally as a sub-sequence of several time steps. While imposing spatial uniformity on the computa-tional steps we will not make any assumption regarding their temporal complexity.Even if the computational e�ort per step varies widely, we can bound the overalltemporal complexity of the adjoint calculation by limiting the number of times anyone of the steps is (re)evaluated. Therefore, we can even allow for the possibil-ity that the individual computational steps are evaluated with varying degrees ofconcurrency on a parallel machine. In that case the steps must be separated bysynchronization boundaries, and a shared memory should be established at least inthe virtual sense.At the level of the computational steps, we will replace the original counters base,start, kidstart, and finis by the Greek indices �, �, �, and �, respectively. Thesesingle-character names will also be more convenient in the subsequent mathematicalanalysis. To keep track of the depth, we will use a counter � that is decrementedfrom its initial value d at the beginning of each call. Similarly we will use a counter� that is decremented from its initial value t every time the computational stepsFj with j in the current range [�; �) are executed without recording. The role of �and � may be better understood if one rearranges the calling tree of treeverse asa binary tree. To this end each call to treeverse generates a single left child, andthe parent duplicates itself as the right child. Then the values (d� �) and (t � �)in a particular instance of treeverse count how many left and right children occurin its line of ancestry from the root, i.e., the top-level call.In the absence of any other information regarding the nature of the computationalsteps, we must choose the new kidstart version � by a partition function of the form� = mid(�; �; �; �) :To signal that no more children are required or that the limits d and t are aboutto be violated because either � or � have been reduced to zero, we use the special

LOGARITHMIC REVERSE DIFFERENTIATION 13treeverse(�; �; �; �; �)if � > �� = � � 1snapshot(s)s Fj(s) for j = �; : : : ; � � 1while � =mid(�; �; �; �) < �treeverse(�; �; �; �; �)� = � � 1� = �if �� � > 1 exit("treeverse fails")s F̂�(s)�s �F�(�s)if � > � retrieve(s)returnFIGURE 3: Recursive Adjoints by Range Partitioningvalues � = � if � = � + 1 or � � = 0 :Now we can �nally use the top-level call treeverse(d; t;0;0; �r) with the routinetreeverse reprogrammed as listed in Fig. 3.Unless either � or � is reduced to zero prematurely, the reverse sweep is completedand satis�es the temporal complexity boundWt � Ŵ + �W + tW : (11)Here W , Ŵ , and �W are as de�ned in (6) and (7). By comparison with (9) we seethat the two parameters d + r and t directly and independently determine upperbounds on the spatial and temporal complexity, respectively. Naturally the limits tand d as well as the recording size r cannot be chosen arbitrarily, but they must belarge enough to allow the recursion to terminate successfully for a suitable de�nitionof the partition function mid. In the following section we will derive the partitionfunction that is optimal under our complexity assumptions. Since that derivationis complex, let us �rst consider a simple bisection scheme, which is su�cient toyield the logarithmic growth alluded to in the title. Suppose we de�ne � simply asthe midpoint � = mid(�; �; �; �) � d(� + �)=2e : (12)This choice means that the width � � � of the range to be covered is halved atleast once at each level. More precisely, at any particular instance in the callingtree it will have been halved (d� �) + (t � �) times, where d and t are the actualparameters of the top-level call. Consequently the choicet = d = dlog2 �re

14 A. GRIEWANKensures that the recursive procedure must terminate regularly. For simplicity wemay de�ne the computational steps according to (10) with r = 1 so that theirrecording requires no more than R bits. Then we have � � h = T=R so that by (9)and (11) (Td � G� r R)R � (Wt � Ŵ � �W)W � log2�TR� :In other words, for this particular partitioning strategy the increase in both tempo-ral and spatial complexity is roughly equal to the logarithm base two of the numberof computational steps. As we will show in the next section, this penalty factorcan be reduced by a factor of two, and one can decrease the storage requirementfurther by a more careful choice of the stepsize r. Until the end of the next sectionthe size r plays no role at all, and only the total number �r of computational stepsis important.6 OPTIMAL COMPLEXITY BY BINOMIAL PARTITIONING.Given the current limits � and � on the number of additional generations and thenumber of extra forward sweeps, the value � =mid(: : :) determines a split of thecurrent range [�; �] into the two subranges [�; �] and [�; �]. Since the cost penaltyfor covering the second subrange by the nested call to reverse is bounded in termsof the parameters � and � , one might as well choose the width � � � as large aspossible, subject to the condition that the recursion can still be completed. Inthis way the task of constructing an optimal function mid can be interpreted as adynamic programming problem.For given � � 0 and � � 0 let us denote by �(�; �) the maximal number ofcomputational steps that can be covered by treeverse using any possible choiceof mid. At this stage we have to allow for the theoretical possibility that some�(�; �) are in�nite, which would mean that arbitrarily long computations could beinverted at a �xed increase in computational complexity. Unfortunately, that is notthe case, as we can see from the following inductive argument. By inspection of thesecond program above, we have the inequality�(�; �) � 1 + �X�=1 �(� � 1; �) : (13)The summation should be interpreted backwards in that the last term �(��1; �) isthe width of the range covered by the �rst child of the current node. Subsequently� is reduced by one and the next child is called with the parameters ��1; ��1, andso on until � has been reduced to zero. At that stage no further children can begenerated and the current node records and reverts a single step, which is reectedby the leading 1 on the right-hand side of (13). In calls where the �rst parameter� has already been reduced to zero, not a single child can be generated, as thatwould require another snapshot being taken. Hence we �nd that1 = �(�; 0) = �(0; �) for all �; � � 0 : (14)

LOGARITHMIC REVERSE DIFFERENTIATION 15Because of (13) each �(�; �) is bounded by sums of the limiting unit values above sothat all of them must be �nite. In fact since the �(�; �) are supposed to be as largeas possible, we might as well de�ne them recursively by (13) with � replaced by anequal sign. By comparison with the summation formula for binomial coe�cientswe obtain the explicit formula�(�; �) � � � + �� � � (� + �)(� + � � 1) � � � (� + 1)� ! ; (15)which satis�es both the marginal conditions (14) and the relation (13) as an equality.The corresponding partition function is given by the convex combination� = mid(�; �; �; �) � �� � � + � � �(� + �) � : (16)To verify this assertion, one may simply check that if the current range is maximalin that (� � �) = �(�; �) ;then the value of � de�ned above ensures for the right subrange(�� �) = �(� � 1; �)and for the left subrange (�� �) = �(�; � � 1) :The decrement in � for the left subrange makes sense since the right subrangeis covered �rst, and in doing so treeverse once more marches through the leftsubrange. The decrement of � for the right subrange makes sense since each callentails another snapshot. Note that the last three equations are consistent with theaddition formula for binomial coe�cients. To conclude this section, we can nowsummarize the central result of this paper as follows.Theorem 6.1. A sequence of � computational steps Fj can be reverted using upto d snapshots and (re)evaluating each Fj without recording at most t times if andonly if � � �(d; t) = (d+ t)!=(d! t!) :In addition, this procedure involves one recorded evaluation F̂j and one adjointevaluation �Fj of each computational step. The spatial and temporal complexity ofthe complete reverse calculation is bounded byTd � G+ (d+ r)R and Wt � Ŵ + �W + tW ;respectively. Here R = jSj and W; Ŵ ; �W are de�ned in (6) and (7).The fact that the number of snapshots d and the number of extra passes t enterin a completely symmetric fashion into the maximal number of computational steps� is aesthetically quite pleasing. According to Stirling's formula we have almostexactly �(t; d) � 1p(2�) � �1 + dt �t �1 + td�ds�1d + 1t� ; (17)

16 A. GRIEWANKso that for given � one may choose for example equal parameterst = d � log4(�r) � log4[T=(Rr)] :Thus we see that this particular optimized scheme is about twice as e�cient as thesimpler bisection scheme, whose complexity is already logarithmic in h = T=R.If one �xes either parameter d or t at a certain level, the other parameter growslike a fractional power of the number of steps to be covered. More speci�cally, itfollows again from (17) that for �xed positive d or tt = O � dph=r� or d = O � tph=r� ;respectively. Which one of the feasible combinations (d; t) and r should be selectedfor given h depends, of course, very much on the computing environment and theuser's priorities. However, as we have noticed before, a small value of t, say 4, isunlikely to increase the run time by much in comparison to the basic t = 0 scheme.At the same time this choice would reduce the memory requirement for the adjointcalculation to the fourth root of the height h times the size of the state space.Figure 2 depicts the optimal schedule for a sequence of �(3; 5) = 56 computa-tional steps. Each horizontal line at level � + 1 from the bottom represents aninstantiation of treeverse. The vertical lines emanating from the horizontals rep-resent calls to their children, whose level is given by the current value of �+1. Theslanted lines connect groups of siblings who are called by their parents to revert onecomputational step at a time without generating any more children of their own.The recursive nature of the whole process is clearly discernible. An alternativeinterpretation of Fig. 1 is that it represents a schedule for a system of elevatorsin a high-rise building with 56 oors. In that situation t = 5 represents the num-ber of shafts, and d = 3 bounds the number of times any rider traveling from theground level to any one of the 58 oors has to switch elevators or merely halts ata scheduled stop.7 SELECTING THE SIZE OF COMPUTATIONAL STEPSIn this section we have so far assumed that the recording size r had been selecteda priori. On the other hand, we found that the complexity bounds d and t areoptimally exploited if the number of computational steps is exactly equal to thecorresponding binomial �(d; t). Hence it makes sense to de�ne r asr � h=�(d; t);which is always possible even if d = 0 = t and thus �(0; 0) = 1. This extremechoice records the whole calculation as a single computational step and correspondstherefore to the basic version of reverse automatic di�erentiation. In general, we seefrom (9) that the total length of the tape is proportional to the sum (d+ r). Hence

LOGARITHMIC REVERSE DIFFERENTIATION 17

1 1 2 3 4 523 XXXX45 6 XXXX78 XXXX9XXXX1011 12 XXXX1314 XXXX15XXXX1617 XXXX18XXXX19XXXX2021 22 XXXX2324 XXXX25XXXX2627 XXXX28XXXX29XXXX3031 XXXX32XXXX33XXXX34XXXX3536 37 XXXX3839 XXXX40XXXX4142 XXXX43XXXX44XXXX4546 XXXX47XXXX48XXXX49XXXX5051 XXXX52XXXX53XXXX54XXXX55XXXX56

FIGURE 4: Optimal Schedule for 5 Sweeps and 3 Snapshots

18 A. GRIEWANKit makes sense to select d such that it minimizes the spatial complexity multiplierd+ r = d + h=�(d; t) (18)for �xed t. An elementary examination shows that this objective is attained at theunique d � 0 for whichd � (d+ 1) � � � (d+ t) � t � h � t! � (d+ 1) � � � (d+ t+ 1) : (19)The corresponding recording size satis�es0 � r � d=t � 1 + 1=t ; (20)so that we have approximately r � d=t, and the maximal length of the tape is aboutTd � d(1 + 1=t)R � r(1 + t)R :This means that ideally the fraction 1=(1 + t) of the available tape length shouldbe allocated to the recordings, with the remaining larger fraction t=(1 + t) beingused for snapshots.Since each call to treeverse reverts one computational step their total numberis exactly etar = d=R=re: Except for the top-level instance each of them calls thesystem routines snapshot(s) and retrieve(s) once so that the total bit tranferbetween the state space and the tape is bounded by2 [T + (�r � 1)R] < 2T (1 + 1=r) < 2T (1 + t=d) ;where the last inequality follows from (20). Thus we see that even when there isonly room for one state space copy on the tape, i.e., d = 1, the total bit transfer isat most (1 + t) times the minimal amound 2T , which is always needed to recordand revert each computational step once. Consequently our main complexity resultremains true even if the total bit transfer is included into the temporal complexitymeasure Wt.Each computer program for the evaluation of the vector function in question hasa well de�ned height h = T=R. If it is not known from evaluations at previous argu-ments the height can be determined in a preliminary forward sweep. Alternativelyone might devise an adaptive scheme that dynamically allocates snapshots and re-vises the schedule when the evaluation runs longer or shorter than expected. Thisis a �eld for future research and development. If h is known one can compute a pro-�le of pareto optimal space-time trade-o�s by minimizing d+ r for t = 0; 1; : : : Theresulting contours for h = 10; 100; : : : ; 10; 000; 000 are plotted in Fig. 5. Along thediagonal t = d the growth in both complexity factors is clearly logarithmic, whereaseither of them explodes in a hyperbolic fashion near the axes. Key observationsare that adjoints of calculations involving 100,000 or 1,000,000 computational stepscan be obtained at a cost increase by a factor of 10 or 12, respectively. Here costaccounts for spatial and temporal complexity, including the bit transfer betweenthe state space and tape. While these cost increases are nonnegligible one obtainsfull sensitivity information for one key objective or response with respect to all

LOGARITHMIC REVERSE DIFFERENTIATION 19
0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18

h=10

h=100

h=1,000

h=10,000

h=100,000

h=1,000,000

h=10,000,000

Height h=T/R

Time penalty t

Sp
ac

e p
en

al
ty

 d
+r

FIGURE 5: Feasible space-time Combinations for given Height hinput variables, parameters, and controls. Currently, this information cannot beobtained any other way.8 IMPLEMENTATION QUESTIONS AND DISCUSSIONThe logarithmic complexity growth of the recursive method described and analyzedin this paper has been veri�ed by an experimental implementation. For this purposeour C++ package ADOL-C [5] was modi�ed using the forking and piping facilitiesof UNIX System V. The tree of calls to treeverse was implemented as a tree ofprocesses with each child being spawned by a fork, which generates a full duplicateof the parent's environment. Therefore the child inherits all information accessibleto the parent, who halts its own calculations until the child signals the completionof its task. This information is passed back by sending the updated adjoint valuesthrough a pipe that has been set up by the parent for that particular purpose.The parent then either sends out another child or records and reverts its owncomputational step before returning control to the grandparent. The computationalsteps are simply de�ned as a sequence of elementary operations, whose recording inthe bu�er for the tape takes up a certain number of bytes. There is no attempt toestimate or utilize the size of the state space in use. Instead the user picks desiredbounds d; t, but neither �; � are never reduced below 1. Consequently the binomialpartitioning reduces to the bisection scheme when the combination d; t turns outto be infeasible.

20 A. GRIEWANKFor example, the calculation of a 10 � 10 determinant using Legendre's ruleinvolves 10! = 3; 628; 800 multiplications and additions or subtractions. Since thedeterminant was computed using a recursive function call, many assignments andso-called death notices had to be recorded. These overhead operations brought thetotal length of the tape to almost T = 814 megabytes, corresponding to nearlya million computational steps of one kilobyte size. As predicted by the theorythis problem could be solved for the combination d = t = 12. The computingtime was extensive, because all forward sweeps were performed with recording forprogramming simplicity. An e�cient version is currently being developed.The UNIX implementation sketched above is surprisingly simple and even ele-gant. To limit the size of the state space, one should relegate the evaluation of thefunction and its adjoint to a separate process that contains only the data that areactually needed for this purpose. Often this is only a comparatively small part in alarger computational environment. In case of 10� 10 determinant, there were only123 live variables, so that the data set that must be duplicated by fork could bevery small indeed. Another crucial question is how the operating system handlespages that are paged out at the time of a fork. It appears that current imple-mentations immediately duplicate all these pages so that they may generate manyidentical copies of pages that may never be touched by the function evaluation. TheUNIX documentation on fork promises for later releases a copy on write system,where pages are duplicated only when either child or parent processes actually startchanging them. This localization to the active areas of the state space could makecheckpointing by forking quite e�cient.For the sake of user convenience and computational e�ciency, it would be idealif reverse automatic di�erentiation were implemented at the compiler level. Somecompiler directives or new language constructs to identify independent and depen-dent variables as well as critical program sections are needed. Almost everythingelse could be handled by the compiler, if not the operating system. After pro�lingan evaluation routine in terms of computational cost and memory usage at variousstages of the execution, the operating system could suggest a checkpoint schedulethat is more or less optimal under the particular circumstances.ACKNOWLEDGEMENTSThe author is indebted to Ted Gaunt and Chuck Tyner for their invaluable help inimplementing the proposed method.REFERENCES1. F. L. Bauer, Computational graphs and rounding errors. SINUM, Vol. 11, No. 1 (1974), pp.87{96.2. C. H. Bennett, Logical Reversability of Computation, IBM Journal of Research and Devel-opment, Vol. 17 (1973), pp. 525{532.3. Yu. G. Evtushenko, Automatic di�erentiation viewed, in: Automatic Di�erentiation of Al-gorithm: Theory, Implementation, and Application, A. Griewwank and G. F. Corliss, eds.,SIAM, Philadelphia, 1991.

LOGARITHMIC REVERSE DIFFERENTIATION 214. A. Griewank, On automatic di�erentiation, in: Mathematical Programming: Recent Devel-opments and Applications, ed. M. Iri and K. Tanabe, Kluwer Academic Publishers, Tokyo,pp. 83{108, 1989.5. A. Griewank, D. Juedes, and J. Srinivasan, ADOL-C, a package for the automatic dif-ferentiation of algorithms written in C/C++, Preprint MCS-180-1190, Mathematics andComputer Science Division, Argonne National Laboratory, Argonne, Illinois, 1990. To ap-pear in TOMS.6. M. Iri, T. Tsuchiya, and M. Hoshi, Automatic computation of partial derivatives and round-ing error estimates with applications to large-scale systems of nonlinear equations, Journalof Computational and Applied Mathematics, 24 (1988), pp. 365{392.7. S. Linnainmaa, Taylor expansion of the accumulated rounding error, BIT, 16 (1976), pp.146{160.8. B. Speelpenning, \Compiling Fast Partial Derivatives of Functions Given by Algorithms,"Ph.D. dissertation, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1980.9. Yu. M. Volin and G. M. Ostrovskii, Automatic computation of derivatives with the useof the multilevel di�erentiation technique, Computers and Mathematics with Applications,Vol. 11, No. 11 (1985), pp. 1099{1114.

